
Robust-by-Design Classification via Unitary-Gradient Neural Networks

Fabio Brau, Giulio Rossolini, Alessandro Biondi and Giorgio Buttazzo *

Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract

The use of neural networks in safety-critical systems requires
safe and robust models, due to the existence of adversarial at-
tacks. Knowing the minimal adversarial perturbation of any
input x, or, equivalently, knowing the distance of x from the
classification boundary, allows evaluating the classification
robustness, providing certifiable predictions. Unfortunately,
state-of-the-art techniques for computing such a distance are
computationally expensive and hence not suited for online
applications. This work proposes a novel family of classi-
fiers, namely Signed Distance Classifiers (SDCs), that, from
a theoretical perspective, directly output the exact distance of
x from the classification boundary, rather than a probability
score (e.g., SoftMax). SDCs represent a family of robust-by-
design classifiers. To practically address the theoretical re-
quirements of a SDC, a novel network architecture named
Unitary-Gradient Neural Network is presented. Experimen-
tal results show that the proposed architecture approximates
a signed distance classifier, hence allowing an online certifi-
able classification of x at the cost of a single inference.

Introduction
Deep Neural Networks (DNNs) reached popularity due to
the high capability of achieving super-human performance
in various tasks, such as Image Classification, Object Detec-
tion and Image Generation. However, their usage in safety-
critical systems, such as autonomous cars, is pushing the
scientific community toward the definition and the achieve-
ment of certifiable guarantees.

In this regard, as independently shown by (Szegedy et al.
2013; Biggio et al. 2013), neural networks are highly sen-
sitive to small perturbations of the input, also known as ad-
versarial examples, which are not easy to detect (Biggio and
Roli 2018; Carlini et al. 2018; Rossolini, Biondi, and But-
tazzo 2022), and cause the model to produce a wrong clas-
sification. Informally speaking, a classifier is said to be ε-
robust in a certain input x if the classification result does not
change by perturbing x with all possible perturbations of a
bounded magnitude ε.

In the last few years, a large number of methods for craft-
ing adversarial examples have been presented (Goodfellow,
Shlens, and Szegedy 2015; Moosavi-Dezfooli, Fawzi, and

*email: name.surname@santannapisa.it
Under review.

Figure 1: An example of a binary SDC. Observe that
the countour lines are parallel-curves of the classification
boundary (the black curve) and the output of the model in a
x (the orange cross) directly provides the distance from the
closest point in the classification boundary (the blue cross).

Frossard 2016; Rony et al. 2020; Madry et al. 2019). In par-
ticular, (Carlini and Wagner 2017; Rony et al. 2019) pro-
posed methods to find the minimal adversarial perturbation
(MAP) or, equivalently, the closest adversarial example for a
given input x. Such a perturbation directly provides the dis-
tance of x from the classification boundary, which, given a
maximum magnitude of perturbation, can be used to verify
the trustworthiness of the prediction (Weng et al. 2018) and
design robust classifiers (Wong et al. 2018; Cohen, Rosen-
feld, and Kolter 2019). Note that, when the MAP is known,
one can check on-line whether a certain input x can be per-
turbed with a bounded-magnitude perturbation to change
the classification result. If this is the case, the network it-
self can signal the unsafeness of the result. Unfortunately,
due the hard complexity of the algorithms for solving the
MAP problem on classic models, the aforementioned strate-
gies are not suited for efficiently certifying the robustness of
classifiers (Brau et al. 2022).

To achieve provable guarantees, other works focused on
designing network models with bounded Lipschitz constant
that, by construction, offers a lower bound of the MAP as the

ar
X

iv
:2

20
9.

04
29

3v
1

 [
cs

.L
G

]
 9

 S
ep

 2
02

2

Giorgio
Typewritten Text
Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, DC, USA, February 7-14, 2023.

Giorgio
Text Box

network output (Tsuzuku, Sato, and Sugiyama 2018). These
particular models can be obtained by composing orthogonal
layers (Cisse et al. 2017; Li et al. 2019; Trockman and Kolter
2021; Serrurier et al. 2021; Singla and Feizi 2021) and norm-
preserving activation functions, such as those presented by
(Anil, Lucas, and Grosse 2019; Chernodub and Nowicki
2017). However, despite the satisfaction of the Lipschitz in-
equality, these models do not provide the exact boundary
distance but only a lower bound that differs from the real
distance.
This work introduces a new family of classifiers, namely
Signed Distance Classifiers (SDC), that straighten the Lips-
chitz lower bound by outputting the exact distance of an in-
put x from the classification boundary. SDC can then solve
the MAP problem as a result of the network inference (see
Figure 1). From a theoretical point of view, we extend the
characterization property of the signed distance functions to
a multi-class classifier. From a practical perspective, we ad-
dress such a theoretical model by presenting a new archi-
tecture, named Unitary-Gradient Neural Network (UGNN),
having unitary gradient (under the Euclidean norm) in each
differentiable point. In summary, this work provides the fol-
lowing contributions:

• It introduces a notable family of classifiers, named SDC,
which provide as output the distance of an input x from
the classification boundary.

• It provides a novel network architecture, named UGNN,
which, to best of our knowledge, represents the first prac-
tical approximation of an SDC.

• It shows that the abs function can replace other more ex-
pensive norm-preserving activation functions without in-
troducing a significant accuracy loss. Furthermore, it pro-
poses a new layer named Unitary Pair Difference, which
is a generalization of a fully-connected orthogonal layer.

• It assesses the performance, the advantages, and the limi-
tations of the proposed architecture through a close com-
parison with the state-of-the-art models in the field of the
Lipschitz-Bounded Neural Networks.

Related Work
The evaluation and the provable verification of the robust-
ness of a classification model can be addressed by comput-
ing the MAP in a given point x (Carlini et al. 2018). Since
that computation involves solving a minimum problem with
non-linear constraints, the community focused on design-
ing faster algorithms to provide an accurate estimation of
the distance to the classification boundary (Rony et al. 2019,
2020; Pintor et al. 2021). However, all these algorithms re-
quire multiple forward and backward steps, hence are not
suited for an online application (Brau et al. 2022).

On the other side, since the sensitiveness to input per-
turbations strictly depends on the Lipschitz constant of the
model, knowing the local Lipschitz constant in a neighbor-
hood of x provides a lower bound of the MAP in x (Hein
and Andriushchenko 2017). In formulas, for a L-Lipschitz
neural network f , a lower bound of MAP is deduced by
considering 1

L
√

2
(fl(x) − fs(x)), where l, s are the first and

the second top-2 components, respectively. However, for
common DDNs, obtaining a precise estimation of L is still
computationally expensive (Weng et al. 2018), thus also this
strategy is not suited for an online application.

For these reasons, recently, other works focused on devel-
oping neural networks with a bounded Lipschitz constant by
design. (Miyato et al. 2018) achieved 1-Lipschitz fully con-
nected layers by bounding the spectral-norm of the weight
matrices to be 1. Similarly, (Serrurier et al. 2021) consid-
ered neural networks f in which each component fi is 1-
Lipschitz, thus, differently from the 1-Lipschitz networks
mentioned before, given a sample x, the lower bound of
MAP is deduced by 1

2 (fl(x)− fs(x)).
Other authors leveraged orthogonal weight matrices to

pursue the same objective. For instance, (Li et al. 2021)
showed that a ReLU Multi-Layer Perceptron merely com-
posed by orthogonal layers is 1-Lipschitz. Indeed, an orthog-
onal matrix W (i.e. such that WWT = I or WTW = I)
has a unitary spectral norm, ‖W‖ = 1. Roughly speaking,
orthogonal fully connected and convolutional layers can be
obtained by Regularization or Parameterization. The former
methods include a regularization term in the training loss
function to encourage the orthogonality of the layers, e.g
(Cisse et al. 2017) use β‖WTW−Id‖2. The latter methods,
instead, consider a parameterization of the weight W (θ) de-
pending on a unconstrained parameter θ so that, for each
θ, W (θ) is an orthogonal weight matrix (Anil, Lucas, and
Grosse 2019; Trockman and Kolter 2021). For convolutional
layers, a regularization strategy can be applied, since they
can be written as matrix-vector product through a structured
matrix (Wang et al. 2020). However, recent parameterized
strategies as BCOP (Li et al. 2019), CayleyConv (Trockman
and Kolter 2021), and Skew Convolution (Singla and Feizi
2021) come out as efficient and performant alternatives.
This work defines an SDC, as a function f that provides
the MAP by computing fl(x) − fs(x), thus tightening the
lower bounds provided by L-Lipschitz classifiers. Further-
more, we present the UGNN, designed by properly leverag-
ing the previous orthogonal parameterized strategies, as the
first architecture that approximate a theoretical SDC.

Signed Distance Classifier

In this context, a classifier k̂ : X → Y maps the input do-
main into a finite set of labels Y . The concept of robustness
is formally stated in the following definition.

Definition 1 (robustness). A classifier k̂ is ε-robust in an
input x ∈ Rn (or equivalently, a classification k̂(x) is ε-
robust), if k̂(x + δ) = k̂(x) for any perturbation δ with
‖δ‖ < ε, where ‖ · ‖ is the Euclidean norm.

Binary Classifiers

Let f : Rn → R be a binary classifier that provides a
classification of an input x based on its sign, i.e., k̂(x) =
sgn(f(x)), and let Bf := {x ∈ Rn : f(x) = 0} be the clas-
sification boundary of f . Given an input sample x, the MAP

problem for a binary classifier is defined as follows:

df (x) := inf
p∈Rn

‖p− x‖

s.t. f(p) = 0,
(1)

where df represents the distance function from the bound-
ary Bf . The closest adversarial example to x is defined
as the unique x∗ (if any) such that df (x) = ‖x − x∗‖
and sgn(f(x)) 6= sgn(f(x∗)). Observe that Problem (1) is
equivalent to the definition of Minimal Adversarial Pertur-
bation in (Moosavi-Dezfooli, Fawzi, and Frossard 2016).
Certifiable robustness. We refer to δ∗ = x∗ − x as the
perturbation that realizes the MAP. By definition of df (x),
for each perturbation δ with ‖δ‖ < df (x) it holds k̂(x+δ) =

k̂(x); hence, k̂ is certifiable df (x)-robust in x.
A Signed Distance Function d∗f is defined as follows:

d∗f (x) =

{
df (x) x ∈ R+

−df (x) x 6∈ R+.
(2)

where R+ = {f > 0}. Following this definition, a signed
distance function d∗f satisfies intriguing properties that make
it highly interesting for robustness evaluation, verification,
and certifiable prediction. In particular, d∗f provides the
same classification of f , since sgn(d∗f (x)) = sgn(f(x)) for
each x ∈ Rn. Furthermore, the gradient ∇d∗f (x) coincides
with the direction of the shortest path to reach the closest
adversarial example to x (Federer 1959, Thm. 4.8).

Observation 1. Let x ∈ Rn, if there exists a unique x∗ ∈
Bf such that df (x) = ‖x− x∗‖, then d∗f is differentiable in
x such that

∇df (x) =
x− x∗

‖x− x∗‖
, (3)

and hence has a gradient with unitary Euclidean norm, i.e.,
‖∇d∗f (x)‖ = 1, referred to as unitary gradient (UG) for
short in the following. Furthermore, d∗f is such that:

1. It provides a trivial way to certify the robustness of k̂ in
x, since, by definition, |d∗f (x)| represents the MAP.

2. It explicitly provides the closest adversarial example to
x, which can be computed x∗ = x− d∗f (x)∇d∗f (x).

Proof. Refer to (Federer 1959, Thm. 4.8)

Inspired by these intriguing properties, this work aims at
investigating classifiers whose output provides the distance
(with sign) from their own classification boundary.

A Characterization Property
A trivial example of a binary classifier f that coincides with
a signed distance function is given by any affine function
with a unitary weight. Indeed, if f(x) = wTx + b, where
‖w‖ = 1, then the MAP relative to f has the explicit unique
solution of the form x∗ = x − f(x)

‖w‖2w, as already pointed
out in (Moosavi-Dezfooli, Fawzi, and Frossard 2016), from
which df (x) = |f(x)|.

As shown in Observation 1, a signed distance function has
a unitary gradient. Under certain hypotheses, the opposite
implication holds: a function f with a unitary gradient coin-
cides with a signed distance function from Bf . This result is
formalized in the following theorem.
Theorem 1. Let U ⊆ Rn be an open set, and let f : Rn →
R be a function, smooth in U , such that Bf ⊆ U . If f has a
unitary gradient in U , then there exists an open set Ωf ⊆ U
such that f coincides in Ωf with the signed distance function
from Bf . Formally,
‖∇f�U‖ ≡ 1 ⇒ ∃Ωf ⊆ U , f�Ωf

≡ d∗f�Ωf
. (4)

Proof. The proof is built upon (Sakai 1996, Prop.2.1). Any
trajectory γ : [0, 1] → U that solves the dynamical system
γ̇(t) = ∇f(γ(t))) coincides with the shortest path between
the point γ(0) and the hyper-surface f−1(γ(1)). Details are
reported in the Appendix.

It is worth noting that, as pointed out in (Sakai 1996,
Prop.2.1), this characterization holds for particular geomet-
rical spaces, i.e., Complete Riemannian Manifolds. Unfor-
tunately, as shown by the author, the only smooth functions
with unitary gradient in a Complete Remannian Manifold
with non-negative Ricci Curvature (e.g., Rn) are the affine
functions (Sakai 1996, Theorem A). However, an open set
U ⊂ Rn is a Remannian Manifold that does not satisfy the
completeness property. Hence, the existence of a non-affine
signed distance function is not in contradiction with (Sakai
1996, Theorem A). A trivial example is given by the binary
classifier f(x) = ‖x‖ − 1 defined in U = Rn \ {0}. Further
details are provided in the Appendix.

Extension to Multi-Class Classifiers
By following the one-to-rest strategy (Schölkopf et al.
2002), the results above can be extended to multi-class clas-
sifiers. Let f : Rn → RC be a smooth function by which
the predicted class of a sample x ∈ Rn is given by k̂(x) =

argmaxi fi(x), where k̂(x) = 0 if there is no unique max-
imum component. Observe that, according to (Biggio et al.
2013; Szegedy et al. 2013; Moosavi-Dezfooli, Fawzi, and
Frossard 2016), the MAP problem for a multi-class classi-
fier can be stated as follows:

df (x) := inf
p∈Rn

‖p− x‖

s.t. k̂(p) 6= k̂(x).
(MAP)

Here, we extend the definition of signed distance function
d∗f to a multi-class Signed Distance Classifier f as follows.
Definition 2 (Signed Distance Classifier). A function f :
Rn → RC is a Signed Distance Classifier if, for each pair
i, j, with i 6= j, the difference (fi − fj) corresponds to the
signed distance from the one-to-one classification boundary
Bij := {x ∈ Rn : fi − fj = 0}.

The following observation shows that an SDC satisfies
similar properties of Observation 1 for binary classifiers.
Observation 2. Let f : Rn → RC be a signed distance
function and let x ∈ Rn be a sample classified as l = k̂(x).
Let s := argmaxj 6=l fj(x) be the second-highest compo-
nent of f(x). Hence, the classifier f :

1. Provides a fast way to certificate the robustness of k̂ in x.
In fact, fl(x)−fs(x) = df (x), where df (x) is the MAP.

2. Provides the closest adversarial example to x, i.e.,

x∗ = x− (fl(x)− fs(x))∇(fl − fs)(x),

where x∗ is the unique solution of Problem MAP in x.

Proof. The detailed steps are in the Appendix.

Similarly to the binary case, an SDC is characterized by
having a unitary gradient for each pair-wise difference of
the output components. In details, by directly applying The-
orem 1, a smooth classifier f is a signed distance classifier
(in some open set) if and only if ‖∇(fi − fj)‖ ≡ 1,∀i 6= j.

Unitary-Gradient Neural Networks
In the previous section, we showed that if a smooth classifier
f satisfies the unitary gradient property in some open set
U ⊇ Bf , then it admits an open set Ωf ⊇ Bf in which f
fcoincides with the signed distance function with respect to
the boundary Bf . Furthermore, affine functions represents
all and the only smooth SDCs in the whole Rn.

Supported by these results, any DNN that globally sat-
isfies the UG property would coincide with a trivial lin-
ear model, which hardly provides good classification per-
formance for complex tasks. To approximate a non-trivial
SDC with a well-performing DNN fθ, we impose the UG
property almost-everywhere.This section shows the proper
requirements on fθ to satisfy the hypothesis of Theorem 1,
providing layer-wise sufficient conditions that ensure the
UG property. To this end, we focus our analysis on the fam-
ily F of feed-forward DNNs f : Rn → RC of the form
f = g ◦ h(L) ◦ · · · ◦ h(1), where g is the output-layer and
each h(i) is any canonical elementary layer (e.g., Fully Con-
nected, Convolutional, etc.) or an activation function.

Observation 3 (Layer-wise sufficient conditions). Let f
be a DNN in F . For each i, let J (i)(x) be the Jacobian
of h(i) evaluated in y = h(i−1) ◦ · · · ◦ h(1)(x). For each
j = 1, . . . , C, let Wj(x) be the Jacobian of gj evaluated in
y = h(L) ◦ · · · ◦ h(1)(x). Hence, if

J (i)J (i)T ≡ I, ∀i = 1, . . . , L (GNP)

and

(Wh −Wk)(Wh −Wk)T ≡ 1, ∀h 6= k, (UPD)

then, for all h 6= k, fh − fk satisfies the UG property.

Proof. For a feed-forward neural network, the Jacobian ma-
trix of each component fj can be decomposed as

Jac(fj) = Wj

L∏
i=1

J (i) = WjJ
(L) · · · J (1). (5)

Hence, the thesis follows by the associative property and by
observing that (AB)T = BTAT for any two matrices.

Observe that Condition GNP, namely Gradient Norm
Preserving, requires any layer to have an output dimension
no higher than the input dimension. Indeed, a rectangular
matrix J ∈ RM×N can be orthogonal by row, i.e, JJT = I ,
only if M ≤ N . Condition GNP is also addressed in (Li
et al. 2019; Trockman and Kolter 2021) to build Lipschitz-
Bounded Neural Networks. However, for their purposes, the
authors also consider DNNs that satisfy a weaker condi-
tion named Contraction Property (see (Trockman and Kolter
2021)), which includes the M ≥ N case.

Gradient Norm Preserving Layers
We now provide an overview of the most common layers
that can satisfy the GNP property. For a shorter notation, let
h be a generic internal layer.

Activation Function Activation functions h : Rn → Rn
can be grouped in two main categories: component-wise
and tensor-wise activation functions. Common component-
wise activation functions as ReLU, tanh, and sigmoid do not
satisfy the GNP property (Chernodub and Nowicki 2017).
Moreover, since any component-wise function h that satis-
fies the GNP property is piece-wise linear with slopes ±1
(see the appendix for further details), abs is GNP.

Tensor-wise activation functions have recently gained
popularity thanks to (Chernodub and Nowicki 2017; Anil,
Lucas, and Grosse 2019; Singla, Singla, and Feizi 2021),
who introduced OPLU, GroupSort, HouseHolder activation
functions, respectively, which are specifically designed to
satisfy the GNP property. An overview of these activation
functions is left in the appendix. In this work, we compare
the abs with the OPLU and the GroupSort with a group size
of 2, a.k.a MaxMin.

Fully Connected and Convolutional Layers A fully con-
nected layer of the form h(x) = Wx+b has a constant Jaco-
bian matrix Jac(h)(x) = W . This implies that h is GNP if
and only ifW is an orthogonal-by-row matrix. Similarly, for
a convolutional layer with kernelK of shapeM×C×k×k,
the GNP property can be satisfied only if M ≤ C, i.e., the
layer does not increase the number of channels of the in-
put tensor (Li et al. 2021). As done in (Anil, Lucas, and
Grosse 2019), in our model we consider the Björck parame-
terization strategy to guarantee the orthogonality of the fully
connected layers and the CayleyConv strategy presented in
(Trockman and Kolter 2021) for the convolutional layers.

Pooling, Normalization and Residual Layers Max-
pooling two-dimensional layers with kernel k = (k1, k2) ∈
N2, stride s = k, and without padding, satisfy the GNP
property if applied to a tensor whose spatial dimensions
H,W are multiples of k1 and k2, respectively. This can be
proved by observing that the Jacobian matrix corresponds to
an othogonal projection matrix (Li et al. 2021).

Batch-normalization layers with a non-unitary variance
do not satisfies the GNP property (Li et al. 2021). For resid-
ual blocks, it is still not clear whether they can or cannot sat-
isfy the GNP property. Indeed, a residual layer of the form
h(x) = x + h̃(x) is GNP if and only if Jac(h̃)Jac(h̃)T +

Jac(h̃) + Jac(h̃)T ≡ 0. For such reasons, the last two men-
tioned layers are not considered in our model.

Unitary Pair Difference Layers
This section focuses on the second condition stated in Ob-
servation 3: the Unitary Pair Difference (UPD).

Since most neural classifiers include a last fully-
connected layer, we restrict our analysis to this case. Let
g(x) = Wx+b be the last layer, since Jac(g) ≡W , then the
UPD property requires that for each two rows Wh, Wk the
difference Wh−Wk has unitary norm. Let us say that a ma-
trix W satisfies the UPD property if the function x 7→ Wx
is UPD.
Bounded UPD layer. An UPD matrix from any orthogonal-
by-row matrix as stated by the next observation.
Observation 4. Let Q ∈ Rm×C such that QQT = I . Then,
W = 1√

2
Q satisfies the UPD property, indeed

‖Wh −Wk‖2 = ‖Wh‖2︸ ︷︷ ︸
1/2

+ ‖Wk‖2︸ ︷︷ ︸
1/2

−2WT
h Wk︸ ︷︷ ︸
0

= 1. (6)

An UPD layer with matrix W as above is said to be
bounded, as each row of W is bounded to have norm 1/

√
2.

As pointed out in (Singla, Singla, and Feizi 2021), this
constraint makes it harder to train the model when the output
dimension C is large (i.e., there are many classes).
Unbounded UPD layer. To avoid this issue, we considered
an UPD layer with parametric weight matrix W (U). Ma-
trix W (U) is obtained by iteratively applying the L-BFGS,
an optimization algorithm for unconstrained minimum prob-
lems (Liu and Nocedal 1989), to the loss

Ψ(U) =
∑
h<k

(‖Uh − Uk‖2 − 1)2. (7)

More specifically, if psi is the routine that computes such a
loss function and L-BFGS is the routine that performs one
step of the L-BFGS optimization algorithm, then the weight
matrix is obtained as W = UPD(U), where UPD is the fol-
lowing procedure:
1 def UPD(U: Tensor):
2 # Returns an UPD matrix
3 W = U
4 for in range(max_iter):
5 W = L-BFGS(psi(U), W)
6 return W

Listing 1: Psudo code that parameterizes an UPD matrix
through a parameter U . The resulting W is obtained by
performing few steps of the L-BFGS algorithm to find a
minimum of Ψ with starting point U .

Note that the UPD layer g(x) = W (U)x + b depends
on the weights U, b and it is fully differentiable in U . This
implies that such a procedure, like parameterization strate-
gies for orthogonal layers, can be applied during training.
Finally, note that the algorithm complexity strongly depends
on the computational cost of the objective Ψ(U). Our im-
plementation exploits parallelism by implementing Ψ(U) by
means of a matrix product of the form A(C)U , where A(C)

is designed to compute all the pair differences between rows
required by Eq. (7) (see Appendix).

Unitary-Gradient Neural Network Architecture

Figure 2: Tested UGNN architecture: 5 GNP conv-blocks, 2
FC GNP layers and 1 UPD layer.

This section describes how to practically combine GNP
and UPD layers to obtain a neural network fθ such that all
pair-wise differences of its output vector have unitary gradi-
ent. The main difficulty in crafting such a network is due to
the GNP property, which implies a decreasing dimension in
both dense and convolutional layers. Indeed, most DNNs for
image classification process a 3-channel image by gradually
increasing the channel dimension of convolutional layers.

To overcome this issue, we leverage a 2-dimensional Pix-
elUnshuffle layer (Shi et al. 2016), which inputs a tensor
of shape C × rH × rW and outputs a tensor of shape
r2C × H × W . The output is obtained by only rearrang-
ing input components. As such, this layer satisfies the GNP
property (proof available in Appendix). The main advantage
of using a PixelUnshiffle layer is that it allows increasing the
number of channels of hidden layers even in convolutional
GNP networks.

Layers Output Shape

OrthConv(3 · 4i, 3 · 4i, 3) 3 · 4i × H
2i × H

2i

GNP Activation ”
OrthConv(3 · 4i, 3 · 4i, 3) ”
GNP Activation ”
PixelUnshuffle(2) 3 · 4i+1 × H

2i+1 × H
2i+1

Table 1: An example of the (i+1)th internal GNP conv-block.
Observe that the number of channels increases with a geo-
metric progression of common ratio 4 and each spatial di-
mension decreases with a ratio of 2.

It is worth pointing out that (Li et al. 2019; Trockman
and Kolter 2021) also leveraged such a permutation layer,
but only to emulate a convolution with stride 2. That said,
the UGNN proposed in this work, shown in Fig. 2, consists
of five GNP blocks, two fully connected GNP layers, a last
UPD layer (bounded or unbounded), and GNP activation
functions. Each GNP block consists of two GNP convolu-
tional layers and one last PixelUnshuffle layer with scaling
factor 2; a GNP activation function is applied after each con-
volution (see Tab. 1). Each convolutional layer has a circular
padding to preserve the spatial dimension of the input. Fur-
thermore, before the flattening stage, a max-pool layer with
window size and stride H/25 is applied to process input of
different spatial dimension H = m · 25, for any m ∈ N.

Note that, to the best of our records, this is the first in-
stance of a convolutional DNN that aims at pratically imple-
menting an SDC and that provably satisfies ‖∇(fi− fj)‖ ≡
1 almost everywhere. (Béthune et al. 2021) only focused on
fully-connected networks, while (Serrurier et al. 2021) only
approximated an optimal f∗ such that ‖∇f∗i ‖ ≡ 1.

In conclusion, observe that, by design, each pair-
difference fi−fj of an UGNN satisfies the 1-Lipschitz prop-
erty, hence the marginMf (x) = fl(x)−maxj 6=l fj(x) is a
lower bound of the MAP in x.

Observation 5 (Certifiable Robustness). If f is a UGNN,
then k̂(x) = argmaxi fi(x) isMf (x)−robust in x.

Proof. The proof in available in Appendix.

Experimental Results
Experiments were conducted to evaluate the classification
accuracy of a UGNN and its capability of implementing an
SDC. As done by related works, the experiments targeted the
CIFAR10 datasets. We compared UGNN with the following
1-Lipschitz models: LargeConvNet (Li et al. 2019), ResNet9
(Trockman and Kolter 2021), and LipConvNet5 (Singla and
Feizi 2021). For all the combinations of GNP activations,
UPD layers, preprocessing, and input size, our model was
trained for 300 epochs, using the Adam optimizer (Kingma
and Ba 2017), with learning rate decreased by 0.5 after 100
and 200 epochs, and a batch of 1024 samples, containing
randomly cropped and randomly horizontally flipped im-
ages. The other models were trained by following the orig-
inal papers, leveraging a multi-margin loss function with
a margin m = ε

√
2, with ε = 0.5. For a fair compari-

son, UGNN was trained with a margin m = ε, being the
lower bound Mf of the MAP for UGNN different from
the Mf/

√
2 of the other DNNs, as discussed in Observa-

tion 5. For the experiments, we used 4 Nvidia Tesla-V100
with cuda 10.1 and PyTorch 1.8 (Paszke et al. 2019).

Accuracy Analysis
Table 2 summarizes the accuracy on the testset, where
UGNN was tested with the (Abs, MaxMin, OPLU) activa-
tion, and the last UPD layers (bounded and unbounded). The
other models were tested with the original configuration and
with the abs activation. Experiments were performed with
and without standard normalization (Std.Norm) of the input,
and each configuration was trained four times with randomly
initialized weights to obtain statically sound results. In sum-
mary, the take-away messages of the Tab. 2 are: (i) The
unbounded UPD layer (named updU) increased the perfor-
mance with respect to the bounded one (named updB) in
almost all cases. (ii) Std.Norm pre-processing significantly
increased the performance. We believe this is due to the GNP
property of the layers, which cannot learn a channel re-scal-
ing different from ±1. (iii) The use of abs activations in the
1-Lipschitz models does not cause a significant performance
loss with respect to the other GNP activations (that requires
a more expensive sorting). (iv) Despite the strict constraints

Accuracy [%]
Models Std.Norm Raw
LargeConvNet 79.0± 0.26 72.2± 0.11
LargeConvNet+Abs 77.8± 0.33 71.8± 0.25
LipConvNet5 78.0± 0.26 68.8± 0.35
LipConvNet5+Abs 76.1± 0.31 65.5± 0.68
ResNet9 78.7± 0.22 66.4± 0.17
ResNet9+Abs 78.1± 0.34 65.6± 0.22

UGNN+Abs+updB 71.9± 0.29 69.2± 0.31
UGNN+Abs+updU 72.1± 0.54 68.9± 0.81
UGNN+MaxMin+updB 72.6± 0.79 70.4± 0.52
UGNN+MaxMin+updU 72.7± 0.38 70.4± 0.86
UGNN+OPLU+updB 71.9± 0.09 70.5± 0.39
UGNN+OPLU+updU 72.0± 0.70 70.6± 0.45

Table 2: Accuracy comparison between the 1-Lipschitz
models and the UGNNs.

of the UGNN architecture, it achieves comparable perfor-
mance in the raw case, while there is a clear gap of accuracy
for the Std.Norm case.

To improve the UGNN accuracy, we investigated for in-
trinsic learning characteristics of its architecture. In partic-
ular, we noted that a strong limitation of the model is in
the last two GNP blocks (see Fig. 2), which process tensor
with a high number of channels (thus higher learning capa-
bilities) but with compressed spatial dimensions (H/8 and
H/16). Hence, for small input images (e.g., 32 × 32), such
layers cannot exploit the spatial capability of convolutions.
Table 3 reports a performance evaluation of the UGNN (with
MaxMin activation) for larger input sizes. Note that, differ-
ently from the UGNN, common DNNs do not benefit of an
up-scaling image transformation, since it is possible to ap-
ply any number of channels on the first convolutions layers.
Moreover, the compared models do not have adaptive layers,
hence, do not handle different input sizes. This observation
allows the UGNN to outperform the other models for the
raw case and reach similar accuracy for the Std.Norm case.

Accuracy [%]
Input Size Last Layer Std.Norm Raw
64 updB 72.1± 0.27 72.4± 0.42

updU 72.6± 0.69 72.8± 0.61
128 updB 74.5± 0.56 75.9± 0.07

updU 74.9± 0.45 76.2± 0.30
256 updB 76.5± 0.35 78.4± 0.29

updU 76.8± 0.29 78.5± 0.22

Table 3: Accuracy comparison of the UGNN models with
different, pre-processed input sizes and output layers.

MAP Estimation
This section evaluates the MAP estimation through the
lower bound (LB) given by the UGNN discussed in Obser-
vation 2 and the other 1-Lipschitz models. Figure 3 com-

0.0 0.5 1.0 1.5 2.0 2.5
Lower Bound

0.0

0.2

0.4

0.6

0.8

1.0
Lo

we
r B

ou
nd

 /
Em

pi
ric

al
 M

AP
MAP Estimation

LConvNet
LipConvNet5
ResNet9
UGNN

Figure 3: Evaluation of the lower-bound estimation of the
MAP provided by the 1-Lipschitz DNNs and the UGNN.
The y-axis reports the ratio of the given lower bound and the
MAP computed through an iterative-penalty algorithm.

pares the ratio of the LB and the MAP between the 1-
Lipschitz DDNs and a UGNN with MaxMin and bounded
upd, for the normalized inputs. The MAP is computed with
the expensive Iterative Penalty procedure, as done in (Brau
et al. 2022). Note that our analysis considers the worst-case
MAP, i.e., without box-constraints, as also done by the com-
pared 1-Lipschitz models. Indeed, since image pixels are
bounded in [0, 1], the MAP is itself a lower bound of the
distance from the closest adversarial image. Table 4 reports
statistics related to the LB/MAP ratio for different UGNNs,
where the box-constrained (B.C.) MAPs were computed us-
ing the Decoupling Direction Norm strategy (Rony et al.
2019). The column #N contains the number of samples cor-
rectly classified by the model and for which the MAP algo-
rithm reached convergence. Note that, in all the tested cases,
the LB provided by the UGNN resulted to be tighter than
the other 1-Lipschitz DNNs. Similar considerations hold for
other model configurations (see Appendix).

Certifiable Robust Classification

Figure 4 shows a close comparison of the accuracy of the
(certifiable) ε-robust classifications for different values of ε,
i.e., the percentage of correctly classified samples with a LB
lower than ε. We selected the UGNN with the highest accu-
racy (MaxMin-updB-256-raw). The tests for the 32x32 input
size are provided in Appendix. The 1-Lipschitz models were
trained on raw inputs, where the best run has been selected.
For these models, to handle 256x256 images, an initial near-
est interpolation from 256 to 32 is applied. This transforma-
tion is necessary since, differently from the UGNN, they are
not adaptive to different input sizes. Note that the interpo-
lation preserves both the accuracy and the 1-Lipschitz prop-
erty. As shown in Fig. 4, the UGNN outperforms the other
models for all the tested ε values.

Model LB/MAP #N B.C
ResNet9 (raw) .34±.063 6669 3
LargeConvNet (raw) .46±.057 7219 3
LipConvNet5 (raw) .58±.069 6911 3
UGNN+OPLU+updU (raw) .70±.090 7125 3
UGNN+OPLU+updB (raw) .70±.093 7098 3
UGNN+MaxMin+updB (raw) .71±.087 7114 3
UGNN+MaxMin+updU (raw) .71±.088 7118 3

ResNet9 (norm) .26±.036 7904 7
LargeConvNet (norm) .44±.027 7933 7
LipConvNet5 (norm) .52±.031 7840 7
UGNN+OPLU+updB (norm) .96±.046 7215 7
UGNN+OPLU+updU (norm) .96±.047 7282 7
UGNN+MaxMin+updU (norm) .96±.051 7316 7
UGNN+MaxMin+updB (norm) .96±.044 7327 7

Table 4: Evaluation of the LB/MAP ratio deduced by the
output of the models with/without Box Constraint.

0.0 0.1 0.2 0.3 0.4 0.5

20

30

40

50

60

70

80

Ro
b.

 A
cc

ur
ac

y
[%

]

Certifiable -robustness Accuracy

LConvNet
LipConvNet5
ResNet9
UGNN

Figure 4: Accuracy of the certifiable ε-robust classifications.

Conclusion
This paper presented a novel family of classifiers, named
Signed-Distance Classifiers (SDCs), which provides the
minimal adversarial perturbation (MAP) by just computing
the difference between the two highest output components,
thus offering an online-certifiable prediction.

To practically implement an SDC, we developed a
novel architecture, named Unitary-Gradient Neural Net-
work (UGNN), which satisfies (almost-everywhere) the
characterization property of an SDC. To design this model,
we proposed a new fully-connected layer, named Unitary
Pair Difference (UPD), which features unbounded weight
matrix while preserving the unitary-gradient property.

Several experiments were conducted to compare the
proposed architecture with the most related certifiable 1-
Lipschitz models from previous work. The experiments
highlighted the performance of the UGNN in terms of ac-
curacy, certifiable robustness, and estimation of the MAP,
showing promising results.

Future work will focus on improving the UGNN. Further-

more, as pointed out by other authors, additional investiga-
tions are needed to tackle practical open problems in this
field, such as addressing dataset with many classes and im-
proving learning strategies.

References
Anil, C.; Lucas, J.; and Grosse, R. 2019. Sorting Out Lip-
schitz Function Approximation. In Proceedings of the 36th
International Conference on Machine Learning, 291–301.
PMLR.
Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.;
Laskov, P.; Giacinto, G.; and Roli, F. 2013. Evasion Attacks
against Machine Learning at Test Time, volume 7908 of Lec-
ture Notes in Computer Science, 387–402. Springer Berlin
Heidelberg. ISBN 978-3-642-38708-1.
Biggio, B.; and Roli, F. 2018. Wild Patterns: Ten Years Af-
ter the Rise of Adversarial Machine Learning. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’18, 2154–2156. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450356930.
Brau, F.; Rossolini, G.; Biondi, A.; and Buttazzo, G. 2022.
On the Minimal Adversarial Perturbation for Deep Neural
Networks With Provable Estimation Error. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 1–15.
Béthune, L.; González-Sanz, A.; Mamalet, F.; and Serrurier,
M. 2021. The Many Faces of 1-Lipschitz Neural Networks.
arXiv:2104.05097 [cs, stat]. ArXiv: 2104.05097.
Carlini, N.; Katz, G.; Barrett, C.; and Dill, D. L.
2018. Provably Minimally-Distorted Adversarial Examples.
arXiv:1709.10207 [cs]. ArXiv: 1709.10207.
Carlini, N.; and Wagner, D. 2017. Towards Evaluating the
Robustness of Neural Networks. In 2017 IEEE Symposium
on Security and Privacy (SP), 39–57.
Chernodub, A.; and Nowicki, D. 2017. Norm-preserving
Orthogonal Permutation Linear Unit Activation Functions
(OPLU). arXiv:1604.02313.
Cisse, M.; Bojanowski, P.; Grave, E.; Dauphin, Y.; and
Usunier, N. 2017. Parseval Networks: Improving Robust-
ness to Adversarial Examples. arXiv:1704.08847 [cs, stat].
ArXiv: 1704.08847.
Cohen, J.; Rosenfeld, E.; and Kolter, Z. 2019. Certified Ad-
versarial Robustness via Randomized Smoothing. In Pro-
ceedings of the 36th International Conference on Machine
Learning, 1310–1320. PMLR.
Federer, H. 1959. Curvature measures. Transactions of the
American Mathematical Society, 93(3): 418–491.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. arXiv:1412.6572
[cs, stat]. ArXiv: 1412.6572.
Hein, M.; and Andriushchenko, M. 2017. Formal Guaran-
tees on the Robustness of a Classifier against Adversarial
Manipulation. In Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc.
Kingma, D. P.; and Ba, J. 2017. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980.

Lang, S. 2012. Fundamentals of differential geometry, vol-
ume 191. Springer Science & Business Media.
Li, Q.; Haque, S.; Anil, C.; Lucas, J.; Grosse, R. B.; and Ja-
cobsen, J.-H. 2019. Preventing Gradient Attenuation in Lip-
schitz Constrained Convolutional Networks. In Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc.
Li, S.; Jia, K.; Wen, Y.; Liu, T.; and Tao, D. 2021. Orthog-
onal Deep Neural Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(4): 1352–1368.
Liu, D. C.; and Nocedal, J. 1989. On the limited memory
BFGS method for large scale optimization. Mathematical
programming, 45(1): 503–528.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2019. Towards Deep Learning Models
Resistant to Adversarial Attacks. (arXiv:1706.06083).
ArXiv:1706.06083 [cs, stat].
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y.
2018. Spectral Normalization for Generative Adversarial
Networks. arXiv:1802.05957 [cs, stat]. ArXiv: 1802.05957.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
DeepFool: A Simple and Accurate Method to Fool Deep
Neural Networks. 2574–2582.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural
Information Processing Systems 32, 8024–8035. Curran As-
sociates, Inc.
Pintor, M.; Roli, F.; Brendel, W.; and Biggio, B. 2021. Fast
minimum-norm adversarial attacks through adaptive norm
constraints. Advances in Neural Information Processing
Systems, 34: 20052–20062.
Rony, J.; Granger, E.; Pedersoli, M.; and Ayed, I. B.
2020. Augmented Lagrangian Adversarial Attacks.
arXiv:2011.11857 [cs]. ArXiv: 2011.11857.
Rony, J.; Hafemann, L. G.; Oliveira, L. S.; Ayed, I. B.;
Sabourin, R.; and Granger, E. 2019. Decoupling Direc-
tion and Norm for Efficient Gradient-Based L2 Adversar-
ial Attacks and Defenses. arXiv:1811.09600 [cs]. ArXiv:
1811.09600.
Rossolini, G.; Biondi, A.; and Buttazzo, G. 2022. Increas-
ing the Confidence of Deep Neural Networks by Coverage
Analysis. IEEE Transactions on Software Engineering.
Sakai, T. 1996. On Riemannian manifolds admitting a func-
tion whose gradient is of constant norm. Kodai Mathemati-
cal Journal, 19(1).
Schölkopf, B.; Smola, A. J.; Bach, F.; et al. 2002. Learning
with kernels: support vector machines, regularization, opti-
mization, and beyond. MIT press.
Serrurier, M.; Mamalet, F.; González-Sanz, A.; Boissin,
T.; Loubes, J.-M.; and del Barrio, E. 2021. Achieving
robustness in classification using optimal transport with
hinge regularization. arXiv:2006.06520 [cs, stat]. ArXiv:
2006.06520.

Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A. P.;
Bishop, R.; Rueckert, D.; and Wang, Z. 2016. Real-time
single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, 1874–1883.
Singla, S.; and Feizi, S. 2021. Skew Orthogonal Convolu-
tions. In Proceedings of the 38th International Conference
on Machine Learning, 9756–9766. PMLR.
Singla, S.; Singla, S.; and Feizi, S. 2021. Improved deter-
ministic l2 robustness on CIFAR-10 and CIFAR-100. In In-
ternational Conference on Learning Representations.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Trockman, A.; and Kolter, J. Z. 2021. Orthogonal-
izing Convolutional Layers with the Cayley Transform.
arXiv:2104.07167 [cs, stat]. ArXiv: 2104.07167.
Tsuzuku, Y.; Sato, I.; and Sugiyama, M. 2018. Lipschitz-
Margin Training: Scalable Certification of Perturbation In-
variance for Deep Neural Networks. In Advances in Neural
Information Processing Systems, volume 31. Curran Asso-
ciates, Inc.
Wang, J.; Chen, Y.; Chakraborty, R.; and Yu, S. X. 2020.
Orthogonal Convolutional Neural Networks. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 11502–11512. IEEE. ISBN 978-1-
72817-168-5.
Weng, T.-W.; Zhang, H.; Chen, P.-Y.; Yi, J.; Su, D.; Gao, Y.;
Hsieh, C.-J.; and Daniel, L. 2018. Evaluating the Robustness
of Neural Networks: An Extreme Value Theory Approach.
arXiv:1801.10578 [cs, stat]. ArXiv: 1801.10578.
Wong, E.; Schmidt, F. R.; Metzen, J. H.; and Kolter,
J. Z. 2018. Scaling provable adversarial defenses.
arXiv:1805.12514 [cs, math, stat]. ArXiv: 1805.12514.

Technical Appendix of “Robust-by-Design Classification via Unitary-Gradient Neural Networks”

Gradient Norm Preserving
Activation Functions

Component-wise activation functions that satisfy Prop-
erty GNP can be completely characterized; this is the aim
of the following lemma.
Lemma 1 (GNP Component-wise Activation Functions).
The only component-wise activation functions that guaran-
tee the orthogonal property GNP are the piecewise-linear
functions with slope 1 or −1.

Proof. Let h : R → R a scalar function, and let h :
Rn → Rn the tensor-wise version of h defined as h(x) =
(h(xi))i. Observe the corresponding Jacobian matrix is
always represented by a diagonal matrix Jac(h)(y) =
diag(h′(y1), . . . , h′(yn)). The orthogonal condition on the
Jacobian rows is only guaranteed if h(y) solves the differen-
tial equation

(h′(y))2 = 1 (8)
Observe that all the solutions of Equation 8 are of the form
h(x) =

∑P
i=1(αix + βi)1Ui

(x) where αi ∈ {1,−1},
βi ∈ R, and {Ui}i is a discrete partition of R. Observe in
conclusion that h(x) = |x| solves Equation 8.

Tensor-wise GNP activation functions
The OPLU activation function was introduced in (Chern-
odub and Nowicki 2017) and recently generalized from
(Anil, Lucas, and Grosse 2019). Accordingly with the orig-
inal paper, we assume the following definition.
Definition 3 (OPLU). The 2-dimensional version is defined
as follows

OPLU1 : R2 → R2[
x
y

]
7→
[
max(x, y)
min(x, y)

]
.

(9)

The generalization to higher dimensional spaces is the fol-
lowing

OPLUn : R2n → R2nx1

...
xn

 7→
OPLU1(x1)

...
OPLU1(xn)

 . (10)

Characterization of the Signed Distance
Functions

This section contains a proof of Theorem 1. For the sake
of a clear comprehension, before providing the proof, let
us remind some classical results. The following theorems
are known as Existence and Uniqueness of Solutions of Or-
dinary Differential Equations (ODE) and Implicit Function
Theorem.
Theorem 2 (Existence and Uniqueness of ODE solutions).
Let U ⊆ Rn be an open subset of Rn, and let F : U →
Rn a smooth function, i.e., F ∈ C∞(U), then the following
statements hold.

i) For each t0 ∈ R and x0 ∈ U , there exists I0 ⊆ R and
U0 ⊆ U open sets, with (t0, x0) ∈ I0 × U0, such that for
each x ∈ U0 there exists a solution ux : I0 → U of the
following Cauchy-problem{

u̇(t) = F (u(t))

u(0) = x;
(11)

where we keep the notation ux to highlight that x is the
starting point of the solution of Problem 11.

ii) The map Θ : I0 × U0 ⊆ U , namely flux, defined by
Θ(t, x) := ux(t), is in C∞;

iii) If ux, vx are two solutions of Equation (11), then ux ≡
vx;

Proof. Refer to (Lang 2012, pp.66-88).

The implicit function theorem can instead be stated as fol-
lows.

Theorem 3 (Implicit Function Theorem (Dini)). Let G :
R × U → R be a smooth function defined on an open set
R× U . If p ∈ U is such that

G(0, p) = 0 and
dG

dt
(0, p) 6= 0,

then there exists an open set Ω ⊆ U and a smooth function
ϕ : Ω→ R such that

∀x ∈ Ω, G(ϕ(x), x) = 0. (12)

Proof. The proof can be deduced by (Lang 2012, Thm. 5.9),
where V := R, U := U , U0 := Ω and (a, b) = (p, 0).

Finally we can leverage these results to prove the main
theorem of the paper.
Theorem 1 Let U ⊆ Rn be an open set, and let f : Rn → R
be a function, smooth in U , such that Bf ⊆ U . If f has a
unitary gradient in U , then there exists an open set Ωf ⊆ U
such that f coincides in Ωf with the signed distance function
from Bf . Formally,

‖∇f�U‖ ≡ 1 ⇒ ∃Ωf ⊆ U , f�Ωf
≡ d∗f�Ωf

. (13)

Proof. We have to prove that there exists an open set Ωf ⊆
U such that the unitary gradient property in U implies that
f(x) = d∗f (x) for all x ∈ Ωf . The proof is divided in two
main parts:

(i) Let us consider the following ordinary differential equa-
tion with initial condition (a.k.a. Cauchy problem){

u̇(t) = ∇f(u(t))

u(0) = x
(14)

where x ∈ U . We show that there exists an open set Ωf ⊇
Bf such that each x ∈ Ωf can be reached by a solution
up of the Cauchy-problem (14), i.e., ∃s ∈ R such that
x = Θ(s, p) := up(s) for some p ∈ Bf ;

(ii) We show that any trajectory of the flux corresponds the
minimal geodetic (i.e., the shortest path) between the
hyper-surfaces of the form f−1(t) and Bf . This can be
obtained by explicitly deducing a close form of f on Ωf .

Let us start with the existence of such a Ωf . Since f is
smooth, then F := ∇f satisfies the hypothesis of Theo-
rem 2, by which we can deduce that for each p ∈ Bf there
exists an open set Ip × Up ⊆ R× U such that the flux

Θ : Ip × Up → U
(t, x) 7→ ux(t)

(15)

is of class C∞ (where remember that ux is the solution of
the ODE (11) with starting point in x). LetG : Ip×Up → R
be the smooth function defined by G(t, x) := f(Θ(t, x)).
By (14), dΘ

dt (0, p) = u̇p(0) = ∇f(up(0)) and Θ(0, p) =
up(0) = p, hence it is possible to observe that

G(0, p) = f(Θ(0, p)) = f(p) = 0 (16)

and that
dG

dt
(0, p) = ∇f(p)T

dΘ

dt
(0, p) = ∇f(p)T∇f(p). (17)

We then deduce by the Implicit Function Theorem 3 that
there exists an open set Ωp ⊆ Up such that

∀x ∈ Ωp, ∃t ∈ Ip : G(t, x) = 0, (18)

from which

∀x ∈ Ωp, ∃t ∈ Ip : ux(t) ∈ Bf . (19)

From the uniqueness of the solution stated in Theorem 2,
this implies that, for each x ∈ Ωp, there exists q ∈ Ωp ∩
Bf and an instant t ∈ Ip such that uq(t) = x. Finally, by
considering Ωf := ∪p∈Bf

Ωp, the first step of the proof is
concluded.

Now, we want to prove that the trajectory of the dynamic
system coincides with the geodetic (the curve of minimal
length) from any x ∈ Ωf and for any Bp. Let up : Ip → Ωf
be the solution of (11) with starting point in p ∈ Bf , and
let x = up(s) be the point of the trajectory for s ∈ Ip. Let
us consider a function γ(t) := up(ts) of the form [0, 1] →
Ωf to denote the curve that connects p and x. Observe that
the length of γ can be found by considering the following
formula

L(γ) :=

∫ 1

0

‖γ̇(t)‖ dt =

∫ 1

0

|s|‖u̇p(t)‖ dt. (20)

Since ‖u̇p‖ = ‖∇f(u(t))‖ = 1 we can deduce that the
length of γ is L(γ) = |s|.

Let ζ : [0, 1]→ U be any other curve that connects p and
x. Observe that the following chain of inequalities holds

L(ζ) =

∫ 1

0

‖ζ̇‖ dt ≥

≥
∫ 1

0

∣∣∣〈ζ̇(t),∇f(ζ(t))
〉∣∣∣ dt ≥

≥
∣∣∣∣∫ 1

0

d

dt
f(ζ(t)) dt

∣∣∣∣ = |f(p)− f(x)| = |f(x)|,

(21)

where the first inequality is a direct consequence of the
Cauchy-Schwarzt inequality (∀u, v ∈ Rn, |〈u, v〉| ≤
‖u‖‖v‖).

It remains to prove that L(ζ) ≥ L(γ). To do so, let us
consider the following observation.

Observation 6. If p ∈ Bf and s ∈ Ip, then f(up(s)) = s.

Proof. Let ϕ(s) = f(up(s)) be the value of f on the tra-
jectory of the flux. Since ϕ̇ = 〈u̇p(s),∇f(up(s))〉 = 1 we
deduce ϕ(s) = s+ ϕ(0) = s.

This concludes the second step of the proof, since for each
curve ζ that connects p and x we have that

L(ζ) ≥ |f(x)| = |s| = L(γ),

hence γ is the shortest path between p and x, from which
|f(x)| = df (x).

In conclusion, the theorem is proved by observing that,
for each x ∈ Ωf , there exists p ∈ Bf such that x = up(s)
for some s. Indeed, by the definition of Ωf , let q such that
x ∈ Ωq , then there exists a p ∈ Ωq ∩Bf such that x = up(s)
for some s.

An example of non-affine Signed Distance Function
In the main paper, we observed that f(x) := ‖x‖ − 1 is
an instance of a non-affine signed distance function. Indeed,
observe that, for each x ∈ Rn \ {0}, the gradient of f has
unitary euclidean norm and it has the following explicit for-
mulation ∇f(x) = x

‖x‖ . Furthermore, the minimal adver-
sarial perturbation problem relative to f can be written as
follows

min
p∈Rn

‖x− p‖

s.t. p2
1 + · · ·+ p2

n = 1
, (22)

and has a minimal solution of the form x∗ = x
‖x‖ . This

fact can be proved by considering the associated Lagrangian
function L(p, λ) := ‖x − p‖ − λ(‖p‖2 − 1), from which
we can deduce that p∗ := x

‖x‖ , is a stationary point of
L, i.e., there exists a Lagrangian multiplier λ∗ such that
∇L(x∗, λ∗) = 0, realized for λ∗ = ± 1

2 .

Extension to Multi Class Signed Classifiers
This section contains the technical details for the proof of
Observation 2 related to the definition of the signed distance
classifier for multi-class classification. Let us first consider
the following lemma that shows that Problem MAP can be
solved by considering the smallest solution of a sequence of
a minimum problems
Lemma 2. Let x ∈ Rn classified from f with the class l,
k̂(x) = l. Let, for each j 6= l, gj = (fl − fj), then

df (x) = min
j 6=l

dgj

where dgj is the solution of the Problem 1 relative to the
binary classifier gj . In formulas,

dgj (x) := inf
p∈Rn

‖p− x‖

s.t. fl(p)− fj(p) = 0
(23)

Proof. The main idea is to separately prove the two inequal-
ities

min
j 6=l

dgj (x) ≤ df (x) ≤ min
j 6=l

dgj (x). (24)

The inequality on the right can be deduced by observing that,
for each j, the solution x∗j of the Problem 1, relative to the
function gj , satisfies the constraints of the minimum prob-
lem MAP relative to the function f . Hence, by the definition
of minimum df (x) = ‖x− x∗‖ ≤ ‖x− x∗j‖.

The inequality on the left is deduced by observing that
if x∗ is the solution of df and if j∗ is such that fj∗ =
maxj 6=l fj(x

∗), then x∗ satisfies the constraints of the Prob-
lem 1 for the function dgj∗ . Hence,

min
j 6=l

dgj ≤ dgj∗ ≤ ‖x− x
∗‖,

which concludes the proof.

Observation 2. Let f : Rn → RC a signed distance clas-
sifier and let x ∈ Rn a sample classified as l = k̂(x), and
let s := argmaxj 6=l fj(x) the second highest component.
Then, the classifier f
(i) provides a fast way to certificate the robustness of x. In

fact, fl(x)− fs(x) = df (x), where df (x) is the minimal
adversarial perturbation defined by the Problem MAP.

(ii) provides the closest adversarial example to x, being

x∗ = x− (fl(x)− fs(x))∇(fl − fs)(x)

where x∗ is the unique solution of Problem MAP in x.

Proof. The first statement is a direct consequence of
Lemma 2. Consider the following chain of equalities

df (x) = min
j 6=l

dgj (x) = min
j 6=l

(fl − fj)(x)

= fl −max
j 6=l

fj(x) = (fl − fs)(x).
(25)

where the second equivalence is given by the definition of
a signed distance classifier. The second statement is a con-
sequence of Observation 1, indeed, ∇(fl − fs)(x) provides
the direction of the shortest path to reach Bls.

The PixelUnshuffle is a gradient norm
preserving layer

Pixel-Unshuffle layer has a fundamental role in crafting a
unitary gradient neural network, since it allows increasing
the number of channels through the internal activations and,
simultaneously, keeping the GNP property of the convolu-
tions. A Pixel-Unshuffle layer, with scaling-size of r, trans-
forms an input x ∈ RC×rH×rW only by rearranging its en-
tries to provide an output tensor of shape r2C × H × W .
Such a layer, can be discribed as the inverse of the pixel-
shuffle layer S described as follows

(Sx) [c, i, j] = x

[
rC x%r + C y%r + c,

⌊
i

r

⌋
,

⌊
i

r

⌋]
,

where [c, i, j] means the entry i, j of the c-th channel of
the leftmost tensor. Hence, observe that the vectorized ver-
sion of S can be described as a map Ŝ : Rm → Rm

such that (Ŝ(x))i = xσ(i), where m = r2CHW and
σ : {1, · · · ,m} → {1, · · · ,m} is a one-to-one permutation
map. Finally observe that,

Jac(Ŝ)ij =

{
1 j = σ(i)

0 otherwise,
(26)

from which we can deduce that each row of the Jacobian
contains one and only one not-zero entry (that is 1), and,
that every two rows are different. This very last statement di-
rectly implies the orthogonality of Jac(Ŝ) in each x. In con-
clusion the GNP property of the pixel-unshuffle layer S−1,
can be deduced by observing that, if Ŝ−1 is the vectorized
version of S−1, then

Jac(Ŝ−1)Jac(Ŝ−1)T = (Jac(Ŝ)−1)(Jac(Ŝ)T)−1 =

= (Jac(Ŝ)T Jac(Ŝ))−1 = I−1 = I.

Parameterized Unitary Pair Difference Layer
This section aims at describing how the objective function
Ψ can be efficiently computed by exploiting the parallelism.
Let us consider the family of matrices A(k), within

(
k
2

)
rows

and k columns, recursively defined as follows

A(2) = (1 −1) , A(k) =



1
...
1
−Idk−1

0
...
0

A(k−1)


∀k ≥ 2.

(27)
Hence, observe that if U ∈ RC×m is some matrix, then

the resulting matrix product A(C) U corresponds to a matrix
where each row is one of the possible difference between
two rows of U . In formulas

A(C)U = A(C)

U
T
1
...
UTC

 =


(U1 − U2)T

...
(U1 − UC)T

(U2 − U3)T

...

 . (28)

This allows exploiting the parallelism of the GPUs in order
to efficiently compute the objective function Ψ. In conclu-
sion, experimental tests reported in Figure 5 show that 3 it-
erations of the L-BFGS algorithm are sufficient to obtain a
UPD matrixW whose differences between rows have an eu-
clidean norm in the range 1 ± 10−5 for the case of interest
(C = 10).

Unitary Gradient Neural Network
The Unitary Gradient Property
This section aims at empirically evaluating the euclidean
norm of the pair difference fh − fk to show that ‖∇(fh −
fk)‖ is numerically equal to 1. Distribution plots in Figure 6
show the distribution of the norm of the difference fh − fk
for a classifier with 5 output classes.

2 0 2
1e 5+1

0

25

50

75

100

125

150
De

ns
ity

classes = 10 | epochs = 2

1 0 1 2
1e 5+1

0

50

100

150

classes = 10 | epochs = 3

1 0 1
1e 5+1

0

50

100

150

200
classes = 10 | epochs = 4

2 1 0 1 2
1e 4+1

0

200

400

600

800

1000

De
ns

ity

classes = 43 | epochs = 2

1 0 1
1e 4+1

0

200

400

600

800

1000

1200

classes = 43 | epochs = 3

2 1 0 1 2
1e 4+1

0

500

1000

1500

classes = 43 | epochs = 4

1.0 0.5 0.0 0.5
pd_norms 1e 4+1

0

2000

4000

6000

8000

10000

De
ns

ity

classes = 100 | epochs = 2

0.5 0.0 0.5
pd_norms 1e 4+1

0

2000

4000

6000

8000

10000

12000

classes = 100 | epochs = 3

0.5 0.0 0.5
pd_norms 1e 4+1

0

2000

4000

6000

8000

10000

12000

classes = 100 | epochs = 4

Figure 5: Distribution of the pair row differences of weight
matrices W = UPD(U) obtained by applying the L-
BFGS for 2, 3, 4 steps. The analysis involves matrices with
10, 43, 100 rows and 512 columns. Distributions are com-
puted by evaluating the euclidean norm of all the pair-wise
difference of the rows of the matrix W for 10 random gen-
erated parameters U .

Certifiable Robust Classification through UGNNs
This section aims at providing further details related to the
robustness statements in Observation 5 reported below. Be-
fore going deeper in the details, it is worth to remind a
known results.

Lemma 3. Let f : Rn → R a continuous function, differen-
tiable almost-everywhere. If ‖∇f(x)‖ = 1 in each differen-
tiable point x, then f is 1-Lipschitz.

Proof. Let x, y ∈ Rn and φ(t) := x + (y − x)t be the
straight line that connects the two points. Observe that, by
the hypothesis, the function (f ◦ φ)′ is continuous almost
everywhere, from which

f(y)−f(x) =

∫ 1

0

(f ◦φ)′(t) dt =

∫ 1

0

∇f(φ(t))T (y−x) dt.

By applying the absolute value and considering the
Cauchy–Schwarz inequality (∀v, w, 〈v, w〉 ≤ ‖v‖ · ‖w‖),
the following inequality holds

|f(y)− f(x)| =
∣∣∣∣∫ 1

0

∇f(φ(t))T (y − x) dt
∣∣∣∣ ≤

≤
∫ 1

0

‖∇f(φ(t))‖‖y − x‖ dt = ‖x− y‖,

from which the thesis follows.

Finally, the observation can be easily proved.
Observation 5 (Certifiable Robustness). If f is a UGNN,
then k̂ is Mf (x)−robust in x. In other words, Mf (x) is
directly a lower bound of the MAP in x.

Proof. Let us assume x ∈ Rn such that ∇f(x) is defined
and such that k̂(x) = l. LetMf (x) defined as follows

Mf (x) := fl(x)−max
j 6=l

fj(x) = min
j 6=l

(fl − fj)(x)

By the definition of UGNN, observe that ‖∇(fl− fj)‖ ≡ 1,
for each j 6= l, hence, by Lemma 3, fl − fj is 1-Lipschitz.
By the definition of 1-Lipschitz functions, we deduce that,
for each δ such that ‖δ‖ <Mf (x),

∀j 6= l, |(fl−fj)(x+δ)−(fl−fj)(x)| < ‖δ‖ ≤ Mf (x)

where the first inequality is due to the lipschitz property and
the second is due to the choose of δ. By considering only the
negative part of the absolute value, we then obtain that

∀j 6= l, (fl − fj)(x+ δ) > (fl − fj)(x)−Mf (x) ≥ 0.

This implies that fl(x + δ) > fj(x + δ) for all j 6= l from
which we can deduce that k̂(x + δ) = l. In conclusion, let
‖δ∗‖ the minimal adversarial perturbation in x, then since

∀δ, k̂(x) 6= k̂(x+ δ) ⇒ ‖δ‖ ≥ Mf (x),

then by considering the inferior on ‖δ‖, we obtain that

‖δ∗‖ = inf{‖δ‖ : k̂(x) 6= k̂(x+δ)} ⇒ ‖δ∗‖ ≥ Mf (x),

which concludes the proof.

Supplementary Experimental Material
Further MAP Estimations Analysis
Table 5 and Figure 7 show the MAP estimation through
the lower bound provided by the tested models for differ-
ent cases. The bar-plot in Figure 8 contains, for each value
of ε, the ratio of samples for which the classification is not
ε-robust according to the lower-bound, but that feature a
minimal adversarial perturbation larger than ε. The higher
the bar, the fewer the practically ε-robust classifications dis-
carded as not robust due to a lose lower bound. Let assume
the following definitions,

TPε := {x : MAP (x) ≤ ε ∧ LB(x) ≤ ε} (29)

FPε := {x : MAP (x) > ε ∧ LB(x) ≤ ε} (30)

r =
#TPε

#(TPε ∪ FPε)
(31)

then, each bar of Figure 8 represents the value r expressed
by Equation (31).

Further Robustness Evaluation
As it can be observed from Figure 9, for the case of 32x32
inputs we noted the same relative drop of accuracy of the
other 1-Lipschitz models proposed in previous work.

6.0 6.5 7.0 7.5 8.0
1e 6+7.0710000000e 1

0

50000

De
ns

ity

i = 1 | j = 1

2 0 2 4 6
1e 6+1

0

25000

i = 1 | j = 2

0 2
1e 6+1

0

25000

i = 1 | j = 3

0 2 4
1e 6+1

0

25000

i = 1 | j = 4

0.25 0.50 0.75 1.00
1e 5+9.9999000000e 1

0

25000

i = 1 | j = 5

6.0 6.5 7.0 7.5 8.0
1e 6+7.0710000000e 1

0

50000
i = 2 | j = 2

2 1 0 1
1e 6+1

0

25000

i = 2 | j = 3

4 6 8 10
1e 6+9.9999000000e 1

0

25000

i = 2 | j = 4

0 2 4
1e 6+1

0

25000

i = 2 | j = 5

6.0 6.5 7.0 7.5 8.0
1e 6+7.0710000000e 1

0

50000
i = 3 | j = 3

2 1 0 1
1e 6+1

0

25000

i = 3 | j = 4

1 0 1 2
1e 6+1

0

25000

i = 3 | j = 5

6.0 6.5 7.0 7.5
1e 6+7.0710000000e 1

0

50000
i = 4 | j = 4

0 2 4 6
1e 6+1

0

25000

i = 4 | j = 5

6.0 6.5 7.0 7.5
1e 6+7.0710000000e 1

0

50000
i = 5 | j = 5

Last Layer
Orth
UPD

Figure 6: Empirical evaluation of the unitary gradient property for the UGNN model within 5 output classes. The plot in the
coordinate i, j represents the distribution of the euclidean norm of fi − fj for 512 random samples with Gaussian distribution.

(a) Normalized Inputs. UGNN with OPLU and upd. (b) Normalized Inputs. UGNN with OPLU and upd.

(c) Raw Inputs (not normalized). UGNN with MaxMin and orth. (d) Raw Inputs (not normalized). UGNN with MaxMin and orth.

Figure 7: MAP estimation among models without box constraints. For the empirical MAP computation, we used IP (a, c) for
the Box-Unconstrained case and DDN for the constrained (b,d). Note that, in image (c), due to a failure in the IP algorithm
convergence, few samples (less than 20) reported a inconsistent MAP lower than expected.

Model LB/MAP #N B.C
ResNet9 (norm) .21±.042 7900 3
ResNet9 (raw) .34±.063 6669 3
LargeConvNet (norm) .36±.036 2148 3
LipConvNet5 (norm) .41±.060 7838 3
LargeConvNet (raw) .46±.057 7219 3
LipConvNet5 (raw) .58±.069 6911 3
UGNN+OPLU+updB (norm) .67±.129 7101 3
UGNN+Abs+updB (norm) .67±.129 7220 3
UGNN+OPLU+updU (norm) .67±.131 7281 3
UGNN+Abs+updU (norm) .67±.128 7244 3
UGNN+MaxMin+updU (norm) .67±.130 7311 3
UGNN+MaxMin+updB (norm) .69±.109 4386 3
UGNN+OPLU+updU (raw) .70±.090 7125 3
UGNN+OPLU+updB (raw) .70±.093 7098 3
UGNN+MaxMin+updB (raw) .71±.087 7114 3
UGNN+MaxMin+updU (raw) .71±.088 7118 3
UGNN+Abs+updB (raw) .71±.090 6960 3
UGNN+Abs+updU (raw) .71±.092 6940 3

ResNet9 (norm) .26±.036 7904 7
ResNet9 (raw) .44±.056 6663 7
LargeConvNet (norm) .44±.027 7933 7
LipConvNet5 (norm) .52±.031 7840 7
LargeConvNet (raw) .58±.046 2429 7
LipConvNet5 (raw) .74±.049 6912 7
UGNN+OPLU+updU (raw) .93±.101 6755 7
UGNN+OPLU+updB (raw) .95±.063 7102 7
UGNN+MaxMin+updU (raw) .95±.061 7127 7
UGNN+MaxMin+updB (raw) .95±.056 7117 7
UGNN+Abs+updB (raw) .95±.058 6965 7
UGNN+Abs+updU (raw) .95±.058 6949 7
UGNN+OPLU+updB (norm) .96±.046 7215 7
UGNN+Abs+updB (norm) .96±.049 7228 7
UGNN+OPLU+updU (norm) .96±.047 7282 7
UGNN+MaxMin+updU (norm) .96±.051 7316 7
UGNN+MaxMin+updB (norm) .96±.044 7327 7
UGNN+Abs+updU (norm) .96±.039 7247 7

Table 5: Further tests of the evaluation of the estimation of
the Minimal Adversarial Perturbation with many different
configurations. This is a improved version of Table 4

25/255 50/255 100/255 125/255 150/255
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
ca

ll

False Positive Analysis
UGNN
LargeConvNet
LipConvNet5
ResNet9

Figure 8: False-positive analysis

0.0 0.1 0.2 0.3 0.4 0.5
20

30

40

50

60

70

Ro
b.

 A
cc

ur
ac

y
[%

]
UGNN, Last Layer: upd

Models+Activ.
UGNN+Abs
UGNN+MaxMin
UGNN+OPLU

(a)

0.0 0.1 0.2 0.3 0.4 0.5

30

40

50

60

70

Ro
b.

 A
cc

ur
ac

y
[%

]

UGNN, Last Layer: orth/ 2
Models+Activ.

UGNN+Abs
UGNN+MaxMin
UGNN+OPLU

(b)

0.0 0.1 0.2 0.3 0.4 0.5
-certificate

0

20

40

60

Dr
op

. A
cc

ur
ac

y
[%

]

Models
UGNN
LargeConvNet
LipConvNet5
ResNet9

(c)

Figure 9: Accuracy of the ε-robust classifications for the
UGNN with unbounded upd (a) and bounded upd (b). Fig-
ure (c) instead shows the relative drop of accuracy for the
certifiable ε-robust classifications.

Architecture Code
Listing 2: UGNN implementation as torch.nn.Module used through all the experiments

1 class UGNN(nn.Module):
2 def __init__(self, conv, linear, activation, nclasses = 10, in_ch=3, unitary_pair_diff

=True):
3 super().__init__()
4 r’’’
5 The model takes input images of shapes in_ch x 2ˆk x 2ˆk and k >= 5
6 ’’’
7 assert in_ch in {1, 3}
8 # dimensions
9 self.in_ch = in_ch

10 self.nclasses = nclasses
11 self.activation = activation
12 self.conv = conv
13 self.linear = linear
14 self.depth = 5
15 self.feature_extraction = self.make_layers(kernel_size=3)
16 self.flatten = nn.Flatten()
17 self.fc = nn.Sequential(
18 self.linear(in_ch*4**(self.depth), 1024), self.activation(),
19 self.linear(1024, 512), self.activation(),
20)
21 if unitary_pair_diff:
22 self.last_fc = UnitaryPairDiff(512, nclasses)
23 else:
24 self.last_fc = nn.Sequential(
25 self.linear(512, nclasses),
26 Rescale())
27
28 def _last_block(self):
29 last_ch = self.in_ch*4**(self.depth-1)
30 layer = nn.Sequential(
31 self.conv(last_ch, last_ch, 3), self.activation(),
32 self.conv(last_ch, last_ch, 3), self.activation(),
33 nn.AdaptiveMaxPool2d((2, 2)),
34 nn.PixelUnshuffle(downscale_factor=2)
35)
36 return layer
37
38 def _inner_block(self, channels, kernel_size):
39 if channels % 2 != 0:
40 activation = Abs
41 else:
42 activation = self.activation
43 layer = nn.Sequential(
44 self.conv(channels, channels, kernel_size), activation(),
45 self.conv(channels, channels, kernel_size), activation(),
46 nn.PixelUnshuffle(downscale_factor=2)
47)
48 return layer
49
50 def make_layers(self, kernel_size=3):
51 layers = list()
52 for idx in range(0, self.depth-1):
53 layers.append(self._inner_block(self.in_ch*4**idx, kernel_size))
54 layers.append(self._last_block())
55 return nn.Sequential(*layers)
56
57 def forward(self, x):
58 aux = self.feature_extraction(x)
59 aux = self.flatten(aux)
60 aux = self.fc(aux)
61 return self.last_fc(aux)

Listing 3: Implementation of the parameterized unitary pair difference (updU) layer
1 STEPS = 3
2 def pairdiff_loss(weight: torch.Tensor) -> torch.Tensor:
3 def _diff_matrix(m: int) -> torch.Tensor:
4 if m < 2:
5 raise ValueError
6 if m == 2:
7 return torch.Tensor([[1, -1]])
8 ones = torch.ones(m-1, 1)
9 eye = torch.eye(m-1)

10 A_prev = _diff_matrix(m-1)
11 zeros = torch.zeros(A_prev.shape[0], 1)
12 A_up = torch.cat((ones, -eye), dim=1)
13 A_low = torch.cat((zeros, A_prev), dim=1)
14 return torch.cat((A_up, A_low), dim=0)
15 T = _diff_matrix(weight.shape[0]).to(weight.device)
16 return ((T@weight).pow(2).sum(1) - 1).pow(2).mean()
17
18 def unitary_pairdiff_proj(weight: nn.Parameter) -> nn.Parameter:
19 from torch.optim import LBFGS
20 optimizer = LBFGS([weight])
21
22 def closure():
23 optimizer.zero_grad()
24 loss = pairdiff_loss(weight)
25 loss.backward()
26 return loss
27 for _ in range(STEPS):
28 optimizer.step(closure)
29 return weight
30
31 class UnitaryPairDiff(nn.Linear):
32 def forward(self, input: torch.Tensor) -> torch.Tensor:
33 if self.train:
34 self.proj_weight = unitary_pairdiff_proj(self.weight)
35 if not hasattr(self, ’proj_weight’):
36 with torch.no_grad():
37 self.proj_weight = unitary_pairdiff_proj(
38 self.weight)
39 return nn.functional.linear(input, self.proj_weight, self.bias)

	Introduction
	Related Work
	Signed Distance Classifier
	Binary Classifiers
	A Characterization Property
	Extension to Multi-Class Classifiers

	Unitary-Gradient Neural Networks
	Gradient Norm Preserving Layers
	Unitary Pair Difference Layers
	Unitary-Gradient Neural Network Architecture

	Experimental Results
	Accuracy Analysis
	MAP Estimation
	Certifiable Robust Classification

	Conclusion
	Gradient Norm Preserving Activation Functions
	Tensor-wise GNP activation functions

	Characterization of the Signed Distance Functions
	An example of non-affine Signed Distance Function

	Extension to Multi Class Signed Classifiers
	The PixelUnshuffle is a gradient norm preserving layer
	Parameterized Unitary Pair Difference Layer
	Unitary Gradient Neural Network
	The Unitary Gradient Property
	Certifiable Robust Classification through UGNNs

	Supplementary Experimental Material
	Further MAP Estimations Analysis
	Further Robustness Evaluation

	Architecture Code

