
Vol.:(0123456789)

Real-Time Systems (2023) 59:609–635
https://doi.org/10.1007/s11241-023-09402-4

1 3

Supporting AI‑powered real‑time cyber‑physical systems
on heterogeneous platforms via hypervisor technology

Edoardo Cittadini1 · Mauro Marinoni1 · Alessandro Biondi1 ·
Giorgiomaria Cicero1 · Giorgio Buttazzo1

Accepted: 16 June 2023 / Published online: 17 July 2023
© The Author(s) 2023

Abstract
The heavy use of machine learning algorithms in safety-critical systems poses seri-
ous questions related to safety, security, and predictability issues, requiring novel
architectural approaches to guarantee such properties. This paper presents an archi-
tecture solution that leverages heterogeneous platforms and virtualization technolo-
gies to support AI-powered applications consisting of modules with mixed critical-
ities and safety requirements. The hypervisor exploits the security features of the
Xilinx ZCU104 MPSoCs to create two isolated execution environments: a high per-
formance domain running deep learning algorithms under the Linux operating sys-
tem and a safety-critical domain running control and monitoring functions under the
freeRTOS real-time operating system. The proposed approach is validated by a use
case consisting of an unmanned aerial vehicle capable of tracking moving targets
using a deep neural network accelerated on the FGPA available on the platform.

Keywords Hypervisor-based architecture · FPGA acceleration · AI acceleration ·
Real-time application · Multi-domain application

 * Edoardo Cittadini
 edoardo.cittadini@santannapisa.it

 Mauro Marinoni
 mauro.marinoni@santannapisa.it

 Alessandro Biondi
 alessandro.biondi@santannapisa.it

 Giorgiomaria Cicero
 giorgiomaria.cicero@santannapisa.it

 Giorgio Buttazzo
 giorgio.buttazzo@santannapisa.it

1 Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

http://orcid.org/0000-0003-1714-8960
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-023-09402-4&domain=pdf

610 Real-Time Systems (2023) 59:609–635

1 3

1 Introduction

Modern cyber-physical systems (CPS), e.g., cars, aircrafts, advanced robots, and
drones, are characterized by an increasing complexity that calls for new technologies
and architectural solutions to guarantee predictability, safety, and security require-
ments. In addition, the increased level of autonomy specified for such systems
requires the adoption of artificial intelligence (AI) and, more specifically, machine
learning algorithms, which in turn imply heavy use of hardware acceleration to sat-
isfy the stringent real-time constraints imposed by the applications.

Unfortunately, however, today’s AI algorithms are not ready to be integrated in
mission-critical CPS, since their results cannot be always trusted and well-accepted
engineering methodologies to mitigate the problem are still missing. A promising
solution consists in coupling AI models with a set of classical algorithms that can
take over the control of the system whenever the outputs produced by AI are not
deemed safe, with the aim of bringing the system into fail-safe or fail-operational
conditions.

In such complex systems, at least two groups of software components can be
distinguished, being characterized by different sets of requirements and criticality
levels:

• Software components that require support from a rich execution environment
(e.g., based on the Linux operating system), like AI algorithms, acquisition and
processing stacks for complex sensors (as cameras and LiDARs), and high-speed
network communication services.

• Software components that require a high-integrity execution environment (e.g.,
powered by a real-time operating system), like low-level control functions,
safety-critical monitoring activities, and procedures to ensure fail-safe/fail-opera-
tional behavior.

The components belonging to the first group can be deemed not critical for safety
and security, provided that they are properly isolated from the critical ones belong-
ing to the second group. In this context, strong isolation is required to ensure that
non-critical components cannot affect the execution of critical ones, including the
guarantee that cyber-attacks and faults cannot propagate from the former to the
latter.

Isolation could be achieved by executing these software components on differ-
ent hardware platforms, e.g., reserving an independent platform to host the execu-
tion of critical software only. However, in several cases, as for battery-operated fly-
ing drones, such features have to be provided under stringent resource constraints,
imposing additional limitations in terms of space, weight, power, and cost (SWaP-
C). For this reason, a more appropriate solution is to host the execution of software
components with mixed and independent safety and security levels on the same
hardware platform. These systems are also referred to as mixed-criticality software
systems and can leverage hypervisor technology to enforce isolation as well as ena-
ble the execution of multiple operating systems on the same hardware.

611

1 3

Real-Time Systems (2023) 59:609–635

Mixed-criticality systems powered by hypervisor technology have been investi-
gated since many years from different perspectives, especially in domains such as
avionics (Gaska et al. 2011), aerospace (Crespo et al. 2009), and control (Crespo
et al. 2018). Farrukh and West (2022) proposed a hypervisor-based architecture for
combining a Linux domain with a real-time critical domain on the same platform
for a drone application, but no machine learning and hardware acceleration were
exploited. Scordino et al. (2020) presented a modular hypervisor-based platform for
industrial automation for integrating both real-time control code and software design
tools, but no AI algorithms and FPGA acceleration were employed.

Similarly, the challenges of achieving real-time performance in AI-powered
cyber-physical systems have been discussed and reviewed by several authors (Mus-
liner et al. 1995; Radanliev et al. 2020; Seng et al. 2021). For instance, Wang and
Luo (2022) presented a review on the optimal design of neural networks on FPGA
platforms. Ji et al. (2021) presented the implementation of a deep neural network for
real-time object detection and tracking on an embedded system based on an FPGA
Zynq platform. Sciangula et al. (2022) proposed an efficient method for accelerating
deep neural networks for autonomous driving applications on an FPGA-based SoC.
All these works, however, did not leverage hypervisor technology to integrate mixed
criticality components.

A conceptual hypervisor-based architecture for supporting the execution of com-
plex functionalities that are typical of AI-enabled CPS was proposed by Biondi et al.
(2020); however, to the best of our records, a practical solution that integrates the
acceleration of deep neural networks with real-time control on a single platform
using hypervisor technology is still missing.

1.1 Contribution

This work presents a concrete software architecture for supporting AI-enabled CPS
with mixed-criticality components. The proposed architecture targets heterogeneous
computing platforms that couple asymmetric multicores with programmable logic
(FPGA). It leverages hypervisor technology with strong isolation, hardware accel-
eration of AI algorithms implemented in programmable logic, and monitoring strat-
egies to take over the control of the system whenever non-critical software compo-
nents fail, are attacked, or produce results that are deemed unsafe. The architecture
is then specialized for the case of autonomous flying drones, showing how it can be
used to build a safe and secure tracking application.

1.2 Paper organization

The rest of the paper is organized as follows: Sect. 2 discusses some relevant related
work; Sect. 3 presents the general architectural approach; Sect. 4 describes how the
proposed architecture has been instantiated to a specific use case consisting of a vis-
ual tracking application performed by a drone; Sect. 5 reports some experimental
results; and, finally, Sect. 6 concludes the paper and presents some future work.

612 Real-Time Systems (2023) 59:609–635

1 3

2 State of the art

To the best of our records, there is no established approach in the literature for
developing AI-powered cyber-physical systems; rather, several architectural solu-
tions have been proposed by researchers in different contexts.

A classical approach to handle functions with different criticality requirements
consists in executing them on separate computing platforms, typically managed by
different operating systems that communicate through an external link, such as a
serial line, a CAN network, or an Ethernet bus. Examples of CPS that adopt this
approach are the Intel Ready-to-Fly (RTF) Drone (Intel Corporation), the Cube
Autopilot (CubePilot), and several solutions that leverage the Robot Operating Sys-
tem (ROS) (Gutiérrez et al. 2018) for drone autopilots (Liu et al. 2017) and autono-
mous cars (Reke et al. 2020). This approach, although practical, is not ideal for bat-
tery-operated systems with stringent requirements in terms of size, weight, power,
and costs (SWaP-C), because it tends to introduce duplicates of computational
resources and hardware components. Another problem with this approach is that the
communication between the two platforms requires additional devices, which are
generally slower than on-chip communication and also prone to faults and noise.

An alternative approach adopted, for instance, by the PX4 autopilot stack (Meier
et al. 2015) and the F1tenth autonomous car (O’Kelly et al. 2019), leverages the
Linux operating system to control devices using a standard POSIX API and execut-
ing real-time functions as high-priority threads. This solution has the advantage of
using a single hardware platform, at the risk of exposing the critical subsystem to
several threats related to safety, security, and timing predictability due to the lack of
strong isolation among different processes in Linux.

A partitioning operating system (OS) (e.g., LynxOS), despite its interesting capa-
bilities and suitability for supporting domain-specific standards such as ARINC-653
and AUTOSAR (see Leiner et al. 2007), does not properly solve these issues, espe-
cially because it typically supports software systems with limited heterogeneity.

The increasing demand for advanced features in embedded systems requiring the
need for a rich OS, such as Linux, combined with the need of guaranteeing safety,
security mechanisms, and real-time constraints, led to the adoption of hypervisor
technology as the most effective solution for supporting mixed-criticality software.

In AI-powered CPS, this solution allows isolating AI algorithms, which com-
monly call for the need of hardware acceleration managed by the rich OS, from the
critical functions, which can instead be handled by a real-time operating system. The
following subsections revise the literature related to hypervisor-based approaches
and hardware acceleration for deep neural networks.

2.1 Hypervisor‑based solutions

Type-1 hypervisors are considered a preferable choice for the proposed architecture
thanks to their small code base and better hardware control, which can guarantee
high levels of security, safety, and time predictability. Furthermore, Type-1 hyper-
visors are more capable of guaranteeing predictable virtualization-related latency

613

1 3

Real-Time Systems (2023) 59:609–635

(e.g., in response to interrupts), inter-domain communication, and scheduling of vir-
tual machines.

Several Type-1 hypervisors are available and some relevant research work has
been done to integrate them for executing specific CPS applications, which are
reviewed next. Klein et al. (2018) proposed a solution based on seL4 to separate
trusted and untrusted software in a UAV platform, focusing on the issue of guaran-
teeing security and isolation in the system. Almeida and Prochazka (2009) presented
a solution based on PikeOS (SYSGO) to provide safe and secure partitioning for
integrated modular avionics (IMA) in spacecraft applications. Craveiro et al. (2009)
proposed to use the partitioning features of ARINC 653 in Space Real-Time Operat-
ing System (AIR) for providing isolation in the development of aerospace systems,
but only for IA-32 and Sparc architectures. Pérez and Gutiérrez (2016); Pérez et al.
(2016) implemented a real-time publish-subscribe communication mechanism in
the Xstratum (Crespo et al. 2009) hypervisor integrating ARINC-653 with the Data
Distribution Service (DDS). Biondi et al. (2021) proposed a hypervisor-based archi-
tecture for safety-critical embedded systems providing both time/memory isolation,
security, real-time communication channels, as well as I/O virtualization to allow
different virtual machines to share the peripheral devices. Farrukh and West (2022)
proposed a hypervisor-based solution characterized by low overheads in accessing
resources. Their approach requires strict time guarantees for both domains, forcing
the execution of Linux on a single core with SCHED_DEADLINE (Lelli et al. 2016),
which is a viable solution in terms of real-time constraints, but can introduce several
limitations in the implementation of complex AI-based solutions.

2.2 Hardware acceleration

A peculiar feature of AI-powered cyber-physical systems is their massive compu-
tational workload for executing AI algorithms such as deep neural networks. The
most demanding functions of these algorithms need to be accelerated on specific
hardware, such as general-purpose graphics processing units (GPUs) or field-pro-
grammable gate arrays (FPGA), to satisfy real-time requirements.

Modern GPU-based heterogeneous platforms benefit from powerful and mature
software support to accelerate AI algorithms, which allows the user to significantly
contain the effort for achieving efficient implementations of tasks like object detec-
tion, image segmentation, and tracking. The acceleration frameworks for GPU-
based platforms also allow a developer to seamlessly use, with no or just a few mod-
ifications, the AI models available in frameworks such as Tensorflow, PyTorch, and
Caffe, even with the native parameters with floating-point precision.

On the other hand, when compared to FPGA-based platforms, GPU-based plat-
forms are very demanding in terms of power consumption and struggle in provid-
ing a high degree of time predictability for hardware acceleration. Their power
consumption can be one order of magnitude larger than the one required by FPGA-
based platforms (Sciangula et al. 2022; Qasaimeh et al. 2019). Furthermore, as
observed by Cavicchioli et al. (2017), GPU acceleration introduces highly variable

614 Real-Time Systems (2023) 59:609–635

1 3

delays that cannot easily be bounded a priori, also due to the contention occurring
on shared memory in the case of memory-intensive GPU tasks. As such, GPU-based
are not the ideal solution for battery-operated CPS such as drones.

Besides being characterized by less energy consumption, FPGAs provide a very
predictable execution behavior with respect to GPUs for hardware acceleration.

Two main approaches are used to accelerate deep neural networks by means
of FPGA technology:

1. The synthesis of a network-specific accelerator provides the best performance
but suffers from poor flexibility and scalability, especially for large networks. To
name one of the most relevant issues, this approach ends up in deploying repli-
cated logic that implements the same operation (e.g., convolutions) on different
data. Some tools provide IPs (e.g., HLS4ML Fahim et al. 2021; AMD Xilinx:
FINN) as standalone Verilog/VHDL entities, which can be later integrated into
more complex designs. Another relevant limitation of this approach is that the
generated IP must be entirely rebuilt every time there is any change in the net-
work.

2. A more flexible solution is to accelerate neural networks by means of a dedi-
cated softcore. For instance, Xilinx provides a Deep Learning Processor Unit
(AMD Xilinx: DPU) as a library component in the Vitis-AI environment (AMD
Xilinx: Vitis AI). Besides the evident benefits in terms of flexibility provided by
a network-agnostic accelerator such as the DPU, an advantage of this approach
is that a single DPU can concurrently accelerate multiple networks, while in the
other approach, the number of networks that can be accelerated is mainly limited
by the amount of FPGA resources (such as LUTs).

The main disadvantage of FPGAs is that they require a larger programming
effort than GPUs, especially when developing a network-specific accelerator.
Another restriction is the limited amount of FPGA resources that is available in
several embedded platforms, which calls for the usage of dynamic partial recon-
figuration (Biondi et al. 2016; Seyoum et al. 2021) of the FPGA at the cost of
additional delays when serving acceleration requests. Furthermore, as observed
by some authors (Vaishnav et al. 2018; Happe et al. 2015; Rupnow et al. 2009),
even without dynamic reconfiguration, sharing an FPGA among tasks managed
by a preemptive scheduling policy is not trivial, due to the significant amount of
time required to save the state of the device.

Fortunately, especially in the case of softcore accelerators such as the DPU,
compilation and optimization frameworks are available to drastically simplify
the deployment of accelerated neural networks. These frameworks employ prun-
ing and quantization (Zhou et al. 2017) of the network parameters to achieve an
efficient execution on the FPGA. The accuracy drop of these optimization pro-
cesses was found not to be significant in several application scenarios (Gholami
et al. 2022; Liang et al. 2021). The optimization algorithms dealing with the
conversion from floating point to integer values are indeed now efficient enough
to guarantee consistency in the transformation of the models from one platform

615

1 3

Real-Time Systems (2023) 59:609–635

to another (GPU to FPGA) (Ding et al. 2019). This makes FPGA-based MPSoCs
the ideal reference platform for resource-constrained embedded systems.

2.3 Limitations of previous work

The works reviewed in Sect. 2.1 share two main limitations: they are all tied to a
specific application and do not address the support of AI algorithms with hardware
acceleration. Furthermore, none of them investigated in details the usage of hypervi-
sor technology to implement fail-safe/fail-operational control algorithms. Further-
more, despite the benefits of FPGA acceleration highlighted in Sect. 2.2, none of the
works discussed in Sect. 2.1 considered this relevant technology.

This work advances the state of the art by presenting a general architecture for
autonomous CPS that leverages FPGA-based embedded platforms. The performance
and capabilities of the presented architecture are then evaluated for a visual tracking
application implemented by an autonomous drone, putting particular emphasis on
the role of the architecture in the development of fail-safe/fail-operational control
algorithms.

3 System architecture

The proposed architecture is composed of two isolated execution domains (i.e.,
virtual machines): a non-critical, high-performance domain running a rich general-
purpose operating system (GPOS) and a critical domain running a real-time oper-
ating system (RTOS). The two domains can communicate, depending on the task
they have to perform, using a set of services provided by the hypervisor. This solu-
tion has the advantage of supporting all those embedded real-time applications that
require the use of a GPOS for implementing complex high-level functions, includ-
ing AI algorithms, but also needs to guarantee safety, security, and real-time perfor-
mance requirements for a subset of safety-critical functions.

In the proposed architecture, the GPOS serves the purpose of handling high-level
tasks (e.g., rich communication stacks, processing of high-performance sensors such
as RGB/depth cameras and 3D LiDARs, application frameworks, inference of neu-
ral networks) that typically lack support in real-time operating systems or present
a complexity that could jeopardize the stringent requirements of critical activities.
Hypervisor-assisted health monitors are provided to detect and stimulate reactions to
software faults or cyber-attacks.

The architecture also exploits hardware acceleration, implemented on FPGA by
means of a machine-learning-specific accelerator, to speed up computations and
offload CPUs, thus allowing the computing system to perform other tasks in paral-
lel, increasing throughput while reducing latencies. On the other hand, the RTOS
domain takes care of low-level control, actuation commands, validation, and safety
monitoring, directly communicating with the hardware. Note that these tasks may be
possibly related to safety-critical functions.

616 Real-Time Systems (2023) 59:609–635

1 3

Finally, the FPGA can also be used to deploy ad-hoc devices, with the result of
increasing execution predictability, reducing overhead, and helping satisfy SWaP-C
constraints by limiting the use of external devices.

The hypervisor allows enabling the co-existence of one or more GPOS and RTOS
domains on the same platform and, most importantly, is required to ensure strong
isolation between the two domains to guarantee high degrees of safety, security,
and time-predictability for the critical domain. If some of the physical resources are
shared across different domains, the hypervisor uses a scheduling policy based on
time budgets to regulate accesses.

The health monitor is split between the two domains. The first component is
placed in the GPOS domain to observe the correct execution of both the OS and the
application, and sends updates to the critical domain through dedicated channels in
the communication layer provided by the hypervisor. The second element is located
in the RTOS domain alongside the critical application to validate the information
received, the freshness of incoming data, and their correctness. Such a monitor is
useful to check whether the received input values are safe to be used, otherwise they
will be replaced with others produced in the critical domain by a simpler but more
robust algorithm.

The proposed architecture can be specialized according to the requirements of
the system in which it has to be used. After surveying today’s technologies with the
purpose of developing autonomous systems with limited energy budgets, the archi-
tecture was specialized by adopting the following components:

• ZCU104 board by Xilinx/AMD, equipped with an Ultrascale+ MPSoC
(XCZU7EV);

• Xilinx/AMD DPU accelerator (DPUCZDX8G) to be deployed onto the FPGA
fabric of the Ultrascale+;

• CLARE-Hypervisor by (Accelerat: The CLARE Software Stack);
• Linux operating system for the non-critical, high-performance domain; and
• FreeRTOS as the real-time operating system for the critical domain.

The ZCU104, although conceived as a development board, allows matching SWaP-
C constraints for several target applications, at least in their prototype stage. At the
same time, the amount of FPGA resources available in the MPSoC installed on the
ZCU104 allows deploying peripherals that are missing in the board, with a signifi-
cant speed-up and flexibility in the hardware setup. Finally, the Deep Learning Pro-
cessor Unit (DPU) by Xilinx is notably the most mature solution to date to acceler-
ate AI algorithms using FPGA technology, relieving the designer from synthesizing
DNN-specific accelerators and enabling the acceleration of multiple DNNs with the
same FPGA design.

CLARE-Hypervisor (Accelerat: The CLARE Software Stack) follows a static
approach with offline configurations and optimizations to allocate the platform
resources to domains. Furthermore, it provides unique isolation and security fea-
tures that make it an excellent choice for developing mixed-criticality CPS applica-
tions. It has been designed to explicitly support modern heterogeneous platforms,
such as GPGPU- and FPGA-based MPSoC, to safely and securely control their

617

1 3

Real-Time Systems (2023) 59:609–635

computational resources. CLARE-Hypervisor also provides multi-domain virtual-
ization of the FPGA area, enabling strong isolation also for PL components such as
hardware accelerators.

Linux has been selected as GPOS for its extensive support for peripherals drivers,
communication stacks, and modern AI frameworks.

FreeRTOS has been selected as RTOS because its execution model is suitable for
timing analysis and, because of its diffusion, it includes a rich set of drivers for low-
level devices.

The resulting specialized architecture is illustrated in Fig. 1.

4 The case for autonomous drones

This section describes how the architecture presented in Sect. 3 can be used to
implement an AI-powered visual tracking application on a quadcopter drone
equipped with an inertial measurement unit (IMU), a camera for object tracking, and
two directional LiDAR sensors for obstacle detection, one pointing forward and one
backward.

Fig. 1 Illustration of the proposed specialized architecture

618 Real-Time Systems (2023) 59:609–635

1 3

The overall block diagram of the multi-domain application that controls the drone
is illustrated in Fig. 2, which also distinguishes the functions executed in the Linux
domain (blue blocks) from those running in the critical domain (orange blocks). In
particular, the ARMv8 processing system is divided across domains, so that three
out of four cores are assigned to the Linux domain, while the remaining one is
assigned to the freeRTOS domain. The figure also highlights with a double border
the modules that are either entirely implemented in FPGA or leverage the FPGA to
accelerate some functions.

The main task of the Linux domain is the inference of a deep neural network
(DNN) for real-time multiple object tracking using a strategy derived from Deep-
SORT (Wojke et al. 2017) and BYTEtrack (Zhang et al. 2021). The generated
bounding boxes, paired with a unique ID of the object, are used to compute a set-
point for the low-level drone controller running in the critical domain. In this con-
text, support for hardware acceleration is essential to achieve acceptable perfor-
mance, because all state-of-the-art neural trackers generate a significant workload
that has to be executed in real-time (normally at the camera frame rate). Table 1
summarizes the main functions that compose the system.

4.1 Devices synthesized on the FPGA

The FPGA is used to synthesize a number of devices that are assigned to the vir-
tual machines by the hypervisor. In particular, each device is exclusively assigned

Fig. 2 Function diagram of the multi-domain application that controls the drone

619

1 3

Real-Time Systems (2023) 59:609–635

Table 1 Application functions

Function Name Domain FPGA support Description

Image acquisition Linux No It captures a frame from the camera
Pre-processing Linux No It adapts the image to the size required by

YOLOv3 for the inference
YOLOv3 Inference Linux Yes It uses the DPU to accelerate YOLOv3 runtime
Post-processing Linux No It computes the bounding boxes of the detected

objects
Object tracking Linux No It solves the assignment problem and manages

tracklets
Setpoint generation Linux No It computes the position setpoint for the low-

level controller
Heartbeat generation Linux No It sends a control signal notifying the health of

Linux
Heartbeat validation freeRTOS No It checks the heartbeat signal to detect Linux

faults
Backup controller freeRTOS No It performs a backup routine
LiDAR processing freeRTOS Yes It reads the LiDARs and sends data to the low-

level controller
Low-level controller freeRTOS No It keeps the drone at a given safety distance

from a possible obstacle
Radio acquisition freeRTOS Yes It reads the radio data from the PPM decoder
IMU processing freeRTOS Yes It reads the sensors and computes angular rates

and attitudes
Flight controller freeRTOS No It performs a PID control to stabilize the drone
Motor mixer freeRTOS Yes It computes the motor data from the trust pro-

vided by the flight controller

in a pass-through way to one domain only, while the hypervisor is responsible for
providing strong isolation. In particular, the Xilinx DPU device is accessible by the
Linux domain, while all the other devices are assigned to the critical domain. All
custom devices synthesized on the programmable logic are described in the follow-
ing list:

1. DPU: The Deep Learning Processor Unit (DPU) is a softcore provided by Xilinx
to efficiently accelerate the inference of deep neural networks.

2. Radio decoder: It takes the pulse position modulated (PPM) signal from the radio
receiver, decodes it, and puts the corresponding digital values in a set of registers.
Without the help of specialized hardware, PPM signals would have to be managed
in software using, for instance, GPIOs configured to raise interrupts at each edge
in the signal to process it. This may easily lead to poor performance and excessive
interference on the processors due to the service of interrupts and the consequent
context switches. The use of a dedicated FPGA component to handle the PPM
signal of the radio receiver hence relieves the processors from this burden and
reduces the corresponding overhead and jitter.

620 Real-Time Systems (2023) 59:609–635

1 3

3. I2C device: The ZCU104 board allows exposing an I2C peripheral working with
1.8 V logic levels, while the adopted IMU works with 3.3 V logic levels. To avoid
introducing third-party electronics to adapt the logic levels (e.g., using a voltage-
level translator), an AXI-based 3.3 V I2C master device to be deployed on FPGA
was developed.

4. UART device: A custom AXI-based UART peripheral to be deployed on FPGA
was developed for the same reasons mentioned above, given that the adopted
LiDAR works with 3.3 V logic levels.

5. PWM driver: It is used to generate pulse width modulation (PWM) signals to
drive the drone motors. Although the Ultrascale+ MPSoC allows generating
PWM signals by means of triple timer counters (TTC), a specialized FPGA mod-
ule was developed for the sake of simplicity and flexibility.

Efficient implementations of the drivers for the above peripherals, except the DPU,
were performed from scratch to offload the CPU as much as possible, as well as
minimize execution time variability and the number of memory accesses.

4.2 Inter‑domain communication channels

The two domains exchange data by means of two non-blocking communication
channels based on shared-memory regions provided by CLARE, where the Linux
domain acts as a producer and the critical one as a consumer. The channels are
accessed by means of a middleware (available for both Linux and FreeRTOS) that
does not require the intervention of the hypervisor at each access and ensures wait-
free synchronization in the presence of concurrent accesses. The first channel is
used to exchange setpoints for the drone controller, whereas the second one is used
to transmit heartbeat packets for health monitoring.

4.3 Linux domain

The Linux domain is responsible for visual tracking and navigation. It includes four
tasks, namely Camera, Detector, Tracker, and HB generator. Details on
these tasks are reported in Table 2.

The Camera task periodically captures a new frame from the camera and puts
it in a queue of frames ready to be processed. The Detector task performs object
detection by accelerating the inference of a YOLOv3 (Redmon and Farhadi 2018)
deep neural network on the Xilinx DPU. The YOLOv3 model was trained on the
cityscape dataset (Cordts et al. 2015), using a Darknet-53 backbone, modified (with
respect to the standard implementation) to process an extra output from the pyrami-
dal feature extraction stage, to improve its performance.

To be executed on the DPU, the neural model was quantized (transforming its
weights from 32-bit floating point values to 8-bit integer values) and pruned (remov-
ing the parameters with less contribution) to reduce the memory footprint and
the amount of operations to be executed by the accelerator. The model was then

621

1 3

Real-Time Systems (2023) 59:609–635

compiled to generate DPU-specific instructions to speed up the inference. This pro-
cess was performed by means of Xilinx’s Vitis AI.

Besides the inference, a YOLOv3 model requires a pre-processing and a post-
processing stage. In particular, the pre-processing stage takes a frame from the
Ready-frame queue, rescaling and normalizing it to the YOLOv3 input size (512×
256×3). The post-processing stage derives all bounding-box coordinates, executes
the Non-Maximum Suppression algorithm, and inserts the result into a queue to be
processed by the Tracker task. The purpose of the Object Tracking function is
to predict (by a Kalman filter) the position of a tracked object to keep identifying it
even when it is missed by the object detector. The coordinates of the tracked target
are then used to compute the setpoint to be sent to the critical domain.

The minimum, average, and maximum observed execution times of the functions
involved in the object detection pipeline are reported in Table 3.

The execution times reported in Table 3 have been measured by a performance
counter for a time interval of 20 min, running each task in isolation to prevent inter-
ference from higher priority tasks. As clear from the results, the pre-processing and
post-processing functions represent the major bottleneck in achieving real-time per-
formance. To overcome this problem, all three functions performing object detection
were implemented as a concurrent multi-thread pipeline, as illustrated in Fig. 3.

The number of parallel threads has been set equal to the number of cores assigned
to the Linux domain (three, in our setup), with the benefit of increasing the through-
put from 16 to 27 frames per second (FPS). Note that the tracking function cannot
be parallelized, because the position of the tracked objects depends on the computa-
tions related to the previous frame.

The HB generator task is responsible for the health monitoring activities
within the Linux domain. It periodically produces two heartbeat timestamps, report-
ing the health of the Linux system and the application. The system-level timestamp
is updated each time this task is executed, while the application-level timestamp is
updated every time a new setpoint is generated by the Tracker task.

Table 2 Linux application-level
task set. Priority value ranges
between 1 and 99, where higher
values correspond to a higher
priority

Task Name Period (ms) Priority Called functions

Camera 34 14 Image acquisition
Detector 36 10 Pre-processing

YOLOv3 inference
Post-processing

Tracker 34 12 Object tracking
Setpoint generation

HB generator 4 16 Heartbeat generation

Table 3 Execution times of the
functions involved in the object
detection pipeline

Function Name Min (ms) Avg (ms) Max (ms)

Image pre-processing 24.47 25.48 31.84
YOLOv3 DPU inference 8.52 8.93 9.36
Post-processing 27.43 30.69 35.53

622 Real-Time Systems (2023) 59:609–635

1 3

4.4 Critical (FreeRTOS) domain

The critical domain is composed of four tasks, whose periods and priorities are
reported in Table 4, while execution times are reported in Table 5.

Observed execution times of Table 5 were obtained using the same technique
adopted for Table 3.

The HB checker task periodically verifies the heartbeat values sent by the
HB generator to detect possible faults related to the Linux domain, notifying
the Safety module task when a fault is detected. The reaction time to a fault is
given by the period of this task multiplied by a user-defined parameter that indicates
the number of tolerable task executions without heartbeat updates.

The Backup controller task is responsible for handling an alternative set-
point generation when the fail-safe mode is activated. As shown in Table 5, the exe-
cution time of this task is significantly shorter than the others because, in the current
implementation, it simply keeps the quadcopter hovering in the position recorded
when the fault is detected. In general, however, this task could be used to implement
more complex actions, such as controlling the drone to perform a safe landing.

The Safety module task is responsible for producing the input to the flight
controller. If no fault is detected by the HB checker task, it reads the latest set-
point provided by the Linux application, otherwise, it switches to the Backup
controller as an alternative source of setpoints. The Safety module task
also performs high-level health monitoring functions related to the behavior of the
application, verifying that the provided set points are not jeopardizing designated
safety constraints. The current implementation reads LiDAR data and conducts an
additional control loop to keep the drone at a minimum user-defined distance from
possible obstacles on the path to the next waypoint.

The Flight Control task can work in two different modes, manual and AI-
driven, selected by a switch on the radio transmitter. In manual mode, the setpoint is
taken from the radio transmitter, while in AI-driven mode the setpoint is taken from
the Safety module task. In both cases, the Flight Control task reads the
IMU data and stabilizes the quadcopter using two hierarchical PID control loops.

Fig. 3 Diagram of the multi-thread pipeline used for object detection and tracking

623

1 3

Real-Time Systems (2023) 59:609–635

The inner loop controls the angular rates, while the outer loop controls the quad-
copter attitude. Finally, the outputs generated by the Flight controller are sent to the
Motor mixer for actuation.

5 Experimental results

This section reports some experiments aimed at showing how the proposed multi-
domain architecture can effectively be implemented with a negligible impact on the
overall performance, with respect to an implementation without a multi-domain design.

5.1 Experimental setup

The vehicle used for the implementation is an F450 class quadcopter with four 1045
propellers controlled in the X standard configuration. Figure 4 shows the block
diagram of the Xilinx ZCU-104 Ultrascale+ MPSoC configuration used for our
application.

The camera is a Logitech HD Pro C920, which natively provides frames with a
resolution of 320×240, which is the closest one to the input size of the adopted neu-
ral network. The IMU is an MPU-9250, a 9-DOF inertial device with gyroscopes,
accelerometers, and magnetometers that communicates with the system using a 3.3
V I2C device (set in Fast mode to work with 400 kHz clock) implemented inside the

Table 4 FreeRTOS task set. Priority value ranges between 0 and 99, where higher values correspond to
a higher priority

Task Name Period (ms) Priority Called functions

HB checker 4 4 Heartbeat validation
Safety module 10 1 LiDAR processing

Low-Level controller
Setpoint switch

Flight control 4 2 Flight controller
IMU processing
Radio acquisition
Motor mixer

Backup Controller 4 3 Backup Controller

Table 5 Execution times of the
FreeRTOS tasks

Task Name Min (�s) Avg (�s) Max (�s)

HB checker 10 11 35
Safety module 338 349 351
Flight control 437 438 450
Backup Controller 0.062 0.08 0.126

624 Real-Time Systems (2023) 59:609–635

1 3

FPGA programmable logic. Additionally, this device has a configurable filter that
can be used to reduce noise and improve communication reliability.

The radio receiver also takes advantage of FPGA acceleration. It uses the custom
AXI peripheral we designed to handle the PPM external interrupts (EXTI line) to
offload the CPU from the interrupt service routine and reduce interferences and jitter
on the control task.

LiDARs communicate through a dedicated UART implemented in FPGA with a
baud rate of 115,200 bit/s. Although it is possible to generate PWM signals using
the hardware timers provided by the processing system, we built our custom PWM
peripheral to be completely independent from the CPU, ensuring exclusive access
by the RTOS domain using a dedicated driver.

The Electronic Speed Controllers (ESCs) used in the quadcopter are the BL-Heli,
which accept PWM pulses from 50Hz (legacy PWM) to 12KHz (OneShot-42 proto-
col), so they can perfectly handle the 250Hz PWM signal of the custom HLS periph-
eral. The Racestar 980 KV brushless motors are paired with the 1045 propellers and
can provide a thrust of 3.2 kg.

Fig. 4 Hardware platform application diagram

625

1 3

Real-Time Systems (2023) 59:609–635

The Xilinx DPU is the most complex and resource-demanding FPGA device
required by the application because it uses a very large portion of LUTs in the pro-
grammable logic region and almost all the marginal resources of the board, like Dig-
ital Signal Processors (DSP), Block RAM (BRAM), and Ultra RAM (URAM), as
reported in Table 6.

Note that the design occupies less than half of the available resources. This
choice is motivated by the fact that, in the next future, the complete application
will be moved to the Kria K26 SOM, with an ad-hoc carrier board to further reduce
weight and consumption, but its SoC contains half of the resources available on the
XCZU7EV-2FFVC1156 powering the ZCU104 board.

This specific setup led to the power specifications reported in Fig. 5. How it can
be seen from the figure, the major source of power consumption resulted to be the
dynamic one in PL due to the DPU runtime and the intense switching activity it
involves.

The battery selected as a power source for the system is a 3300 mAh 4 S LiPo,
which is sufficient to guarantee the maximum power consumption specified in
Fig. 5. In fact, it can always provide a sufficient voltage/current to the D36V50F12
voltage regulator to maintain it in its optimal operating spot and a stable power rail
of 12 V with a maximum load current of 4.5 A. The maximum payload of the quad-
copter resulted be 1.5 kg in this specific configuration. Additionally, the external
devices connected to the platform present the following power specifications. The
Racestar BR2212 motor datasheet reports that, applying a Voltage of 11.1 V, each
motor paired with 1045 propellers (the ones we used) absorbs a maximum current
of 10.6 A, for a total maximum current of 10.6 × 4 = 42.4 A. The Fs-iA6 radio
receiver, supplied with a voltage between 4 and 6.5 V, has a maximum power con-
sumption no higher than 520 mAh. The power consumption of the MPU-9250 is
quite low, since it must be supplied with a voltage of 3.3 V and reaches 3.7 mA
when all three sensors (gyroscope, accelerometer, and magnetometer) are powered
on. Each directional LiDAR works with an input voltage between 3.7 V and 5.2 V,
absorbs an average current less or equal to 70 mA, a peak current of 150 mA, and a
total power of less than 0.35 W. In this setup, we used two of these sensors.

Table 6 Utilization of FPGA
resources

Resource Utilization Available Utilization %

LUT 50966 230400 22.12
LUTRAM 5741 101760 5.64
FF 102121 460800 22.16
BRAM 107 312 34.29
URAM 40 96 41.67
DSP 690 1728 39.93
IO 22 360 6.11
BUFG 4 544 0.74
PLL 1 16 6.25

626 Real-Time Systems (2023) 59:609–635

1 3

5.2 Object detection

In this experiment, the execution behavior of the Detector task has been ana-
lyzed both on the multi-domain system and the Petalinux default flow, to evaluate
the impact of the hypervisor. For the sake of fairness, since the multi-domain imple-
mentation allocates three out of four available cores to Linux, the measures in the
configuration without hypervisor have been performed by turning one core off for
the Linux application. Furthermore, in the multi-domain implementation, the core
running FreeRTOS was programmed not to generate traffic on the bus to avoid extra
memory access conflicts, which would cause a performance degradation not due to
the hypervisor.

Figure 6 shows the frame rate distribution of the object detector task under the
configuration without hypervisor (red bars) and with hypervisor (blue bars). The
part of the plot in purple color represents the overlapping portion of the two histo-
grams. The smoother envelopes of the two histograms are also shown with the corre-
sponding colors. As clear from the plot, the two histograms almost overlap, meaning
that the hypervisor introduces negligible overhead and does not degrade the overall
system performance significantly. On the other hand, the hypervisor allows isolating
the two execution domains, preventing malicious attacks carried out on the Linux
domain to propagate and affect the critical functions running in the RTOS domain.

In another test, the object detection performance resulting from a 3-core configu-
ration with hypervisor has been compared with the one achievable on the full ZCU-
104 without hypervisor, that is, assigning all four cores to Linux. The results are

Fig. 5 Xilinx Ultrascale+
MPSoC power report

627

1 3

Real-Time Systems (2023) 59:609–635

illustrated in Fig. 7, which shows that, by allocating one extra core to Linux, the
average frame rate of the object detection task increases from 27.5 FPS to 29.6 FPS.

Note that, in the 4-core configuration, the object detection pipeline uses four par-
allel threads to match the number of physical cores available on the platform. As
expected, this leads to a performance increase, but the observed improvement is not
significant, since the processing pipeline is constrained by the acquisition rate of the
camera (30 FPS), which limits the benefit of the increased HW and SW parallelism.

Viewed from another angle, the results reported in Fig. 7 show that the two-domain
architecture enabled by the hypervisor does not significantly degrade the performance,
with respect to a full platform configuration, but certainly provides other relevant advan-
tages in terms of time predictability and security for the critical components of the system.

5.3 Application‑level end‑to‑end delays

This section reports on two experiments aimed at showing the time it takes for the
generated data to be propagated from one domain to the other. Since this operation
involves a data exchange between two very different operating systems, the com-
munication latency depends on different factors. In particular, from the moment in
which the data is written by Linux into the shared memory, three factors come into
play: (i) the period of the consumer task running in the FreeRTOS domain, (ii) the
time at which this task is scheduled by FreeRTOS, and (iii) the interference experi-
enced by the consumer from the other tasks, which depends on the assigned priori-
ties and the task execution times.

Fig. 6 Frame rate distributions for the Detector task on a 3-core configuration without hypervisor (red
bars) and with hypervisor (blue bars)

Fig. 7 Frame rate distributions for the Detector task on a 3-core configuration with hypervisor (blue
bars) and on a 4-core configuration without hypervisor (red bars)

628 Real-Time Systems (2023) 59:609–635

1 3

Figure 8 illustrates a possible interleaving of the producer and consumer tasks,
where the delay is significant. In the figure, the message is sent by the producer at
time t

1
 , it is delivered to the other domain at time ta , and finally consumed at time

t
2
 . As it can be seen, the overall end-to-end delay (t

2
− t

1
) is given by the sum of the

channel latency (Lc), the activation interval (Ac), the interference of the high-prior-
ity tasks (Ihp), and the computation time of the consumer task (Cc). Since the chan-
nel latency is always below one microsecond and the execution times of FreeRTOS
tasks are in the order of a few hundred microseconds, the major contribution to the
end-to-end communication delay is due to the period of the consumer task, which is
in the order of milliseconds.

The best-case situation for the end-to-end communication delay is illustrated in
Fig. 9, where the consumer task is executed just after the message is delivered to the
FreeRTOS domain. In this case, the end-to-end delay is in the order of a few hun-
dred microseconds.

The end-to-end delay measurements performed in this experiment confirm the
observations reported above. Figure 10 shows the distribution of the end-to-end
delay for the setpoint communication, measured over one hour of continuous execu-
tion from the time the setpoint is generated in Linux to the time it is read in FreeR-
TOS by the Safety module task, which has a period of 10 ms and the lowest
priority.

As expected, the maximum observed delay resulted to be 9.5 ms (close to the
period of 10 ms assigned to the Safety module task), whereas the minimum
observed delay resulted to be 890 � s, due to the sum of its own execution time and
the suffered interference from some higher priority task.

Figure 11 shows the distribution of the end-to-end delay from the time the heart-
beat is generated in Linux to the time it is received in FreeRTOS.

In this case, the maximum observed delay resulted to be of 3.74 ms (close to the
period of 4 ms of the HB checker task), whereas the minimum observed delay
resulted to be of about 303 � s, shorter than the other, because the HB checker
task has the highest priority and cannot suffer interference from the other tasks.

Fig. 8 Example of task interleaving characterized by a long end-to-end delay. In this case, the delay is
mainly dominated by the activation interval Ac , which has the same order of magnitude of the consumer
period Tc (ms), whereas the channel latency Lc , the interference Ihp from the high-priority tasks, and the
consumer computation time Cc are at least two orders of magnitude smaller

629

1 3

Real-Time Systems (2023) 59:609–635

5.4 Fault reaction time

A final experiment was carried out to measure the latency of the fail-safe procedure
triggered by a system fault. For this specific test, the drone is programmed to track
a target by controlling only the yaw angle. Hence, Fig. 12 reports the variation of
the yaw angle during a tracking operation, when the backup controller is invoked to
keep the drone in a safe state after a system fault is injected in Linux.

In this experiment, the system heartbeat validation threshold was set to 3, mean-
ing that the HB checker task can tolerate 3 readings of heartbeat data in the Fre-
eRTOS domain without detecting an update. Note that, since the period of the HB

Fig. 9 Example of task inter-
leaving characterized by a short
end-to-end delay. It is mainly
caused by the channel latency Lc
and the execution time Cc of the
consumer task

Fig. 10 Setpoint transmission delay

Fig. 11 Heartbeat transmission delay

630 Real-Time Systems (2023) 59:609–635

1 3

checker is set to 4 ms and the threshold is 3, the expected delay to detect a fault
is between 8 and 12 ms. In Fig. 12, the measured delay is represented by the pur-
ple arrow between the two vertical red dashed lines, denoting the transient interval
between the normal functioning and the fail-safe mode.

In this test, the fault has been injected in Linux after 6.235 s from the beginning
of the plot and the backup controller took place at t = 6.245 seconds, that is, after
about 10 ms. The orange horizontal line highlights the yaw angle recorded when the
fail-safe mode was enabled. In this implementation, the backup controller has been
programmed to keep the yaw angle to that reference value.

The plot shows that, when the backup controller was activated, the yaw angle was
36.3◦ and the flight controller acted to keep the yaw angle at this reference value,
while simultaneously keeping both pitch and roll angles at 0◦ (hovering). Notice that
a little overshoot occurs in most cases, since the yaw PID controller is the one with
less authority over the physical system. In fact, yaw actuation is generated by differ-
ences in motor torques, while pitch and roll are generated by changing thrusts, so the
faster the control (larger gains) the higher the overshoot to be compensated. This can
be observed in the figure after the second red line, when the angle continues increas-
ing for a few milliseconds, after which it converges to the reference angle recorded
at the fail-safe activation. This behavior is caused by the system dynamics rather
than by a delay in the execution of the flight control task.

Note that, without the fail-safe mechanism, the drone would no longer receive
a setpoint and therefore would continue to apply the last valid setpoint received,
thus keeping rotating around itself. In a more complex use case involving multiple
degrees of freedom, this situation would inevitably lead to dangerous consequences.

6 Conclusions

This paper presented a fully functional implementation of a multi-domain archi-
tecture for running software components of different criticality and performance
requirements on a single heterogeneous platform. The architecture has been imple-
mented on a Xilinx ZCU104 MPSoc to perform AI-based visual tracking on a drone.

Fig. 12 Reaction time for the
Backup controller to a system
fault

631

1 3

Real-Time Systems (2023) 59:609–635

The CLARE-Hypervisor (Accelerat: The CLARE Software Stack) has been used to
realize two isolated execution domains: one powered by Linux, responsible for image
acquisition, object detection, and AI-based tracking, and one powered by FreeRTOS,
responsible for running more critical tasks as the low-level control of the drone.

The results presented in Sect. 5 confirm that the proposed approach is effective
to achieve both high timing predictability, needed for guaranteeing a real-time per-
formance, as well as a contained power consumption, essential to save energy in
battery operated cyber-physical systems. An example of hypervisor-assisted health
monitoring was demonstrated in the context of the studied application to trigger fail-
safe routines to bring the drone in a safe state when a fault is detected.

To evaluate the improvement of the proposed solution in more complex scenar-
ios, the ZCU104 board will be replaced with a Kria K26 SOM paired with an ad-
hoc carrier board to better fit the SWaP-C requirements of drone systems.

Acknowledgements This work has been partially supported by the Italian Ministry of University and
Research (MUR) under the SPHERE project funded within the PRIN-2017 framework (Grant No.
93008800505) and the VIRMA project funded by the EU PNRR plan with DM-737/2021.

Funding Open access funding provided by Scuola Superiore Sant’Anna within the CRUI-CARE
Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Accelerat: The CLARE Software Stack. https:// accel erat. eu/ clare
Almeida J, Prochazka M (2009) Safe and Secure Partitioning with Pikeos: Towards Integrated Modular

Avionics in Space. In: Proceedings of DASIA 2009 Data Systems in Aerospace, p. 27
AMD Xilinx: DPU - Deep Learning Processing Unit. https:// www. xilinx. com/ produ cts/ intel lectu al- prope

rty/ dpu. html
AMD Xilinx: FINN Framework. https:// xilinx. github. io/ finn/
AMD Xilinx: Vitis AI - Adaptable and Real-Time AI Inference Acceleration. https:// www. xilinx. com/

produ cts/ design- tools/ vitis/ vitis- ai. html
Biondi A, Nesti F, Cicero G, Casini D, Buttazzo G (2020) A Safe, Secure, and Predictable Software

Architecture for Deep Learning in Safety-Critical Systems. IEEE Embedded Systems Letters
12(3):78–82

Biondi A, Casini D, Cicero G, Borgioli N, Buttazzo G, Patti G, Leonardi L, Bello LL, Solieri M, Bur-
gio P, Olmedo IS, Ruocco A, Palazzi L, Bertogna M, Cilardo A, Mazzocca N, Mazzeo A (2021)
Sphere: a multi-soc architecture for next-generation cyber-physical systems based on heterogeneous
platforms. IEEE Access 9:75446–75459

Biondi A, Balsini A, Pagani M, Rossi E, Marinoni M, Buttazzo G (2016) A Framework for Supporting
Real-Time Applications on Dynamic Reconfigurable FPGAs. In: Proc. of the IEEE Real-Time Sys-
tems Symposium (RTSS 2016), Porto, Portugal

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://accelerat.eu/clare
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
https://xilinx.github.io/finn/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html

632 Real-Time Systems (2023) 59:609–635

1 3

Cavicchioli R, Capodieci N, Bertogna M (2017) Memory Interference Characterization Between CPU
Cores and Integrated GPUs in Mixed-Criticality Platforms. In: Proc. of the 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA 2017)

Cordts M, Omran M, Ramos S, Scharwächter T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B
(2015) The Cityscapes Dataset. In: CVPR Workshop on The Future of Datasets in Vision

Craveiro J, Rufino J, Schoofs T, Windsor J (2009) Flexible Operating System Integration in Partitioned
Aerospace Systems. In: Actas do INForum - Simposio de Informatica, p 49–60

Crespo A, Balbastre P, Simó J, Coronel J, Pérez DG, Bonnot P (2018) Hypervisor-based multicore feed-
back control of mixed-criticality systems. IEEE Access 6:50627–50640

Crespo A, Ripoll I, Masmano M, Arberet P, Jean-Jacques M (2009) XtratuM: an Open Source Hypervi-
sor for TSP Embedded Systems in Aerospace. In: Proceedings of DASIA 2009 Data Systems in
Aerospace

Crespo A, Ripoll I, Masmano M, Arberet P, Metge JJ (2009) XtratuM: An open source hypervisor for
TSP embedded systems in aerospace. In: Data Systems In Aerospace (DASIA), Istanbul, Turkey
(May 26-29)

CubePilot: The Cube Autopilot. https:// www. cubep ilot. com/
Ding C, Wang S, Liu N, Xu K, Wang Y, Liang Y (2019) REQ-YOLO: A Resource-Aware, Efficient

Quantization Framework for Object Detection on FPGAs. arXiv: 1909. 13396
Fahim F, Hawks B, Herwig C, Hirschauer J, Jindariani S, Tran N, Carloni LP, Di Guglielmo G, Harris

P, Krupa J, Rankin D, Valentin MB, Hester J, Luo Y, Mamish J, Orgrenci-Memik S, Aarrestad T,
Javed H, Loncar V, Pierini M, Pol AA, Summers S, Duarte J, Hauck S, Hsu S-C, Ngadiuba J, Liu M,
Hoang D, Kreinar E, Wu Z (2021) hls4ml: an Open-Source Codesign Workflow to Empower Scien-
tific Low-Power Machine Learning Devices. arXiv. arXiv: 2103. 05579

Farrukh A, West R (2022) FLYOS: Integrated Modular Avionics for Autonomous Multicopters. In: 28th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2022)

Gaska T, Werner B, Flagg D (2011) Applying virtualization to avionics systems - the integration chal-
lenges. IEEE Aerospace and Electronic Systems Magazine 26

Gholami A, Kim S, Zhen D, Yao Z, Mahoney M, Keutzer K (2022) A Survey of Quantization Methods
for Efficient Neural Network Inference. Low-Power Computer Vision, p 291–326

Gutiérrez CSV, Juan LUS, Ugarte IZ, Vilches VM (2018) Towards a distributed and real-time framework
for robots: Evaluation of ROS 2.0 communications for real-time robotic applications. arXiv: 1809.
02595

Happe M, Traber A, Keller A (2015) Preemptive hardware multitasking in reconos. In: International
Workshop on Applied Reconfigurable Computing

Intel Corporation: Overview of Intel Ready to Fly Drone. https:// www. intel. it/ conte nt/ www/ it/ it/ suppo rt/
artic les/ 00002 3272/ drones/ devel opment- drones. html

Ji Q, Dai C, Hou C, Li X (2021) Real-time embedded object detection and tracking system in zynq soc.
EURASIP Journal on Image and Video Processing 21

Klein G, Andronick J, Fernandez M, Kuz I, Murray T, Heiser G (2018) Formally Verified Software in the
Real World. Communications of the ACM 61(10):68–77

Leiner B, Schlager M, Obermaisser R, Huber B (2007) A Comparison of Partitioning Operating Systems
for Integrated Systems. In: Computer Safety, Reliability, and Security. Springer, Berlin p 342–355

Lelli J, Scordino C, Abeni L, Faggioli D (2016) Deadline scheduling in the Linux kernel. Software: Pract
Exper 46(6):821–839

Liang T, Glossner J, Wang L, Shi S, Zhang X (2021) Pruning and quantization for deep neural network
acceleration: a survey. Neurocomputing 461:370–403

Liu M, Niu J, Wang X (2017) An autopilot system based on ros distributed architecture and deep learn-
ing. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp 1229–1234

LYNX Software Technologies: LynxSecure Embedded Hypervisor and Separation Kernel. http:// www.
lynx. com/ produ cts/ hyper visors/

Meier L, Honegger D, Pollefeys M (2015) Px4: A node-based multithreaded open source robotics frame-
work for deeply embedded platforms. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA), p 6235–6240

Musliner D, Hendler J, Agrawala A, Durfee E, Strosnider J, Paul CJ (1995) Challenges of real-time ai.
Computer 28:58–66

O’Kelly M, Sukhil V, Abbas H, Harkins J, Kao C, Pant YV, Mangharam R, Agarwal D, Behl M, Burgio
P, Bertogna M (2019) F1/10: An Open-Source Autonomous Cyber-Physical Platform. arXiv. arXiv:
1901. 08567

https://www.cubepilot.com/
http://arxiv.org/abs/1909.13396
http://arxiv.org/abs/2103.05579
http://arxiv.org/abs/1809.02595
http://arxiv.org/abs/1809.02595
https://www.intel.it/content/www/it/it/support/articles/000023272/drones/development-drones.html
https://www.intel.it/content/www/it/it/support/articles/000023272/drones/development-drones.html
http://www.lynx.com/products/hypervisors/
http://www.lynx.com/products/hypervisors/
http://arxiv.org/abs/1901.08567
http://arxiv.org/abs/1901.08567

633

1 3

Real-Time Systems (2023) 59:609–635

Pérez H, Gutiérrez JJ (2016) Handling heterogeneous partitioned systems through ARINC-653 and DDS.
Comput. Stand. Interfaces 50:258-268

Pérez H, Gutiérrez JJ, Peiró S, Crespo A (2016) Distributed architecture for developing mixed-criticality
systems in multi-core platforms. J Syst Soft 123:145–159

Qasaimeh M, Denolf K, Lo J, Vissers K, Zambreno J, Jones PH (2019) Comparing energy efficiency of
cpu, gpu and fpga implementations for vision kernels. In: 2019 IEEE International Conference on
Embedded Software and Systems (ICESS), p 1–8

Radanliev P, De Roure D, Van Kleek M, Santos O, Ani U (2020) Artificial intelligence in cyber physical
systems. AI & Sociaty 36:783–796

Redmon J, Farhadi A (2018) YOLOv3: An Incremental Improvement. arXiv
Reke M, Peter D, Schulte-Tigges J, Schiffer S, Ferrein A, Walter T, Matheis D (2020) A Self-Driving Car

Architecture in ROS2, p 1–6
Rupnow K, Fu W, Compton K (2009) Block, drop or roll(back): alternative preemption methods for

rh multi-tasking. In: 2009 17th IEEE Symposium on Field Programmable Custom Computing
Machines, p 63–70

Sciangula G, Restuccia F, Biondi A, Buttazzo G (2022) Hardware Acceleration of Deep Neural Networks
for Autonomous Driving on FPGA-based SoC. In: the 25th Euromicro Conference on Digital Sys-
tem Design (DSD), Maspalomas, Gran Canaria, Spain

Scordino C, Savino IM, Cuomo L, Miccio L, Tagliavini A, Bertogna M, Solieri M (2020) Real-time
virtualization for industrial automation. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), vol. 1, p 353–360

Seng KP, Lee PJ, Ang LM (2021) Embedded intelligence on fpga: survey, applications and challenges.
Electronics 10(8):895

Seyoum B, Pagani M, Biondi A, Balleri S, Buttazzo G (2021) Spatio-temporal optimization of deep neu-
ral networks for reconfigurable FPGA SoCs. IEEE Transactions on Computers 70(11):1988–2000

SYSGO: PikeOS Hypervisor. http:// www. sysgo. com/ produ cts/ pikeos- rtos- and- virtu aliza tion- conce pt
Vaishnav A, Pham KD, Koch D (2018) A survey on fpga virtualization. In: 2018 28th International Con-

ference on Field Programmable Logic and Applications (FPL), pp 131–1317
Wang C, Luo Z (2022) A review of the optimal design of neural networks based on fpga. Appl Sci

12(21):10771
Wojke N, Bewley A, Paulus D (2017) Simple Online and Realtime Tracking with a Deep Association

Metric. In 2017 IEEE international conference on image processing (ICIP), 3645–3649 Sep 2017
Zhang Y, Sun P, Jiang Y, Yu D, Weng F, Yuan Z, Luo P, Liu W, Wang X (2021) ByteTrack: multi-Object

Tracking by Associating Every Detection Box. arXiv
Zhou S, Wang Y, Wen H, He Q, Zou Y (2017) Balanced quantization: an effective and efficient approach

to quantized neural networks. Journal of Computer Science and Technology 32

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Edoardo Cittadini received the master’s degree (cum laude) in
embedded computing systems engineering jointly offered by the
Scuola Superiore Sant’Anna of Pisa, Pisa, Italy, and the University
of Pisa, Pisa, in 2021. He is currently pursuing the Ph.D. degree
with the Real-Time Systems (ReTiS) Laboratory, Scuola Superiore
Sant’Anna of Pisa. His research interests include cyber-physical sys-
tems, artificial intelligence on heterogeneous platforms, real-time
object tracking, and hypervisor technologies.

http://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept

634 Real-Time Systems (2023) 59:609–635

1 3

Mauro Marinoni is a research affiliate at the Scuola Superiore
Sant’Anna of Pisa. He received a M.S. in Computer Engineering at
the University of Pavia in 2003, where he also obtained a Ph.D. in
Computer Engineering in 2007. He joined the ReTiS Lab since
2007, where he has been Assistant Professor from 2009 to 2020. He
coordinated several European and industrial projects in different
application fields, from e-Health devices to autonomous and distrib-
uted systems.

Alessandro Biondi is associate professor at the Real-Time Systems
(ReTiS) Laboratory of the Scuola Superiore Sant’Anna. He gradu-
ated (cum laude) in Computer Engineering at the University of Pisa,
Italy, within the excellence program, and received a Ph.D. in com-
puter engineering at the Scuola Superiore Sant’Anna under the
supervision of Prof. Giorgio Buttazzo and Prof. Marco Di Natale. In
2016, he has been visiting scholar at the Max Planck Institute for
Software Systems (Germany). His research interests include design
and implementation of realtime operating systems and hypervisors,
schedulability analysis, cyber-physical systems, synchronization
protocols, and safe and secure machine learning. He was recipient
of seven Best Paper Awards, one Outstanding Paper Award, the
ACM SIGBED Early Career Award 2019, and the EDAA Disserta-
tion Award 2017.

Giorgiomaria Cicero is Senior Research Fellow at the Real-Time
Systems (ReTiS) Laboratory of the Scuola Superiore Sant’Anna of
Pisa and CEO at Accelerat Srl, a spin-off company of Scuola Supe-
riore Sant’Anna. He graduated (cum laude) in Embedded Comput-
ing Systems Engineering, a joint Master degree by the Scuola Supe-
riore Sant’Anna of Pisa and University of Pisa. He has been visiting
trainee at the European Space Agency (ESTEC, Netherlands). His
research interests include software predictability in multi-processor
systems and heterogeneous platforms, system-level cyber-security
hardening techniques, and design and implementation of real-time
operating systems and hypervisors.

635

1 3

Real-Time Systems (2023) 59:609–635

Giorgio Buttazzo is full professor of computer engineering at the
Scuola Superiore Sant’Anna of Pisa. He graduated in Electronic
Engineering at the University of Pisa, received a M.S. degree in
Computer Science at the University of Pennsylvania, and a Ph.D. in
Computer Engineering at the Scuola Superiore Sant’Anna of Pisa.
He has been Editor-in-Chief of Real-Time Systems, Associate Edi-
tor of IEEE Transactions on Industrial Informatics and ACM Trans-
actions on Cyber-Physical Systems. He is IEEE fellow since 2012,
wrote 7 books on real-time systems and more than 300 papers in the
field of real-time systems, robotics, and neural networks, receiving
15 best paper awards.

	Supporting AI-powered real-time cyber-physical systems on heterogeneous platforms via hypervisor technology
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Paper organization

	2 State of the art
	2.1 Hypervisor-based solutions
	2.2 Hardware acceleration
	2.3 Limitations of previous work

	3 System architecture
	4 The case for autonomous drones
	4.1 Devices synthesized on the FPGA
	4.2 Inter-domain communication channels
	4.3 Linux domain
	4.4 Critical (FreeRTOS) domain

	5 Experimental results
	5.1 Experimental setup
	5.2 Object detection
	5.3 Application-level end-to-end delays
	5.4 Fault reaction time

	6 Conclusions
	Acknowledgements
	References

