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Abstract—This article proposes a technique for optimizing the timing performance and the resource consumption of hardware

accelerators for deep neural network (DNN) inference on FPGA-based system-on-chips (SoC).When required, the accelerators are

decomposed into chunks, each exploiting at best the available FPGA area, and dynamic partial reconfiguration (DPR) is leveraged to

schedule such chunks at run-time. To this end, the article presents accuratemodels of the resource consumption and timing of DNN

accelerators provided by the Xilinx FINN framework. Themodels are then used to formulate an optimization problem that computes the

optimal decomposition of DNN accelerators (and their configuration) byminimizing the inference time while ensuring area constraints on

the FPGA. Experimental results on Zynq-7000 platforms demonstrate that the proposed technique provides consistent improvements

with respect to both stock configurations of the accelerators and other configurations that can be obtained with a static FPGA allocation.

Index Terms—FPGA, partial-reconfiguration, DNN acceleration, MILP optimization
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1 INTRODUCTION

OVER the last few years, deep neural networks (DNNs)
reached impressive performance in several application

scenarios such as image processing, data analysis, and con-
trol [1]. Due to these developments, DNNs are increasingly
taken in consideration for developing new functionality in
cyber-physical systems (CPS) such as automated vehicles [2],
[3], next-generation factory automation [4], [5] advanced
robotics [6], [7], and anomaly detection in edge devices [8].
As DNNs are characterized by a high computational com-
plexity, some form of hardware acceleration is required to
use them in real time. System-on-chips (SoC) that integrate
both classical multiprocessors and a field-programmable
gate array (FPGAs) are promising candidates to build CPS
that require hardware-acceleratedDNNs. Indeed, they allow
deploying flexible, powerful, time-predictable, and energy-
efficient hardware accelerators on the FPGA fabric.

Two major approaches have been proposed [9] to acceler-
ate DNNs on FPGAs. One consists in deploying a series of

accelerators that can perform the fundamental mathematical
operations required by DNNs (such as convolutions) in an
efficient way. The other one consists in deploying the entire
DNN on the FPGA, i.e., with a series of pipelined accelera-
tors specialized for a given network structure, even already
including the DNN’s weights. The latter is clearly less flexi-
ble but tends to provide better efficiency as network-specific
optimized accelerators can be synthesized. The FINN frame-
work [10] by Xilinx follows this second approach and is the
focus of this paper. The accelerators produced by FINN can
be tuned to trade FPGA area consumption with latency and
throughput. At a high level, being the operations performed
by the accelerators largely suitable to parallelization, perfor-
mance can be improved by increasing the number of process-
ing engines inside each accelerator. This however comes at
the cost of a larger area consumption.

Unfortunately, the area consumption of FINN accelera-
tors cannot be arbitrarily reduced. This is because they
require resources to store the DNN’s parameters and other
accessory logic that do not change when the degree of paral-
lelism is reduced. This originates a lower bound on the area
consumption required by FINN, with the consequence that
it may be impossible to deploy it on resource-constrained
systems. For instance, on PYNQ-Z1 by Xilinx, it might be
impossible to deploy a FINN-based accelerator along with
other standard IPs such as HDMI encoder and the associ-
ated video DMA engines.

Contribution. This work addresses this issue by proposing a
technique to optimize the timing performance and the resource
consumption of FINNaccelerators.When required, the acceler-
ators are decomposed into chunks such that each chunk is con-
figured to exploit at best the available FPGA area. Then,
dynamic partial reconfiguration (DPR) of the FPGA is leveraged
to execute the chunks at run-time. The DNN decomposition
and the configuration of the accelerators are based on accurate
models of the resource consumption and timing for FINN that
have been experimentally derived. Both decomposition and

� Biruk Seyoum is with the TeCIP Institute of the Scuola Superiore
Sant’Anna, 56124 Pisa, Italy. E-mail: biruk.seyoum@santannapisa.it.

� Alessandro Biondi and Giorgio Buttazzo are with the TeCIP Institute of the
Scuola Superiore Sant’Anna, 56124 Pisa, Italy, also with the Department of
Excellence in Robotics &AI, Scuola Superiore Sant’Anna, 56124 Pisa, Italy.
E-mail: {alessandro.biondi, giorgio.buttazzo}@santannapisa.it.

� Marco Pagani is with the TeCIP Institute of the Scuola Superiore Sant’Anna,
56124 Pisa, Italy, also with the Embedded Real-Time Adaptative System
Design and Execution (�Emeraude) Team from the Centre de Recherche en
Informatique, Signal et Automatique (CRIStAL) Based in Lille, 59655
Villeneuve d’Ascq, France. E-mail: marco.pagani@santannapisa.it.

� Sara Balleri is with the Embedded Systems, Scuola Superiore di Studi
Universitari e di Perfezionamento Sant’Anna19005, 56127 Pisa, Italy.
E-mail: sara.balleri15@gmail.com.

Manuscript received 21 Feb. 2020; revised 22 Sept. 2020; accepted 28 Sept. 2020.
Date of publication 30 Oct. 2020; date of current version 8 Oct. 2021.
(Corresponding author: Biruk Seyoum.)
Recommended for acceptance by P. Stenstrom.
Digital Object Identifier no. 10.1109/TC.2020.3033730

1988 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 11, NOVEMBER 2021

0018-9340 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Scuola Superio Sant'Anna di Pisa. Downloaded on May 31,2022 at 15:14:47 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5399-2590
https://orcid.org/0000-0001-5399-2590
https://orcid.org/0000-0001-5399-2590
https://orcid.org/0000-0001-5399-2590
https://orcid.org/0000-0001-5399-2590
https://orcid.org/0000-0003-2321-6659
https://orcid.org/0000-0003-2321-6659
https://orcid.org/0000-0003-2321-6659
https://orcid.org/0000-0003-2321-6659
https://orcid.org/0000-0003-2321-6659
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
https://orcid.org/0000-0002-6625-9336
mailto:biruk.seyoum@santannapisa.it
mailto:alessandro.biondi@santannapisa.it
mailto:giorgio.buttazzo@santannapisa.it
mailto:marco.pagani@santannapisa.it
mailto:sara.balleri15@gmail.com


configuration are performed by means of a mixed-integer linear
program (MILP) that aims at optimizing the timing perfor-
mance while ensuring area constraints. The proposed tech-
nique is validated with experiments on a PYNQ-Z1 by Xilinx.
Experimental results show that (i) our approach makes possi-
ble to deploy FINN accelerators when it would be impossible
withoutDPR, and that (ii) it provides consistent improvements
with respect to both stock FINN configurations and other con-
figurations that can be obtainedwith a static FPGAallocation.

2 BACKGROUND

This section provides a concise discussion on reduced-
precision DNNs and the general architecture of the FINN
framework.

2.1 Reduced-Precision DNNs

Several works have faced the problem of optimizing DNNs to
the purpose of reducing their inference time andmemory foot-
print: please refer to [11] for a survey on the topic. One of the
most common approaches to address this problem consists in
reducing the precision of network parameters by optimizing
the size (in bits) of the weights. While DNNs typically come
with 32-bit floating point weights, several researches found
that comparable performance can be obtained if the precision
of the weights is reduced, e.g., shifting to 16-bit floating point
weights by simply reducing their precision, or adopting inte-
ger representations by quantizing the numerical domain of the
weights. As an extreme application of such an approach, sev-
eral researches [10], [12], [13], [14] also proposed to adopt
DNNmodels with binary parameters (i.e., weights and biases).
The resulting DNNs are called binary neural networks (BNNs)
and are notably the most time- and memory-efficient class of
DNNs. The efficiency of BNNs is originated by twomain prop-
erties. On one hand, due to the extreme reduction of the size
(bit-width) of the weights, memory access times during infer-
ence and the memory footprint are significantly reduced. On
the other hand, the arithmetic floating-point computations
required by standard DNNs can be replacedwith simpler and
faster bit-wise operations, which also significantly improves
power efficiency [12]. Both these properties make BNNs well
suited for an efficient implementation on FPGA platforms,
which often have a limited on-chip memory (OCM) to store
the weights but provide a high flexibility in tailoring the accel-
erator hardware according to the required precision. Recently,
BNNs have also achieved accuracies very close to the ones of
full-precision networks for some applications [12], [13].

2.2 The FINN Framework

FINN is an experimental framework from Xilinx Research
Labs [10] to support the development of scalable accelerators
to perform the inference of quantized DNNs on FPGAs. It
relies on a heterogeneous streaming architecture arranged as
a pipeline, where each layer of a DNN is mapped to a dedi-
cated processing engine named matrix-vector-threshold unit
(MVTU). TheMVTUs communicate among themselves using
data streams. TheMVTU is built from parameterizable build-
ing blocks that can be scaled according to a set of require-
ments. The majority of operations in fully-connected BNNs
can directly be expressed as matrix-vector product of the
weights and the input activations followed by thresholding.

In convolutional layers, operations can also be reduced as
matrix-matrix operations by suitably arranging the weights
and the incoming feature maps in each layer [10]. TheMVTU
implements fully-connected layers as standalone compo-
nents, while convolutional layers are implemented by adding
a slidingwindow unit that pre-arranges the incoming feature
map before performing amatrix-matrixmultiplication.

Internally, an MVTU consists of an array of processing ele-
ments (PEs) that correspond to hardware neurons. Please refer
to Fig. 2a. The synapses of each neuron are processed via sin-
gle instruction multiple data (SIMD) lanes. TheMVTU in the ith
layer can be represented by the tuple < Pi; Si > , where Pi

denotes the number of PEs in the ith layer and Si denotes the
number of SIMD lanes (synapses) of each PE in the same
layer. FINN accelerators are designed such that a single PE
with Si SIMD lanes can simultaneously process Si synapses
in one clock cycle. For each layer, the parameters Pi and Si

can be configured according to the desired throughput and
latency, but also have a direct impact in terms of area con-
sumption of the resulting accelerator. In other words, the con-
figuration of the parameters Pi and Si requires facing with a
trade-off between performance (throughput and latency) and
area consumption. For instance, by increasing the number of
PEs and SIMD lanes it is possible to reduce the inference time
of the network; however, the resulting accelerator requires a
larger amount of resources on the FPGA fabric.

3 MODELING FINN ACCELERATORS

This paper considers a set of BNNs developed with the BNN-
FINN framework [15]. In particular, it focuses on the
CNVW1A1 and CNVW2A2 quantized networks [15]. Both
neural networks use quantized parameters except for the
input and output layers. Despite both networks have similar
architectures, the CNVW1A1 network uses a 1-bit precision
for weights and activations parameters, while the CNVW2A2
uses a 2-bit precision.

Fig. 1 illustrates the CNVW1A1 network, whose topology
is inspired by the VGG-16 architecture and consists of 6 con-
volutional layers (CNV in the figure), 2 max-pooling layers
(MAXPOOL in the figure), and 3 fully connected layers (FC
in the figure). All layers are implemented in hardware
through a feed-forward dataflow architecture. The parame-
ters of all layers are stored inside the FPGA on-chip mem-
ory. In these implementations, all layers are quantized
except for the input and the output layers. The former per-
forms a fixed-precision convolutional operation on a 32x32
image with 8-bit RGB channels, while the latter produces
output values with a 16-bit representation. The network can
be trained to classify up to 64 classes.

Fig. 1. Illustration of the CNVW1A1 BNN from Xilinx. The characteristics of
each layer are specified by the numbers with which they are labeled. For
example, CNV 3x3x64 denotes a convolutional layer with a 3x3 filter and 64
channels, FC 512 denotes a fully-connected layer with 512 neurons, and
MAXPOOL2x2 denotes amax-pooling layer that workswith a 2x2window.
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Number of Operations in Each Layer. In the following we
denote by inference operation (IOP) the computation required
to process a synapse. The number of IOPs performed by
each layer depends on the type of the layer. If the ith layer
is convolutional, it can be represented by the tuple <
Ki; IFMi;OFMi; IFM CHi;OFM CHi > , where Ki is the
size of the convolutional kernel, IFMi is the size of the input
feature map, OFMi is the size of the output feature map,
and IFM CHi and OFM CHi are the number of channels in
the input and the output of the layer, respectively. Hence
the total number #IOPsi of IOPs performed by the ith layer
is given by (please refer to [15] for details)

#IOPsi ¼ K2
i �OFM2

i � IFM CHi �OFC CHi: (1)

If the ith layer is fully connected, it can be represented by
the tuple < Hi;Wi > , where Hi denotes the number of
neurons of the layer (height), and Wi denotes the number of
synapses per each neuron in the layer (width). Hence the
total number #IOPsi of IOPs performed by the ith layer is
given by

#IOPsi ¼ Hi �Wi: (2)

The max-pooling layer in FINN is implemented with just
a boolean OR operator (it does not expose the configuration
parameters Pi and Si). The IOPs performed by max-pooling
layers are independent of the configuration of the other
layers. Furthermore, their contribution to the overall infer-
ence latency has been experimentally found to be negligible
via profiling. For this reason, the number of IOPs performed
by max-pooling layers is not modeled here.

Folding. To explain folding, let us consider the case of the
CNVW1A1 network (similar considerations apply to the
CNVW2A2 network). To make the network fully parallel,
i.e., to process one input image every clock cycle at each
layer, the MVTUs in each layer must be configured with a
number of PEs and SIMD lanes equivalent to the number of
neurons and synapses in the corresponding layer. Clearly,
this results in a very large demand of FPGA resources
(area). If the FPGA resources available on a platform are not

enough to deploy a fully-parallel configuration of the net-
work, the number of PEs and SIMD lanes in each layer must
be reduced to implement an accelerator that performs time-
multiplexed computations within each layer. In this case,
the neurons and the synapses must be correctly partitioned
between the PEs inside the layer to implement a correct
matrix-vector multiplication. This partitioning is called fold-
ing and must be performed according to the configuration
of PEs and SIMDs. The number of PEs and SIMD lanes in
each layer are also called the folding parameters of the layer.

To demonstrate the effect of folding on latency and
throughput, let us consider a simple example. Fig. 2b shows
two layers, L0 and L1, of a sample fully-connected binary
network. Remember that each PE in the ith layer can pro-
cess Si IOPs in one clock cycle. Also, in each layer multiple
neurons can be served in parallel depending on the number
of available PEs. If P1 ¼ 2 (number of PEs in L1) and S1 ¼ 3
(number of SIMD lanes for each PE in L1), as shown in
Fig. 2e, then the throughput of L1 will be 6 IOPs every clock
cycle. If the number of SIMD lanes on each PE is reduced to
S1 ¼ 1 as in Fig. 2d, then the throughput of L1 is reduced to
2 IOPs every clock cycle. As another example, if P1 ¼ 1 and
S1 ¼ 1 as in Fig. 2c, the throughout of the layer is reduced to
just 1 IOP every clock cycle. In general, the latency lati of
the ith layer in clock cycles is inversely proportional to the
product Pi � Si. Given the ith layer, the relationship between
its latency (in clock cycles), the number of IOPs per layer,
and the folding parameters of the layer can be formalized as
follows. Note that the product of Pi and Si denotes the num-
ber of IOPs that can be processed in parallel by the ith layer.
Hence, as each IOP takes one clock cycle, the latency intro-
duced by the ith layer (either a convolutional or fully con-
nected layer) is given by

lati ¼ #IOPsi
ðPi � SiÞ

� �
: (3)

The additional computations required to compute the out-
put of each neuron after processing the synapses is already
accounted within the per-IOP clock cycle due to internal
pipelining of MVTUs.

Due to the pipelined architecture of FINN accelerators,
the total throughput of the network depends on the layer
with the highest latency [10]. Let N be the total number of
layers in the network. The maximum latency among all
layers is given by

latmax ¼ maxflat1; . . . ; latNg; (4)

while the total latency to perform the inference of one
input image is given by lattot ¼

PN
i¼1 lati.

To perform the inference of a batch of B images, the total
throughput th of the network can finally be computed as

th ¼ B

ðB� 1Þ � latmax þ lattot
: (5)

As it can be observed from the above equation, maximiz-
ing the throughput of the network requires minimizing the
latency of the slowest layer, i.e., minimizing latmax. This is
equivalent to increasing the number of PEs and SIMDs in the
slowest layer at cost of a larger demand of FPGA resources.

Fig. 2. Inset (a) illustrates an MVTU, while inset (b) shows an example
two-layer network. Insets (c), (d), and (e) illustrate three different imple-
mentations of layer L1.
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Demand of FPGA Resources. The range of variation of the
folding parameters (PEs and SIMDs) that control the through-
put of the network is limited by the total number of available
resources in the area of the FPGA where the BNN will be
deployed. This can be mathematically stated as follows. Let t
denote the type of a resource in the FPGA fabric where t 2
fCLB, BRAM, DSP, FFg. Furthermore, let Rt denote the
total number of resources of type t in the FPGA fabric, and let
ci;t denote the number of resources of type t demanded by the
ith layer. To be feasibly deployed on a given FPGA fabric, a
network configuration must satisfy the following necessary
condition: 8t 2 fCLB, BRAM, DSP, FFg; PN

i¼1 ci;t � Rt:
Note that, in each layer, ci;t depends on parameters Pi and

Si (the larger their values the larger the resource demand).
This means that for every resource type t, it is possible to
derive a function ci;t ¼ fi;tðPi; SiÞ to characterize the depen-
dency between parameters Pi and Si, and the resource
demand of each layer. In this work, the dependency between
the resource demand and the parameters Pi and Si has been
experimentally derived for each layer by (i) varying the two
parameters, (ii) automatically synthesizing the resulting con-
figuration of the FINN accelerator, and (iii) finally profiling
the corresponding resource demand. Technical details on
how this experimental data has been obtained are reported
in Section 3.1.

To enable the encoding of such functions in a mathemati-
cal optimization framework (see next section), the collected
data has then been fitted to piece-wise linear functions with
four pieces of the following form. The demand for resources
of type t by the ith layer is expressed as:

fi;tðPi; SiÞ ¼
f1
i;tðPi; SiÞ if Pi � PEt

th ^ Si � SIMDt
th

f2
i;tðPi; SiÞ if Pi > PEt

th ^ Si � SIMDt
th

f3
i;tðPi; SiÞ if Pi � PEt

th ^ Si > SIMDt
th

f4
i;tðPi; SiÞ if Pi > PEt

th ^ Si > SIMDt
th

8>>><
>>>:

(6)

where PEt
th and SIMDt

th are constant thresholds to deter-
mine the various pieces f1

i;tðPi; SiÞ; . . . ; f4
i;tðPi; SiÞ of each t

type of resource. Each piece fp
i;tðPi; SiÞ is expressed as

fp
i;tðPi; SiÞ ¼ �pi;t � Pi þ %pi;t � Si þ ypi;t, where �pi;t, %pi;t, and ypi;t
are coefficients empirically determined by fitting experi-
mental data as explained above.

3.1 Profiling FINN Accelerators

As anticipated above, the resource demand and timing per-
formance of the layers of the two considered networks, i.e.,
CNVW1A1 and CNVW2A2, have been profiled by varying
the folding parameters. For each network, the profiling was
performed by disabling all the layers in the network, except

the one that was profiled, by modifying the C++ HLS code
of the accelerator. The HLS synthesis of each configuration
and the updating of the folding parameters was automated
using a bash script. After the completion of each HLS synthe-
sis, the script was also responsible for synthesizing the gener-
ated RTL in Vivado and logging the synthesis reports. The
profiling of the layers (HLS synthesis + RTL synthesis) was
performed using Vivado 2018.3 running on a machine with
Ubuntu Linux 18.04, and equipped with 26 Intel Xeon cores
@2.20 GHz and 132 GB of RAM. Then, for each network, a
piece-wise linear regression of the logged data was per-
formed with Matlab to build the functions of Eq. (6). Note
that the resource consumption model in Eq. (6) also accounts
for the resources utilized for storing intermediate data, i.e.,
the on-chip streaming FIFO buffers. The plot of the obtained
resource models for some representative layers are reported
in Fig. 3, while themean average percentage error (MAPE) of the
model for each type of network is reported in Table 1. The
latency of each layer of the networks has also been profiled
with the purpose of validating Eqs. (1), (2), (3), (4), and (5).

3.2 Beyond FINN

It is worth noticing that, despite the analysis in this section is
focused on the VGG-inspired quantized accelerators from
the FINN framework, other types of DNN accelerators com-
posed of regularly stacked convolutional and/or fully con-
nected layers, such as AlexNet [16], YOLO [17], SEGNet [18],
etc., can also be modeled using the same approach, provided
that they have a pipelined hardware implementation with
scalable computational units in each layer. In fact, to make
the modeling applicable for such networks, we only need to
modify Eq. (3) as:

lati ¼ #IOPsi � n
ðPi � SiÞ

� �
: (7)

where n denotes the number of clock cycles per IOP.

4 PROBLEM DEFINITION

This paper proposes a method to optimize the timing perfor-
mance and resource consumption of FINN accelerators

Fig. 3. Plots of functions fi;tðPi; SiÞ for some representative layers and resource types (see the captions above the plots).

TABLE 1
Mean Average Percentage Error (MAPE) of the Resource

Estimation Model fi;tðPi; SiÞ Obtained Via Linear Regression

MAPE (%)

Network LUT BRAM FF

CNVW1A1 4.85 2.99 4.2
CNVW2A2 5.11 1.88 5.7
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under constrained FPGA resources. As it emerges from the
model presented in the previous section, the throughput and
resource consumption of a FINN accelerator vary as a func-
tion of the folding parameters (Pi and Si) of each layer.
Clearly, under constrained FPGA resources, configuring
such parameters requires facing with a throughput versus
area trade-off.

A possible solution to optimize a FINN accelerator con-
sists in configuring the folding parameters of each layer such
that (i) the throughput is maximized, and (ii) the utilization
of the FPGA resources is maximized (provided that a synthe-
sis of the resulting accelerator is actually possible). This opti-
mization problem is solved by this work as a special case of a
more general approach (see the next sections) but, unfortu-
nately, the implied solution is likely to have evident limits.
Indeed, note that FINN accelerators must include memories
to store the parameters of the neurons (weights, biases, and
thresholds) and comprise accessory logic that is independent
of the folding parameters. Hence, even setting the lowest
possible values for parameters Pi and Si, a FINN accelerator
is characterized by a considerable resource demand. For
instance, with a target clock frequency of 100MHz for the
FPGA, by setting Pi ¼ 1 and Si ¼ 1 for each layer, the post-
synthesis resource requirement of the CNVW1A1 network
amounts to 2358 LUTs, 92 BRAMs, and 3145 FFs (obtained
with Vivado 2018.3). This resource demandmay not be satis-
fiable, especially on resource-constrained FPGAs or when
the area is used to deploy other modules, e.g., other FINN
neural network accelerators.

To address this issue, this work proposes to opportunisti-
cally split the network pipeline into chunks that are dynami-
cally configured at run-time by means of DPR. For instance,
if an accelerator is split into two chunks, e.g., as it is illus-
trated in Fig. 4, the inference processworks by (i) configuring
and executing the first chunk, and then (ii) re-configuring the
FPGA with the second chunk and execute the latter. This
approach allows working with accelerators that require less
resources than the minimal ones demanded by a stock FINN
accelerator, hence enabling the deployment of FINN acceler-
ators in platforms in which it would be impossible. Clearly, this
comes at the cost of larger latencies due to reconfiguration
times.

4.1 The Optimization Problem Addressed
in This Work

Optimizing FINN accelerators under the more general
approach based onDPR requires facingwith additional chal-
lenges: deciding how many chunks an accelerator has to be
split and where it has to be split. Contextually, the folding
parameters of the layers must be optimized to better exploit
the available FPGA area onwhich the chunks are configured,
with the end of maximizing the throughput (taking reconfig-
uration times into account). To address this challenge, the
following section proposes a formulation of the problem as a
mixed-integer linear program (MILP). Instead of developing a
custom heuristic algorithm to solve the problem, a MILP for-
mulation allows leveraging well-established and powerful
optimization algorithms developed by experts of optimiza-
tion (mature commercial solvers such as CPLEX and Gurobi
are available, while open-source solutions such as GLPK are
also effective, both with APIs for popular programming

languages such as C and C++). Furthermore, MILP formula-
tions come in a form that is modular, hence easier to extend,
validate, andmaintain.

4.2 Preliminary Considerations

Before presenting our solution, it is necessary to discuss a
few aspects related to the timing performance of FINN
accelerators. In stock implementation of FINN accelera-
tors [15], the parameters of the neurons are loaded by
the software support into the hardware accelerator from
DRAM memory at run-time. The software is also responsi-
ble for pre-processing a batch of input images for classifica-
tion as well as the result of the classification when the
inference is completed. Therefore, the total execution time
of the inference is composed of three phases: (i) loading of
neuron parameters from memory, (ii) image pre-processing,
and (iii) hardware inference. For example, by profiling the
stock configuration of the CNVW1A1 network running on
the PYNQ-Z1 platform by Xilinx and operating on a batch
of 256 CIFAR-10 images, we found that the loading of the
parameters of the neurons can take up to 450.3 ms, while
the longest observed time to perform the inference took
about 85.8 ms. We have also found that, despite its low
memory footprint, loading the parameters of the FINN
accelerators takes a large portion of the total execution time
due to unoptimized memory transfers. However, in the
case in which a FINN accelerator is configured only once,
and then used for multiple inferences, such overhead may
be acceptable as it corresponds to an initialization phase of
the accelerator that has to be done only once at the system
startup. Conversely, it becomes a severe disadvantage if the
FPGA area is subject to DPR as proposed by our approach.
Indeed, every time an area hosting a chunk is reconfigured,
all the neuron parameters would be lost.

To address this issue, the stock FINN accelerators of both
networks have been modified to embed the neuron parame-
ters directly into the accelerator during the generation of the
bitstream. In this way, the loading of the parameters can be
skipped, and, once configured on the fabric, the accelerator
is ready to run. Despite this reduces flexibility, as a new
accelerator has to be synthesized every time the network
parameters are changed, we argue that it does not represent
a critical limitation at the stage of deployment, when the net-
work is likely not to change unless a major update of the sys-
tem is performed. We have also experimentally confirmed

Fig. 4. Block diagram illustrating the execution flow of a network split into
two chunks.
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that embedding the parameters into the accelerators has a
negligible effect on the reconfiguration time, since the total
memory footprint of the parameters of the networks is in the
order of a few kilobytes, while the size of the partial-bit-
stream is usually in the order of a fewmegabytes. Under this
choice, the time required to perform the inference is given by
the sum of the times to execute the chunks and the corre-
sponding accesses to memory. Both these times are related to
the inputs and outputs of the network, and the ones required
to write and read the intermediate data that flow on the cut
between the chunks. The input to the network are 32x32 RGB
images, each amounting to 3 KB, while the output of the net-
work comprises 64 16-bit values, for a total of 128 bytes. On a
PYNQ-Z1, using the high-performance memory ports and
on for a batch of 256 images, the total memory transfers for
such inputs and outputs require less than 1 ms. Since the
reconfiguration and inference times are in the order of a few
tens of milliseconds, the time required by such memory
transfers tend to be negligible. The size of the intermediate
data that are written and read from memory is proportional
to the size of the featuremap at the split point. An analysis of
FINN accelerators revealed that the largest featuremap has a
size of 57600 bits (it corresponds to the link between the first
and the second layers). The corresponding memory access
times amount to about 16 ms and are hence also negligible.
Overall, our profiling revealed that the inference time can be
effectively approximated as the sum of the execution times
of the chunks plus their reconfiguration times. For instance,
the inference time with an accelerator split into two chunks
can be expressed as Tsplit ¼ Tacc1 þ Tacc2 þ 2Treconf , where
Tacc1 and Tacc2 are the execution times of the chunk, and
Treconf is the reconfiguration time of the FPGA slot in which
the two chunks are programmed.

5 MILP FORMULATION

This section presents the proposed MILP formulation. The
inputs of the optimization problem are the structure of the
BNN, the functions that model its resource demand pre-
sented in Section 3, and the amount of available FPGA
resources. TheMILP variables and the constraints that define
the optimization problem are then presented as a function of
such inputs. The constraints are categorized into (i) general
constraints, (ii) resource constraints, and (iii) latency con-
straints. The outputs of the optimization problem are the val-
ues of the folding parameters for each layer and the chunks
into which the BNN accelerator is split. The objective is to
maximize the throughput.

5.1 Optimization Variables

To begin, note that the folding parameters Pi and Si cannot
take arbitrary values, but rather only powers of two (this is
imposed by FINN). This observation is useful to efficiently
formulate the optimization problem. That is, instead of
directly modeling parameters Pi and Si as a pair of integer
variables for each layer, we adopt a set of binary variables to
identify the powers of two of the corresponding parameter
value.

The largest value allowed for parameters Pi and Si is
2Mþ1 ¼ 64 (with M ¼ 5). Hence, for each layer i and 8m ¼
1; . . . ;M, we define: (i) bi;m 2 f0; 1g, a binary variable such

that bi;m ¼ 1 if and only if Pi ¼ 2mþ1; and (ii) di;m 2 f0; 1g, a
binary variable such that di;m ¼ 1 if and only if Si ¼ 2mþ1.

For each layer i, we also define ti 2 Z�1 as an integer var-
iable that represents the product of the folding parameters
in the ith layer i.e., ti ¼ Pi � Si, which is particularly useful
to deal with the latency of the layer (see Eq. (3)). Conse-
quently, for each layer i and 8m ¼ 1; . . . ; 2M þ 1, we define
a binary variable �i;m 2 f0; 1g such that �i;m ¼ 1 if and only if
ti ¼ Pi � Si ¼ 2mþ1.

Other variables are required to encode the cuts and the
grouping of layers in chunks. To this purpose, for each layer
i we define a binary variable xi 2 f0; 1g such that xi ¼ 1 if
and only if there is a cut between the ith layer and the
ðiþ 1Þth layer (for consistency, we implicitly set xN ¼ 0 as
no cuts are possible after the last layer). Note that the maxi-
mum number of chunks that can be obtained by optimiza-
tion cannot be larger than the total number N of layers, i.e.,
in the limit case, each chunk includes just one layer. Hence,
also the number of chunks is bounded by N . This observa-
tion allows defining the following variables. For each chunk
j we define (i) a binary variable yi;j 2 f0; 1g for each layer i,
such that yi;j ¼ 1 if and only if the ith layer belongs to the jth
chunk; and (ii) two real variables Fmax

j 2 R�0 and Ftot
j 2

R�0 that model the maximum and the total latency of the
chunk, respectively.

Some of the following constraints make use of a numeri-
cal constant M that denotes a very large positive number to
represent infinity (in our implementation we setM ¼ 109).

5.2 General Constraints

A set of constraints are required to impose certain restric-
tions on the values taken by the optimization variables in
order to guarantee the consistency of their definition.

First of all, we define a simple constraint to limit the
upper bounds of Pi and Si. As stated above, the folding
parameters can only take values in f1; 2; 4; 8; 16; 32; 64g.
Hence, to enforce the consistency of variables bi;m and di;m,
the following constraint is provided:

Constraint 1. 8i ¼ 1; . . . ; N

Pi ¼
XM
m¼1

2ðmþ1Þ � bi;m ^
XM
m¼1

bi;m ¼ 1 (8)

Si ¼
XM
m¼1

2ðmþ1Þ � di;m ^
XM
m¼1

di;m ¼ 1: (9)

In Eq. (8), the first term connects variable bi;m to Pi, while
the second term enforces the fact that Pi can have one and
at most one of the powers of two as its value. That is, in the
range m ¼ 1; . . . ;M, variables bi;m are always 0 except once.
The same holds for Eq. (9) with respect to variables di;m and
Si.

Remember that ti was defined as the product of the fold-
ing parameters of the ith layer, i.e., ti ¼ Pi � Si. This defini-
tion is enforced by the following constraint:

Constraint 2. 8i ¼ 1; . . . ; N; 8m ¼ 1; . . . ;M

ti � 2ðmþ1Þ � Si � ð1� bi;mÞ �M;

ti � 2ðmþ1Þ � Si þ ð1� bi;mÞ �M:
(10)
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Constraint 2 is an efficient encoding of the product of Pi

and Si as MILP formulation allows linear constraints only,
i.e., they cannot contain products between optimization var-
iables. Its rationale is the following. For each value of m for
which bi;m ¼ 0, the constraint reduces to ti � �1 and ti �
1, and hence enforces no restrictions. For the only value of
m such that bi;m ¼ 1, it holds Pi ¼ 2ðmþ1Þ, and hence the con-
straint reduces to ti � Pi � Si and ti � Pi � Si, which is equiv-
alent to ti ¼ Pi � Si.

The consistency of variables ti and �i;m can be enforced
exactly as done for Constraint 1.

According to the definition of chunks, each layer must be
a member of one and only one chunk. With respect to the opti-
mization variables, this is equivalent to say that each layer i
has variable yi;j ¼ 1 only for one j. This is enforced using
the following constraint:

Constraint 3. 8i ¼ 1; . . . ; N;
PN

j¼1 yi;j ¼ 1.

Unless there is a cut between the ith layer and the
ðiþ 1Þth layer, i.e., xi ¼ 1, the two (consecutive) layers must
always belong to the same chunk, i.e., yi;j ¼ yiþ1;j only for
the same j. The following constraint enforces this simple
property:

Constraint 4. 8i ¼ 1; . . . ; N � 1; 8j ¼ 1; . . . ; N

yi;j � yiþ1;j þ xi � M;

yiþ1;j � yi;j þ xi � M:
(11)

The rational behind Constraint 4 is the following. When
xi ¼ 0, i.e., when there is no cut between the ith layer and
the ðiþ 1Þth layer, Constraint 4 reduces to yi;j � yiþ1;j and
yiþ1;j � yi;j, which is equivalent to yiþ1;j ¼ yi;j. This correctly
forces the two layers to belong to the same chunk. Con-
versely, when xi ¼ 1, i.e., when there is a cut between the
ith layer and the ðiþ 1Þth layer, the constraint reduces to
yi;j � 1 and yiþ1;j � 1, hence posing no restrictions.

Meanwhile, if there is a cut between the ith layer and the
ðiþ 1Þth layer, then the two consecutive layers should never
be in the same chunk. The following constraint is used to
enforce this property:

Constraint 5. 8j ¼ 1; . . . ; N; 8i ¼ 1; . . . ; N � 1;

yi;j þ yiþ1;j � 1þ ð1� xiÞ �M: (12)

If xi ¼ 1, i.e., there is a cut between the ith layer and the
ðiþ 1Þth layer, then the above constraint is reduced to yi;j þ
yiþ1;j � 1. This effectively prohibits the case in which both
the layer i and iþ 1 belong to the jth chunk. Conversely, if
xi ¼ 0, i.e., there is no cut between the ith layer and the
ðiþ 1Þth layer, then the constraint reduces to yi;j þ yiþ1;j �
1, hence posing no restrictions.

It should be noted that Constraints 4 and 5 are not
sufficient to guarantee a correct allocation of the layers
into chunk. Indeed, we still need some constraint to pre-
vent different chunks from ending up being modeled by
the same index j, i.e., to avoid that layers that belong to
different non-adjacent chunks have variables yi;j set for
the same j. Such a restriction can be achieved by noting
that, once there is a cut along the network pipeline, a

layer on the left cannot belong to any of the chunks host-
ing the layers on the right. This property is enforced as
follows:

Constraint 6. 8j ¼ 1; . . . ; N; 8i ¼ 1; . . . ; N;

XN
k¼iþ1

yk;j � ð1� xiÞ �Mþ ð1� yi;jÞ �M: (13)

Constraint 6 is based on two conditions: (i) there is a cut
between the ith layer and the ðiþ 1Þth layer (xi ¼ 1), and (ii)
the layer to the left of the cut, i.e., the ith layer, belongs to
the jth chunk (yi;j ¼ 1). If both these conditions are true,
then the constraint is reduced to

PN
k¼iþ1 yk;j � 0, effectively

asserting that all the layers to the right of the cut cannot be
members of the jth chunk, i.e., 8k ¼ iþ 1; . . . ; N; yk;j ¼ 0. If
any of the two conditions is false (xi ¼ 1 and/or yi;j ¼ 1),
the constraint is reduced to

PN
k¼iþ1 yk;j � 1, hence posing

no restrictions.

5.3 Resource Constraints

This section presents the constraints required to enforce that
the amount of resources demanded by each chunk does not
exceed the available resources on the FPGA fabric (or either
a given slot on the fabric). As discussed in Section 2.2, the
resource demand of each layer depends on the folding
parameters Pi and Si.

The amount of resources ci;t of type t demanded by the
ith layer is given by the piece-wise linear functions
fi;tðPi; SiÞ in Eq. (6). Here, the challenge consists in effi-
ciently encoding such functions in the MILP formulation.
To this end, we define two auxiliary binary variables, at

i 2
f0; 1g and gt

i 2 f0; 1g, whose value will be determined by Pi

and Si, respectively, and whose combination will be used to
determine which of the four pieces of Eq. (6) is used by a
given pair of the folding parameters. In essence, variables at

i

and gt
i are used to achieve a binary encoding of the index of

the four pieces, i.e., 00, 01, 10, or 11. The following constraint
is hence enforced:

Constraint 7. 8i ¼ 1; . . . ; N; 8t 2 fCLB, BRAM, DSP, FFg

ci;t � f1
i;tðPi; SiÞ � ðat

i þ gt
iÞ �M

ci;t � f2
i;tðPi; SiÞ � ð1� at

i þ gt
iÞ �M

ci;t � f3
i;tðPi; SiÞ � ð1þ at

i � gt
iÞ �M

ci;t � f4
i;tðPi; SiÞ � ð2� at

i � gt
iÞ �M:

(14)

For example, if gt
i = 1 and at

i = 0, all sub-constraints will
have no effect on ci;t except the third one, which is equiva-
lent to the third piece in Eq. (6).

The problem is now how to assign suitable values to
the auxiliary variables at

i and gt
i such that the ranges of

each piece is reflected. In other words, their values must
be constrained in such a way that at

i = 1 if and only if Pi >
PEt

th, and similarly gt
i = 1 if and only if Si > SIMDt

th. In
this way, all four combinations of the values of the auxil-
iary variables can reflect the ranges of the four pieces as
in Eq. (6). This is achieved by means of the following aux-
iliary constraint.
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Constraint 8. 8i ¼ 1 . . . ; N; 8t 2 fCLB, BRAM, DSP, FFg

Pi � � � PEt
th �M � ð1� at

iÞ ^ Pi � � � PEt
th þM � at

i

(15)

Si � � � SIMDt
th �M � ð1� gtiÞ ^ Si � � � SIMDt

th þM � gti
(16)

where � > 0 is an arbitrarily-small positive number (e.g.,
0.0001).

Eqs. (15) and (16) have the same form, hence it suffices to
discuss one of them. There are two cases when constraining
the values of at

i according to PEt
th in Eq. (15). If Pi > PEt

th,
then at

i ¼ 1 and the equation becomes Pi � � � PEt
th, which

matches the definition of at
i, and Pi � � � 1, which is always

true. IfPi � PEt
th, then at

i ¼ 0, and the equation becomesPi �
� � �1, which is always true, and Pi � � � PEt

th, which
matches the definition of at

i.
The total amount of resources Ct

j of type t in the jth
chunk is equivalent to the sum of the demand of resources
of type t by all the layers that are part of the chunk. As var-
iables yi;j denote whether a layer is part of a chunk or not,
Ct

j can be expressed as follows: Ct
j ¼

PN
i¼1 c

t
i � yi;j. Note that

this equation is not a linear and hence cannot be directly
encoded in a MILP constraint. In order to linearize it,
we define an auxiliary real variable ati;j 2 R�0 such that
ati;j ¼ cti � yi;j and enforce the following set of auxiliary
constraints.

Constraint 9. 8j ¼ 1; . . . ; N; 8i ¼ 1; . . . ; N; 8t 2 fCLB,
BRAM;DSP; FFg, ati;j � cti and

ati;j � yi;j � M ^ ati;j � cti � ð1� yi;jÞ �M: (17)

Here, ati;j denotes the amount of resources of type t

demanded by the ith layer when placed in the jth chunk.
There are two cases to consider: yi;j ¼ 0 and yi;j ¼ 1, i.e.,
when the ith layer is not a member of the jth chunk and
when it is, respectively. If yi;j ¼ 0, the constraint enforces
ati;j � cti, a

t
i;j � 0 and ati;j � �1, which are equivalent to ati;j ¼

0. This effectively forces the ith layer not to contribute to the
resource consumption of the jth chunk. Meanwhile, when
yi;j ¼ 1, the constraint reduces to ati;j � cti, a

t
i;j � 1, and ati;j �

cti, which, when combined, are equivalent to ati;j ¼ cti, hence
quantifying the correct resource demand of the layer. In this
way, Ct

j can be expressed in a linear form as just Ct
j ¼PN

i¼1 a
t
i;j. Hence, it is finally possible to enforce the main con-

straint to impose that the amount of resources demanded by
the chunks must not be larger than those available on the
FPGA (termsRt).

Constraint 10. 8j ¼ 1; . . . ; N , 8t 2 fCLB, BRAM, DSP,
FFgCt

j � Rt.

5.4 Latency Constraints

Thanks to the definition of variables �i;m, the latency lati of
each layer (as given by Eq. (3)) can be directly encoded as a
MILP constraint as follows:

Constraint 11. 8i ¼ 1; . . . ; N , 8m ¼ 1; . . . ; 2M þ 1

lati � #IOPsi
2mþ1

� ð1� �i;mÞ �M;

lati � #IOPsi
2mþ1

þ ð1� �i;mÞ �M:

(18)

The above constraint is due to the following reason. First,
by profiling the layers, we found that #IOPsi is always a
power of two, hence Eq. (3) can be safely used without the
ceiling operator d e. Second, remember that, given the ith
layer, only one binary variable �i;m is set for a givenm, such
that Pi � Si ¼ 2mþ1. Hence, when �i;m ¼ 1, the constraint
reduces to Eq. (3). Conversely, for all the other values of m
such that �i;m ¼ 0, the constraint reduces to lati � �1 and
lati � 1, hence imposing no restrictions.

The total latency of the jth chunk, modeled by variable
Ftot

j , is the sum of the latency of each layer in the chunk,
and can be expressed as Ftot

j ¼ PN
i¼1 yi;j � lati. Similarly, the

maximum latency among the layers in the jth chunk, mod-
eled by variable Fmax

j , can be encoded by enforcing the fol-
lowing condition: 8i ¼ 1; . . . ; N , Fmax

j � yi;j � lati.
Note that both the latter equations are not linear as they

comprise products of optimization variables. Hence, they
must be linearized to be encoded in a MILP formulation.
This can be accomplished as done in Constraint 9.

Thanks to the above results, it is finally possible to for-
mulate the throughput th of the accelerator.

Constraint 12.

th ¼ BPN
j¼1ððB� 1Þ �Fmax

j þFtot
j Þ þ Treconf � ðGþPN

k¼1 xkÞ
:

(19)

This constraint is obtained by rewriting Eq. (5) as a func-
tion of the optimization variables and by adding the addi-
tional latency originated by the reconfiguration of the
chunks. Here, G is an auxiliary variable that denotes whether
the network is cut at least once (G ¼ 1) or not (G ¼ 0), which
is defined G ¼ maxkfxkg and expressed in an equivalent
form via the following auxiliary constraint: 8k ¼ 1; . . .N;G �
xk. Note that

PN
k¼1 xk gives the number of cuts. Hence, ðGþPN

k¼1 xkÞ gives the number of chunks. The total reconfigura-
tion time can be computed by simply accounting a reconfigu-
ration time Treconf for each of such chunks. The computation
of Treconf depends on the amount of available FPGA resources
and is discussed in the next section.

5.5 Objective Function

The objective of the optimization problem is to maximize
the throughput of the accelerator for a given batch size B.
Hence, the objective function of the optimization problem is
maximze fthg, with th being defined as in Constraint 12.

5.6 Extending the MILP Formulation

Note that theMILP formulation presented in this section is not
limited to the FINN accelerators only, but can also be applied
to optimize the performance of other DNN accelerators
with regularly stacked convolutional and/or fully connected
layers as mentioned in Section 3.2. The main prerequisite is
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the availability of the resource and latencymodels of the accel-
erators as the ones derived for FINN in this paper. With a few
additional constraints, the proposed MILP optimization can
also support the optimization of networks with irregular
architecture, such as GoogLeNet [19], Resnet [20] etc., using a
coarse-grained approach for splitting layers into chunks. For
example, we can reduce the architectural irregularity of a
GoogLeNet architecture by forcing the optimizer to always
put layers inside an inception unit of the network into the
same chunk, i.e., by considering an inception unit as indivisi-
ble into different chunks. Similarly, we can reduce the irregu-
larity of a ResNet-like architecture by constraining the
optimizer not to split the residual blocks into different chunks.
Despite both of these approaches increase the granularity of a
layer and therefore reduce the search space, they extend the
domain of DNN accelerator architectures that can be opti-
mized by our approach and consequently allow the deploy-
ment of such types of networks on FPGAs with constrained
resources.

6 EXPERIMENTAL EVALUATION

This section presents a set of experiments that were con-
ducted to assess the effectiveness of the proposed optimiza-
tion technique on a real hardware platform.

The experiments were conducted in two sessions.
The objective of the first session is to show how the pro-
posed approach can improve the throughput of the stock
CNVW1A1 and CNVW2A2 FINN accelerators without
splitting them, i.e., no DPR was used. To this end, we
disabled the MILP constraints related to splitting (which
is equivalent to forcing the number of chunks to 1),
hence generating optimal folding parameters only. From
here on, we will refer to such types of optimal configura-
tions of the CNVW1A1 and CNVW2A2 networks as
static OPT CNVW1A1 and static OPT CNVW2A2, respec-
tively. The inference time and overall resource utilization of
both static OPT CNVW1A1 and staticOPTCNVW2A2 were
compared against their respective stock configurations pro-
vided by FINN [15], and against heuristic (manual) optimiza-
tions, which are taken as a baseline. The latter are referred to
as static baseline CNVW1A1 and static baseline CNVW2A2,
and work by simply halving the folding parameters of the
CNVW1A1 and CNVW2A2 networks (starting from their
values in their stock configuration) until it is possible to
deploy the accelerators on a given area.

In the second experimental session, we compared the
timing performance of the static OPT CNVW1A1 and
static OPT CNVW2A2 approaches against the cases in
which the networks are split into chunks, henceforth
respectively referred to as dynamic OPT CNVW1A1 and
dynamic OPT CNVW2A2, under different amounts of
FPGA resources. The objective of the second experimental
session is specially targeted at determining the optimal set-
tings, i.e., both the folding parameter configurations and the
chunk splitting, when the networks are to be deployed on
FPGAswith constrained resources.

Experimental Setup.The experimental evaluation has been
performed using the PYNQ-Z1 board as the reference plat-
form. The PYNQ board is built around the Zynq-7020 SoC
from Xilinx, which includes a dual-core Cortex-A9

processor coupled with an Artix-7 family FPGA fabric. The
FPGA fabric of the Zynq-7020 comprises RCLB = 53200
CLBs, RBRAM = 140 BRAMs, RDSP = 220 DSPs, and RFF =
106400 FFs. The SoC is connected to a shared DRAM mem-
ory of size 512MB. This evaluation uses an implementation
of the CNVW1A1 network [15] trained with the CIFAR-10
dataset provided by FINN. The network has been configured
to process a batch of B ¼ 256 images on each run. The hard-
ware inference process performed by the accelerator is sup-
ported by a software support layer written in Python and C++.
The MILP-based optimization has been implemented using
Gurobi v. 7.0.2 via its C++ API. The different MILP optimiza-
tion strategies and techniques inside the solver, such as pre-
solve, cutting planes, heuristics, etc., were set to their default
parameters. Meanwhile, the integer feasibility tolerance of the
solver was set to 1e�9 and the optimization timeout was set to
1800 seconds. The optimizer was executed on a machine with
an 8-core Intel i7 CPU @4.5 GHz. In all the experiments, the
accelerators are implemented to run at 100MHz.

6.1 Results

The notion of FPGA scaling factor is introduced to study the
cases in which only a fraction of the total FPGA resources are
available. We say that the amounts of FPGA resources are
scaled by s 2 ½0; 1� (also expressed as a percentage in the fol-
lowing) if the resource availability for each resource of type
t 2 fCLB, BRAM, DSP, FFg is bs �Rtc. The FPGA scaling
factor is also correlated to the FPGA area subject to partial-
reconfiguration, hence it can be used to model the reconfigu-
ration time. As a preliminary experiment, the reconfigura-
tion time of the FPGA fabric has been profiled as a function
of the FPGA scaling factor s: the profiling revealed that the
reconfiguration time can be safely modeled as a linear func-
tion TreconfðsÞ ¼ 48087� s þ 951 ms. This linear model is
used in Constraint 12.

First Experimental Session. The stock accelerators for the
CNVW1A1 and CNVW2A2 networks have a total LUT,
BRAM, and FF utilization that amounted to {37%, 87%,
27%} and {68.1%, 100%, 48.7%} of the total resources avail-
able on the Zynq-7020, respectively, and an inference time
of 85.8 ms and 86.34 ms, respectively, on a batch of 256
images. Note that the stock accelerators are characterized
by an evident asymmetry in resource utilization, as BRAMs
are highly utilized in both accelerators, while other types of
resources are utilized less. This asymmetry, which is caused
by the sub-optimal configuration of the folding parameters
in each layer, limits the throughput of the accelerators. In
particular, we found that FINN accelerators tend to con-
sume a lot of BRAMs, while underutilizing the other types
of FPGA resources. With our approach, it is possible (via
static OPT CNVW1A1 and static OPT CNVW2A2) to pro-
duce optimal accelerators with maximal throughput that
can be deployed on the same area: this is achieved thanks to
the optimal configuration of the folding parameters, which
enables a more balanced utilization of the resources.

For instance, by scaling the amount of FPGA resources to
the 87 percent (the maximum of the three per-resource-type
utilizations of the stock configuration of the CNVW1A1 net-
work), the static OPT CNVW1A1 approach produced a con-
figuration with optimal throughput that required the 85.8,
85.9, and 81.6 percent of LUTs, BRAMs, and FFs,
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respectively. The corresponding inference time of the
accelerator is reduced to 18.60 ms, which corresponds to
an improvement of more than 4x. Similarly, by scaling
the amount of FPGA resources to 100 percent (the maxi-
mum of the three per-resource-type utilizations of the
stock configuration of the CNVW2A2 network) the infer-
ence time of the static OPT CNVW2A2 approach was
reduced to 48.75 ms, which corresponds to an improvement
of 1.7x. In this case, the static OPT CNVW2A2 utilized
95.6, 100 and 76.8 percent of LUTs, BRAMs and FFs, respec-
tively. The same strategy has been applied for FPGA scaling
factors in f0:3; 0:35; 0:45; . . . ; 1:0g: the results are reported in
Fig. 5. No data were reported in the case in which it was not
possible to produce a feasible configuration (i.e., below a
scaling factor of 70 percent).

To also provide a taste of what one can achieve with an
empirical optimization of the folding parameters of the
CNVW1A1 and CNVW2A2 networks, the results of the
static baseline CNVW1A1 and static baseline CNVW2A2
approaches are also reported in Fig. 5, by halving five times
all folding parameters of the stock configuration of each
network. As it can be observed from the figure, the results
clearly show the benefits of using an optimization-based
approach for both networks rather than a heuristic con-
figuration. Fig. 6a shows the LUT utilizations under
different BRAM utilizations for static OPT CNVW1A1 and
static baseline CNVW1A1 approaches, while Fig. 6b shows

the same comparison for static OPT CNVW2A2 and
static baseline CNVW2A2 approaches. In both cases, the
optimized networks, i.e., static OPT CNVW1A1 and
static OPT CNVW2A2, have demonstrated a balanced
resource utilization against their respective unoptimized
counterparts. For instance, in Fig. 6a, for a BRAM utiliza-
tion (on the x-axis) of 73.5 percent, the solution produced
by static baseline CNVW1A1 required 30 percent of the
LUTs, while 72.9 percent of the LUTs are required by the
one generated by static OPT CNVW1A1. Such a difference
in resource utilization provides a large difference in infer-
ence time: as it can be seen from Fig. 5, the accelerator
generated by static baseline CNVW1A1 requires 4745 ms,
while the one generated by static OPT CNVW1A1
requires just 73.94 ms. In a similar manner, in Fig. 6b, a
79 percent BRAM utilization in static baseline CNVW2A2
results in a 56 percent LUT utilization, whereas the LUT
utilization in static OPT CNVW2A2 is 76 percent. Also in
this case, the resource utilization asymmetry leads to a differ-
ence in inference time: from Fig. 5, the accelerator generated
by static baseline CNVW2A2 requires 6125 ms, while the one
generated by static OPT CNVW2A2 requires 107 ms.

Second Experimental Session. In this session we performed
two sets of comparisons: in the first set we compared
static OPT CNVW1A1 with dynamic OPT CNVW1A1, while
in the second set, the static OPT CNVW2A2 was compared
with dynamic OPT CNVW2A2 for the same FPGA scaling
factors tested in the first session. The results of these compari-
sons are reported in Fig. 5. In the tested cases for both sets, a
static configuration (whenever it is possible) is preferable to
chunk splitting. However, as it can be seen from the figure,
below a scaling factor of 70 percent for the first set and 85 per-
cent for the second set, no static approachwas capable of gen-
erating a feasible configuration. This means that it is not
simply possible to statically deploy the networks under those
area constraints. Conversely, dynamic OPT CNVW1A1 is
capable of producing feasible accelerators for FPGA scaling
factors as low as 30 percent, while also maintaining a pretty
much stable inference time, whereas the inference time of
accelerators produced using the dynamic OPT CNVW2A2
approach linearly increases by decreasing the FPGA scaling
factor. It was no longer feasible to produce accelerators
for dynamic OPT CNVW2A2 below an FPGA scaling factor
of 45 percent. Fig. 7 also shows the breakdown of

Fig. 5. Comparison of inference times (which imply throughput) as a
function of the maximum percentage of FPGA resources for different
configurations of the accelerators obtained by the three approaches
studied in the paper.

Fig. 6. Comparison of LUT utilizations as a function of BRAM utilization for the configurations generated by (a) static baseline CNVW1A1 and
(b) static baseline CNVW2A2.
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cumulative actual inference and reconfiguration times
(i.e., coping with the contribution of all chunks) under
dynamic OPT CNVW1A1 and dynamic OPT CNVW2A2.
One should note that, despite more chunks may be needed
as the FPGA area reduces, the reconfiguration time of each
chunk becomes shorter. Also, note that the actual inference
time can be reduced under dynamic OPT CNVW1A1 and
dynamic OPT CNVW2A2 as the largest per-layer latency
and the latency of the slowest layer can become shorter by
splitting the networks (since more computational resources
will be available for the layers when splitting), while this
may not possible under a static allocation (mainly due to the
large granularity with which the folding parameters can be
varied). To clarify this point, consider the case of FPGA scal-
ing factors 0.6 and 0.7 in Fig. 7a. Note that the inference time
is significantly reduced when the scaling factor is 0.6 com-
pared to the one when it is 0.7, mainly due to the fact that the
network has been split into two chunks. Nevertheless, the
total execution time is still large because of the reconfigura-
tion overhead (two chunks must be reconfigured instead of
just one). In all the tested cases, the time required to solve the
MILP formulationwas never larger than 30 seconds.

7 RELATED WORK

In recent years, deep learning has become a dominant
approach in many domains, outperforming traditional algo-
rithmic methods in several tasks, such as image classification,
speech recognition, and control. However, due to the large
computational demand of DNNs, hardware accelerators are
often employed to speed up their execution. In this regard,
FPGA-based hardware accelerators present an attractive solu-
tion for embedded systems as they combine the flexibility of
programmable logic and partial reconfiguration while achiev-
ing high energy efficiency with respect to other forms of hard-
ware accelerations (e.g., GPGPUs [21]). Very efficient
implementations of accelerators for DNNs on FPGAs have
been proposed by employing fine-grained optimizations to
accelerate computational-intensive convolutional layers. Most
relevant to us, Zhang et al. [22] leveraged the roofline model
for optimizingHLS-based implementations ofDNNs,whereas
Ma et al. [23] performed a fine-grained characterization of loop
optimization techniques for implementing convolutional
layers. However, none of them relied onmathematical optimi-
zationmethods that guarantee optimality.

Efforts [24], [25], [26] have also been spent on improving
the performance of FPGA accelerators by exploring through-
put versus memory bandwidth trade-offs. The closer work
to ours is the one by Suda et al. [24], which proposed a genetic
algorithm (GA) based on a design space explorationmethod-
ology for optimizing DNN accelerators with 8- and 16-bit
fixed-point precision. Similarly to our work, in [24] the laten-
cies were analytically modeled, while the resource consump-
tion of the layers was empirically modeled as a function of
the network parameters. Then, a GA was used to find the
parameters of each layer that minimize the total latency. Our
approach differs from the one used in [24] in three major
ways. First, our work is based on mathematical optimization
that can guarantee the optimality of the results. Second, our
work explores the possibility of deploying DNNs under
resource-constrained FPGA fabrics by chunking the acceler-
ator pipeline and leveraging DPR. Third, our approach
allows balancing the resource utilization of DNN accelera-
tors (i.e., it tries to avoid that a single type of resource causes
a bottleneck for deployment), while in [24] the authors
reported the rapid exhaustion of DSP resources while the
other resources were under-utilized.

FPGAs are especially well suited for the acceleration of
quantized neural networks (QNNs) as fixed-point computa-
tions can be efficiently implemented using the primitive
logic available on FPGA fabrics, while the reduction in preci-
sion has a limited impact on accuracy [27], [28]. Even in the
extreme case of BNNs, it is possible to achieve adequate pre-
cision at the benefit of a largely reduced resource utiliza-
tion [12], [29]. In the context of FPGA-based hardware
acceleration of BNNs, some approaches rely on mapping of
the entire network on the programmable fabric [10], [14], [30]
while others implement FPGA accelerators only for the most
computationally-intensive operations [31]. Several research-
ers have also proposed different solutions to address the
throughput versus area trade-off of QNN accelerators under
resource-constrained FPGAs. The most common approaches
leverage partial reconfiguration. For instance, Farhadi et al.
[32] proposed an adaptive and hierarchical structure for
QNNs that takes advantage of partial reconfiguration to
address the limitation of resources on FPGA. K€astner et al.
[33] presented a co-design methodology enabling the exploi-
tation of DPR to accelerate DNNs. However, none of the pro-
posed approaches formulates the optimal decomposition of
hardware accelerators as an optimization problem as done in

Fig. 7. Breakdown of the execution times for the configurations generated by dynamically optimized into cumulative actual inference and reconfigura-
tion times (a) dynamic OPT CNVW1A1 and (b) dynamic OPT CNVW2A2. The numbers above each bar indicate the number of chunks the accelera-
tor is split into.
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this work. Finally, differently to other design space explora-
tions proposed by other authors [10], [34], [35], our work
adds a new dimension to the design space exploration: par-
tial reconfiguration.

8 CONCLUSION

This work proposed an optimization-based technique to
improve the timing performance of BNNs under constrained
FPGA resources. Accurate modeling of latency and resource
consumption of BNN layers has been employed. Then, a
MILP formulation has been proposed to both compute the
optimal configuration of each layer and decide how to split
the network into chunks that are dynamically programmed
via partial reconfiguration. Themajor outcome of this work is
that the proposed technique allows deploying a BNN in cases
in which it would not be possible with standard approaches.
For instance, by leveraging partial reconfiguration, it is capa-
ble of producing solutions for an FPGA area as low as 30 per-
cent of the total one available on a Zynq-7020, while static
approaches are not able to produce solutions when the avail-
able area is less than about the 70 percent of the area. As a
future work we plan to extend this approach to other frame-
works for deploying neural networks and integrate it with
tools that automate the floorplanning of the accelerators (e.g.,
as done in [36]).
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