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Abstract
The heavy use of machine learning algorithms in safety-critical systems poses seri-
ous questions related to safety, security, and predictability issues, requiring novel 
architectural approaches to guarantee such properties. This paper presents an archi-
tecture solution that leverages heterogeneous platforms and virtualization technolo-
gies to support AI-powered applications consisting of modules with mixed critical-
ities and safety requirements. The hypervisor exploits the security features of the 
Xilinx ZCU104 MPSoCs to create two isolated execution environments: a high per-
formance domain running deep learning algorithms under the Linux operating sys-
tem and a safety-critical domain running control and monitoring functions under the 
freeRTOS real-time operating system. The proposed approach is validated by a use 
case consisting of an unmanned aerial vehicle capable of tracking moving targets 
using a deep neural network accelerated on the FGPA available on the platform.
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1 Introduction

Modern cyber-physical systems (CPS), e.g., cars, aircrafts, advanced robots, and 
drones, are characterized by an increasing complexity that calls for new technologies 
and architectural solutions to guarantee predictability, safety, and security require-
ments. In addition, the increased level of autonomy specified for such systems 
requires the adoption of artificial intelligence (AI) and, more specifically, machine 
learning algorithms, which in turn imply heavy use of hardware acceleration to sat-
isfy the stringent real-time constraints imposed by the applications.

Unfortunately, however, today’s AI algorithms are not ready to be integrated in 
mission-critical CPS, since their results cannot be always trusted and well-accepted 
engineering methodologies to mitigate the problem are still missing. A promising 
solution consists in coupling AI models with a set of classical algorithms that can 
take over the control of the system whenever the outputs produced by AI are not 
deemed safe, with the aim of bringing the system into fail-safe or fail-operational 
conditions.

In such complex systems, at least two groups of software components can be 
distinguished, being characterized by different sets of requirements and criticality 
levels:

• Software components that require support from a rich execution environment 
(e.g., based on the Linux operating system), like AI algorithms, acquisition and 
processing stacks for complex sensors (as cameras and LiDARs), and high-speed 
network communication services.

• Software components that require a high-integrity execution environment (e.g., 
powered by a real-time operating system), like low-level control functions, 
safety-critical monitoring activities, and procedures to ensure fail-safe/fail-opera-
tional behavior.

The components belonging to the first group can be deemed not critical for safety 
and security, provided that they are properly isolated from the critical ones belong-
ing to the second group. In this context, strong isolation is required to ensure that 
non-critical components cannot affect the execution of critical ones, including the 
guarantee that cyber-attacks and faults cannot propagate from the former to the 
latter.

Isolation could be achieved by executing these software components on differ-
ent hardware platforms, e.g., reserving an independent platform to host the execu-
tion of critical software only. However, in several cases, as for battery-operated fly-
ing drones, such features have to be provided under stringent resource constraints, 
imposing additional limitations in terms of space, weight, power, and cost (SWaP-
C). For this reason, a more appropriate solution is to host the execution of software 
components with mixed and independent safety and security levels on the same 
hardware platform. These systems are also referred to as mixed-criticality software 
systems and can leverage hypervisor technology to enforce isolation as well as ena-
ble the execution of multiple operating systems on the same hardware.
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Mixed-criticality systems powered by hypervisor technology have been investi-
gated since many years from different perspectives, especially in domains such as 
avionics  (Gaska et  al. 2011), aerospace  (Crespo et  al. 2009), and control  (Crespo 
et al. 2018). Farrukh and West (2022) proposed a hypervisor-based architecture for 
combining a Linux domain with a real-time critical domain on the same platform 
for a drone application, but no machine learning and hardware acceleration were 
exploited. Scordino et al. (2020) presented a modular hypervisor-based platform for 
industrial automation for integrating both real-time control code and software design 
tools, but no AI algorithms and FPGA acceleration were employed.

Similarly, the challenges of achieving real-time performance in AI-powered 
cyber-physical systems have been discussed and reviewed by several authors (Mus-
liner et al. 1995; Radanliev et al. 2020; Seng et al. 2021). For instance, Wang and 
Luo (2022) presented a review on the optimal design of neural networks on FPGA 
platforms. Ji et al. (2021) presented the implementation of a deep neural network for 
real-time object detection and tracking on an embedded system based on an FPGA 
Zynq platform. Sciangula et al. (2022) proposed an efficient method for accelerating 
deep neural networks for autonomous driving applications on an FPGA-based SoC. 
All these works, however, did not leverage hypervisor technology to integrate mixed 
criticality components.

A conceptual hypervisor-based architecture for supporting the execution of com-
plex functionalities that are typical of AI-enabled CPS was proposed by Biondi et al. 
(2020); however, to the best of our records, a practical solution that integrates the 
acceleration of deep neural networks with real-time control on a single platform 
using hypervisor technology is still missing.

1.1  Contribution

This work presents a concrete software architecture for supporting AI-enabled CPS 
with mixed-criticality components. The proposed architecture targets heterogeneous 
computing platforms that couple asymmetric multicores with programmable logic 
(FPGA). It leverages hypervisor technology with strong isolation, hardware accel-
eration of AI algorithms implemented in programmable logic, and monitoring strat-
egies to take over the control of the system whenever non-critical software compo-
nents fail, are attacked, or produce results that are deemed unsafe. The architecture 
is then specialized for the case of autonomous flying drones, showing how it can be 
used to build a safe and secure tracking application.

1.2  Paper organization

The rest of the paper is organized as follows: Sect. 2 discusses some relevant related 
work; Sect. 3 presents the general architectural approach; Sect. 4 describes how the 
proposed architecture has been instantiated to a specific use case consisting of a vis-
ual tracking application performed by a drone; Sect.  5 reports some experimental 
results; and, finally, Sect. 6 concludes the paper and presents some future work.
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2  State of the art

To the best of our records, there is no established approach in the literature for 
developing AI-powered cyber-physical systems; rather, several architectural solu-
tions have been proposed by researchers in different contexts.

A classical approach to handle functions with different criticality requirements 
consists in executing them on separate computing platforms, typically managed by 
different operating systems that communicate through an external link, such as a 
serial line, a CAN network, or an Ethernet bus. Examples of CPS that adopt this 
approach are the Intel Ready-to-Fly (RTF) Drone  (Intel Corporation), the Cube 
Autopilot (CubePilot), and several solutions that leverage the Robot Operating Sys-
tem (ROS) (Gutiérrez et al. 2018) for drone autopilots (Liu et al. 2017) and autono-
mous cars (Reke et al. 2020). This approach, although practical, is not ideal for bat-
tery-operated systems with stringent requirements in terms of size, weight, power, 
and costs (SWaP-C), because it tends to introduce duplicates of computational 
resources and hardware components. Another problem with this approach is that the 
communication between the two platforms requires additional devices, which are 
generally slower than on-chip communication and also prone to faults and noise.

An alternative approach adopted, for instance, by the PX4 autopilot stack (Meier 
et  al. 2015) and the F1tenth autonomous car  (O’Kelly et  al. 2019), leverages the 
Linux operating system to control devices using a standard POSIX API and execut-
ing real-time functions as high-priority threads. This solution has the advantage of 
using a single hardware platform, at the risk of exposing the critical subsystem to 
several threats related to safety, security, and timing predictability due to the lack of 
strong isolation among different processes in Linux.

A partitioning operating system (OS) (e.g., LynxOS), despite its interesting capa-
bilities and suitability for supporting domain-specific standards such as ARINC-653 
and AUTOSAR (see Leiner et al. 2007), does not properly solve these issues, espe-
cially because it typically supports software systems with limited heterogeneity.

The increasing demand for advanced features in embedded systems requiring the 
need for a rich OS, such as Linux, combined with the need of guaranteeing safety, 
security mechanisms, and real-time constraints, led to the adoption of hypervisor 
technology as the most effective solution for supporting mixed-criticality software.

In AI-powered CPS, this solution allows isolating AI algorithms, which com-
monly call for the need of hardware acceleration managed by the rich OS, from the 
critical functions, which can instead be handled by a real-time operating system. The 
following subsections revise the literature related to hypervisor-based approaches 
and hardware acceleration for deep neural networks.

2.1  Hypervisor‑based solutions

Type-1 hypervisors are considered a preferable choice for the proposed architecture 
thanks to their small code base and better hardware control, which can guarantee 
high levels of security, safety, and time predictability. Furthermore, Type-1 hyper-
visors are more capable of guaranteeing predictable virtualization-related latency 
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(e.g., in response to interrupts), inter-domain communication, and scheduling of vir-
tual machines.

Several Type-1 hypervisors are available and some relevant research work has 
been done to integrate them for executing specific CPS applications, which are 
reviewed next. Klein et  al. (2018) proposed a solution based on seL4 to separate 
trusted and untrusted software in a UAV platform, focusing on the issue of guaran-
teeing security and isolation in the system. Almeida and Prochazka (2009) presented 
a solution based on PikeOS  (SYSGO) to provide safe and secure partitioning for 
integrated modular avionics (IMA) in spacecraft applications. Craveiro et al. (2009) 
proposed to use the partitioning features of ARINC 653 in Space Real-Time Operat-
ing System (AIR) for providing isolation in the development of aerospace systems, 
but only for IA-32 and Sparc architectures. Pérez and Gutiérrez (2016); Pérez et al. 
(2016) implemented a real-time publish-subscribe communication mechanism in 
the Xstratum (Crespo et al. 2009) hypervisor integrating ARINC-653 with the Data 
Distribution Service (DDS). Biondi et al. (2021) proposed a hypervisor-based archi-
tecture for safety-critical embedded systems providing both time/memory isolation, 
security, real-time communication channels, as well as I/O virtualization to allow 
different virtual machines to share the peripheral devices. Farrukh and West (2022) 
proposed a hypervisor-based solution characterized by low overheads in accessing 
resources. Their approach requires strict time guarantees for both domains, forcing 
the execution of Linux on a single core with SCHED_DEADLINE (Lelli et al. 2016), 
which is a viable solution in terms of real-time constraints, but can introduce several 
limitations in the implementation of complex AI-based solutions.

2.2  Hardware acceleration

A peculiar feature of AI-powered cyber-physical systems is their massive compu-
tational workload for executing AI algorithms such as deep neural networks. The 
most demanding functions of these algorithms need to be accelerated on specific 
hardware, such as general-purpose graphics processing units (GPUs) or field-pro-
grammable gate arrays (FPGA), to satisfy real-time requirements.

Modern GPU-based heterogeneous platforms benefit from powerful and mature 
software support to accelerate AI algorithms, which allows the user to significantly 
contain the effort for achieving efficient implementations of tasks like object detec-
tion, image segmentation, and tracking. The acceleration frameworks for GPU-
based platforms also allow a developer to seamlessly use, with no or just a few mod-
ifications, the AI models available in frameworks such as Tensorflow, PyTorch, and 
Caffe, even with the native parameters with floating-point precision.

On the other hand, when compared to FPGA-based platforms, GPU-based plat-
forms are very demanding in terms of power consumption and struggle in provid-
ing a high degree of time predictability for hardware acceleration. Their power 
consumption can be one order of magnitude larger than the one required by FPGA-
based platforms  (Sciangula et  al. 2022; Qasaimeh et  al. 2019). Furthermore, as 
observed by Cavicchioli et al. (2017), GPU acceleration introduces highly variable 
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delays that cannot easily be bounded a priori, also due to the contention occurring 
on shared memory in the case of memory-intensive GPU tasks. As such, GPU-based 
are not the ideal solution for battery-operated CPS such as drones.

Besides being characterized by less energy consumption, FPGAs provide a very 
predictable execution behavior with respect to GPUs for hardware acceleration.

Two main approaches are used to accelerate deep neural networks by means 
of FPGA technology: 

1. The synthesis of a network-specific accelerator provides the best performance 
but suffers from poor flexibility and scalability, especially for large networks. To 
name one of the most relevant issues, this approach ends up in deploying repli-
cated logic that implements the same operation (e.g., convolutions) on different 
data. Some tools provide IPs (e.g., HLS4ML Fahim et al. 2021; AMD Xilinx: 
FINN) as standalone Verilog/VHDL entities, which can be later integrated into 
more complex designs. Another relevant limitation of this approach is that the 
generated IP must be entirely rebuilt every time there is any change in the net-
work.

2. A more flexible solution is to accelerate neural networks by means of a dedi-
cated softcore. For instance, Xilinx provides a Deep Learning Processor Unit  
(AMD Xilinx: DPU) as a library component in the Vitis-AI environment (AMD 
Xilinx: Vitis AI). Besides the evident benefits in terms of flexibility provided by 
a network-agnostic accelerator such as the DPU, an advantage of this approach 
is that a single DPU can concurrently accelerate multiple networks, while in the 
other approach, the number of networks that can be accelerated is mainly limited 
by the amount of FPGA resources (such as LUTs).

The main disadvantage of FPGAs is that they require a larger programming 
effort than GPUs, especially when developing a network-specific accelerator. 
Another restriction is the limited amount of FPGA resources that is available in 
several embedded platforms, which calls for the usage of dynamic partial recon-
figuration  (Biondi et al. 2016; Seyoum et al. 2021) of the FPGA at the cost of 
additional delays when serving acceleration requests. Furthermore, as observed 
by some authors (Vaishnav et al. 2018; Happe et al. 2015; Rupnow et al. 2009), 
even without dynamic reconfiguration, sharing an FPGA among tasks managed 
by a preemptive scheduling policy is not trivial, due to the significant amount of 
time required to save the state of the device.

Fortunately, especially in the case of softcore accelerators such as the DPU, 
compilation and optimization frameworks are available to drastically simplify 
the deployment of accelerated neural networks. These frameworks employ prun-
ing and quantization (Zhou et al. 2017) of the network parameters to achieve an 
efficient execution on the FPGA. The accuracy drop of these optimization pro-
cesses was found not to be significant in several application scenarios (Gholami 
et  al. 2022; Liang et  al. 2021). The optimization algorithms dealing with the 
conversion from floating point to integer values are indeed now efficient enough 
to guarantee consistency in the transformation of the models from one platform 
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to another (GPU to FPGA) (Ding et al. 2019). This makes FPGA-based MPSoCs 
the ideal reference platform for resource-constrained embedded systems.

2.3  Limitations of previous work

The works reviewed in Sect. 2.1 share two main limitations: they are all tied to a 
specific application and do not address the support of AI algorithms with hardware 
acceleration. Furthermore, none of them investigated in details the usage of hypervi-
sor technology to implement fail-safe/fail-operational control algorithms. Further-
more, despite the benefits of FPGA acceleration highlighted in Sect. 2.2, none of the 
works discussed in Sect. 2.1 considered this relevant technology.

This work advances the state of the art by presenting a general architecture for 
autonomous CPS that leverages FPGA-based embedded platforms. The performance 
and capabilities of the presented architecture are then evaluated for a visual tracking 
application implemented by an autonomous drone, putting particular emphasis on 
the role of the architecture in the development of fail-safe/fail-operational control 
algorithms.

3  System architecture

The proposed architecture is composed of two isolated execution domains (i.e., 
virtual machines): a non-critical, high-performance domain running a rich general-
purpose operating system (GPOS) and a critical domain running a real-time oper-
ating system (RTOS). The two domains can communicate, depending on the task 
they have to perform, using a set of services provided by the hypervisor. This solu-
tion has the advantage of supporting all those embedded real-time applications that 
require the use of a GPOS for implementing complex high-level functions, includ-
ing AI algorithms, but also needs to guarantee safety, security, and real-time perfor-
mance requirements for a subset of safety-critical functions.

In the proposed architecture, the GPOS serves the purpose of handling high-level 
tasks (e.g., rich communication stacks, processing of high-performance sensors such 
as RGB/depth cameras and 3D LiDARs, application frameworks, inference of neu-
ral networks) that typically lack support in real-time operating systems or present 
a complexity that could jeopardize the stringent requirements of critical activities. 
Hypervisor-assisted health monitors are provided to detect and stimulate reactions to 
software faults or cyber-attacks.

The architecture also exploits hardware acceleration, implemented on FPGA by 
means of a machine-learning-specific accelerator, to speed up computations and 
offload CPUs, thus allowing the computing system to perform other tasks in paral-
lel, increasing throughput while reducing latencies. On the other hand, the RTOS 
domain takes care of low-level control, actuation commands, validation, and safety 
monitoring, directly communicating with the hardware. Note that these tasks may be 
possibly related to safety-critical functions.
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Finally, the FPGA can also be used to deploy ad-hoc devices, with the result of 
increasing execution predictability, reducing overhead, and helping satisfy SWaP-C 
constraints by limiting the use of external devices.

The hypervisor allows enabling the co-existence of one or more GPOS and RTOS 
domains on the same platform and, most importantly, is required to ensure strong 
isolation between the two domains to guarantee high degrees of safety, security, 
and time-predictability for the critical domain. If some of the physical resources are 
shared across different domains, the hypervisor uses a scheduling policy based on 
time budgets to regulate accesses.

The health monitor is split between the two domains. The first component is 
placed in the GPOS domain to observe the correct execution of both the OS and the 
application, and sends updates to the critical domain through dedicated channels in 
the communication layer provided by the hypervisor. The second element is located 
in the RTOS domain alongside the critical application to validate the information 
received, the freshness of incoming data, and their correctness. Such a monitor is 
useful to check whether the received input values are safe to be used, otherwise they 
will be replaced with others produced in the critical domain by a simpler but more 
robust algorithm.

The proposed architecture can be specialized according to the requirements of 
the system in which it has to be used. After surveying today’s technologies with the 
purpose of developing autonomous systems with limited energy budgets, the archi-
tecture was specialized by adopting the following components:

• ZCU104 board by Xilinx/AMD, equipped with an Ultrascale+ MPSoC 
(XCZU7EV);

• Xilinx/AMD DPU accelerator (DPUCZDX8G) to be deployed onto the FPGA 
fabric of the Ultrascale+;

• CLARE-Hypervisor by (Accelerat: The CLARE Software Stack);
• Linux operating system for the non-critical, high-performance domain; and
• FreeRTOS as the real-time operating system for the critical domain.

The ZCU104, although conceived as a development board, allows matching SWaP-
C constraints for several target applications, at least in their prototype stage. At the 
same time, the amount of FPGA resources available in the MPSoC installed on the 
ZCU104 allows deploying peripherals that are missing in the board, with a signifi-
cant speed-up and flexibility in the hardware setup. Finally, the Deep Learning Pro-
cessor Unit (DPU) by Xilinx is notably the most mature solution to date to acceler-
ate AI algorithms using FPGA technology, relieving the designer from synthesizing 
DNN-specific accelerators and enabling the acceleration of multiple DNNs with the 
same FPGA design.

CLARE-Hypervisor  (Accelerat: The CLARE Software Stack) follows a static 
approach with offline configurations and optimizations to allocate the platform 
resources to domains. Furthermore, it provides unique isolation and security fea-
tures that make it an excellent choice for developing mixed-criticality CPS applica-
tions. It has been designed to explicitly support modern heterogeneous platforms, 
such as GPGPU- and FPGA-based MPSoC, to safely and securely control their 
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computational resources. CLARE-Hypervisor also provides multi-domain virtual-
ization of the FPGA area, enabling strong isolation also for PL components such as 
hardware accelerators.

Linux has been selected as GPOS for its extensive support for peripherals drivers, 
communication stacks, and modern AI frameworks.

FreeRTOS has been selected as RTOS because its execution model is suitable for 
timing analysis and, because of its diffusion, it includes a rich set of drivers for low-
level devices.

The resulting specialized architecture is illustrated in Fig. 1.

4  The case for autonomous drones

This section describes how the architecture presented in Sect.  3 can be used to 
implement an AI-powered visual tracking application on a quadcopter drone 
equipped with an inertial measurement unit (IMU), a camera for object tracking, and 
two directional LiDAR sensors for obstacle detection, one pointing forward and one 
backward.

Fig. 1  Illustration of the proposed specialized architecture
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The overall block diagram of the multi-domain application that controls the drone 
is illustrated in Fig. 2, which also distinguishes the functions executed in the Linux 
domain (blue blocks) from those running in the critical domain (orange blocks). In 
particular, the ARMv8 processing system is divided across domains, so that three 
out of four cores are assigned to the Linux domain, while the remaining one is 
assigned to the freeRTOS domain. The figure also highlights with a double border 
the modules that are either entirely implemented in FPGA or leverage the FPGA to 
accelerate some functions.

The main task of the Linux domain is the inference of a deep neural network 
(DNN) for real-time multiple object tracking using a strategy derived from Deep-
SORT  (Wojke et  al. 2017) and BYTEtrack (Zhang et  al. 2021). The generated 
bounding boxes, paired with a unique ID of the object, are used to compute a set-
point for the low-level drone controller running in the critical domain. In this con-
text, support for hardware acceleration is essential to achieve acceptable perfor-
mance, because all state-of-the-art neural trackers generate a significant workload 
that has to be executed in real-time (normally at the camera frame rate). Table  1 
summarizes the main functions that compose the system.

4.1  Devices synthesized on the FPGA

The FPGA is used to synthesize a number of devices that are assigned to the vir-
tual machines by the hypervisor. In particular, each device is exclusively assigned 

Fig. 2  Function diagram of the multi-domain application that controls the drone
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Table 1  Application functions

Function Name Domain FPGA support Description

Image acquisition Linux No It captures a frame from the camera
Pre-processing Linux No It adapts the image to the size required by 

YOLOv3 for the inference
YOLOv3 Inference Linux Yes It uses the DPU to accelerate YOLOv3 runtime
Post-processing Linux No It computes the bounding boxes of the detected 

objects
Object tracking Linux No It solves the assignment problem and manages 

tracklets
Setpoint generation Linux No It computes the position setpoint for the low-

level controller
Heartbeat generation Linux No It sends a control signal notifying the health of 

Linux
Heartbeat validation freeRTOS No It checks the heartbeat signal to detect Linux 

faults
Backup controller freeRTOS No It performs a backup routine
LiDAR processing freeRTOS Yes It reads the LiDARs and sends data to the low-

level controller
Low-level controller freeRTOS No It keeps the drone at a given safety distance 

from a possible obstacle
Radio acquisition freeRTOS Yes It reads the radio data from the PPM decoder
IMU processing freeRTOS Yes It reads the sensors and computes angular rates 

and attitudes
Flight controller freeRTOS No It performs a PID control to stabilize the drone
Motor mixer freeRTOS Yes It computes the motor data from the trust pro-

vided by the flight controller

in a pass-through way to one domain only, while the hypervisor is responsible for 
providing strong isolation. In particular, the Xilinx DPU device is accessible by the 
Linux domain, while all the other devices are assigned to the critical domain. All 
custom devices synthesized on the programmable logic are described in the follow-
ing list: 

1. DPU: The Deep Learning Processor Unit (DPU) is a softcore provided by Xilinx 
to efficiently accelerate the inference of deep neural networks.

2. Radio decoder: It takes the pulse position modulated (PPM) signal from the radio 
receiver, decodes it, and puts the corresponding digital values in a set of registers. 
Without the help of specialized hardware, PPM signals would have to be managed 
in software using, for instance, GPIOs configured to raise interrupts at each edge 
in the signal to process it. This may easily lead to poor performance and excessive 
interference on the processors due to the service of interrupts and the consequent 
context switches. The use of a dedicated FPGA component to handle the PPM 
signal of the radio receiver hence relieves the processors from this burden and 
reduces the corresponding overhead and jitter.
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3. I2C device: The ZCU104 board allows exposing an I2C peripheral working with 
1.8 V logic levels, while the adopted IMU works with 3.3 V logic levels. To avoid 
introducing third-party electronics to adapt the logic levels (e.g., using a voltage-
level translator), an AXI-based 3.3 V I2C master device to be deployed on FPGA 
was developed.

4. UART device: A custom AXI-based UART peripheral to be deployed on FPGA 
was developed for the same reasons mentioned above, given that the adopted 
LiDAR works with 3.3 V logic levels.

5. PWM driver: It is used to generate pulse width modulation (PWM) signals to 
drive the drone motors. Although the Ultrascale+ MPSoC allows generating 
PWM signals by means of triple timer counters (TTC), a specialized FPGA mod-
ule was developed for the sake of simplicity and flexibility.

Efficient implementations of the drivers for the above peripherals, except the DPU, 
were performed from scratch to offload the CPU as much as possible, as well as 
minimize execution time variability and the number of memory accesses.

4.2  Inter‑domain communication channels

The two domains exchange data by means of two non-blocking communication 
channels based on shared-memory regions provided by CLARE, where the Linux 
domain acts as a producer and the critical one as a consumer. The channels are 
accessed by means of a middleware (available for both Linux and FreeRTOS) that 
does not require the intervention of the hypervisor at each access and ensures wait-
free synchronization in the presence of concurrent accesses. The first channel is 
used to exchange setpoints for the drone controller, whereas the second one is used 
to transmit heartbeat packets for health monitoring.

4.3  Linux domain

The Linux domain is responsible for visual tracking and navigation. It includes four 
tasks, namely Camera, Detector, Tracker, and HB generator. Details on 
these tasks are reported in Table 2.

The Camera task periodically captures a new frame from the camera and puts 
it in a queue of frames ready to be processed. The Detector task performs object 
detection by accelerating the inference of a YOLOv3 (Redmon and Farhadi 2018) 
deep neural network on the Xilinx DPU. The YOLOv3 model was trained on the 
cityscape dataset (Cordts et al. 2015), using a Darknet-53 backbone, modified (with 
respect to the standard implementation) to process an extra output from the pyrami-
dal feature extraction stage, to improve its performance.

To be executed on the DPU, the neural model was quantized (transforming its 
weights from 32-bit floating point values to 8-bit integer values) and pruned (remov-
ing the parameters with less contribution) to reduce the memory footprint and 
the amount of operations to be executed by the accelerator. The model was then 
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compiled to generate DPU-specific instructions to speed up the inference. This pro-
cess was performed by means of Xilinx’s Vitis AI.

Besides the inference, a YOLOv3 model requires a pre-processing and a post-
processing stage. In particular, the pre-processing stage takes a frame from the 
Ready-frame queue, rescaling and normalizing it to the YOLOv3 input size (512×
256×3). The post-processing stage derives all bounding-box coordinates, executes 
the Non-Maximum Suppression algorithm, and inserts the result into a queue to be 
processed by the Tracker task. The purpose of the Object Tracking function is 
to predict (by a Kalman filter) the position of a tracked object to keep identifying it 
even when it is missed by the object detector. The coordinates of the tracked target 
are then used to compute the setpoint to be sent to the critical domain.

The minimum, average, and maximum observed execution times of the functions 
involved in the object detection pipeline are reported in Table 3.

The execution times reported in Table 3 have been measured by a performance 
counter for a time interval of 20 min, running each task in isolation to prevent inter-
ference from higher priority tasks. As clear from the results, the pre-processing and 
post-processing functions represent the major bottleneck in achieving real-time per-
formance. To overcome this problem, all three functions performing object detection 
were implemented as a concurrent multi-thread pipeline, as illustrated in Fig. 3.

The number of parallel threads has been set equal to the number of cores assigned 
to the Linux domain (three, in our setup), with the benefit of increasing the through-
put from 16 to 27 frames per second (FPS). Note that the tracking function cannot 
be parallelized, because the position of the tracked objects depends on the computa-
tions related to the previous frame.

The HB generator task is responsible for the health monitoring activities 
within the Linux domain. It periodically produces two heartbeat timestamps, report-
ing the health of the Linux system and the application. The system-level timestamp 
is updated each time this task is executed, while the application-level timestamp is 
updated every time a new setpoint is generated by the Tracker task.

Table 2  Linux application-level 
task set. Priority value ranges 
between 1 and 99, where higher 
values correspond to a higher 
priority

Task Name Period (ms) Priority Called functions

Camera 34 14 Image acquisition
Detector 36 10 Pre-processing

YOLOv3 inference
Post-processing

Tracker 34 12 Object tracking
Setpoint generation

HB generator 4 16 Heartbeat generation

Table 3  Execution times of the 
functions involved in the object 
detection pipeline

Function Name Min (ms) Avg (ms) Max (ms)

Image pre-processing 24.47 25.48 31.84
YOLOv3 DPU inference 8.52 8.93 9.36
Post-processing 27.43 30.69 35.53
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4.4  Critical (FreeRTOS) domain

The critical domain is composed of four tasks, whose periods and priorities are 
reported in Table 4, while execution times are reported in Table 5.

Observed execution times of Table  5 were obtained using the same technique 
adopted for Table 3.

The HB checker task periodically verifies the heartbeat values sent by the 
HB generator to detect possible faults related to the Linux domain, notifying 
the Safety module task when a fault is detected. The reaction time to a fault is 
given by the period of this task multiplied by a user-defined parameter that indicates 
the number of tolerable task executions without heartbeat updates.

The Backup controller task is responsible for handling an alternative set-
point generation when the fail-safe mode is activated. As shown in Table 5, the exe-
cution time of this task is significantly shorter than the others because, in the current 
implementation, it simply keeps the quadcopter hovering in the position recorded 
when the fault is detected. In general, however, this task could be used to implement 
more complex actions, such as controlling the drone to perform a safe landing.

The Safety module task is responsible for producing the input to the flight 
controller. If no fault is detected by the HB checker task, it reads the latest set-
point provided by the Linux application, otherwise, it switches to the Backup 
controller as an alternative source of setpoints. The Safety module task 
also performs high-level health monitoring functions related to the behavior of the 
application, verifying that the provided set points are not jeopardizing designated 
safety constraints. The current implementation reads LiDAR data and conducts an 
additional control loop to keep the drone at a minimum user-defined distance from 
possible obstacles on the path to the next waypoint.

The Flight Control task can work in two different modes, manual and AI-
driven, selected by a switch on the radio transmitter. In manual mode, the setpoint is 
taken from the radio transmitter, while in AI-driven mode the setpoint is taken from 
the Safety module task. In both cases, the Flight Control task reads the 
IMU data and stabilizes the quadcopter using two hierarchical PID control loops. 

Fig. 3  Diagram of the multi-thread pipeline used for object detection and tracking
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The inner loop controls the angular rates, while the outer loop controls the quad-
copter attitude. Finally, the outputs generated by the Flight controller are sent to the 
Motor mixer for actuation.

5  Experimental results

This section reports some experiments aimed at showing how the proposed multi-
domain architecture can effectively be implemented with a negligible impact on the 
overall performance, with respect to an implementation without a multi-domain design.

5.1  Experimental setup

The vehicle used for the implementation is an F450 class quadcopter with four 1045 
propellers controlled in the X standard configuration. Figure  4 shows the block 
diagram of the Xilinx ZCU-104 Ultrascale+ MPSoC configuration used for our 
application.

The camera is a Logitech HD Pro C920, which natively provides frames with a 
resolution of 320×240, which is the closest one to the input size of the adopted neu-
ral network. The IMU is an MPU-9250, a 9-DOF inertial device with gyroscopes, 
accelerometers, and magnetometers that communicates with the system using a 3.3 
V I2C device (set in Fast mode to work with 400 kHz clock) implemented inside the 

Table 4  FreeRTOS task set. Priority value ranges between 0 and 99, where higher values correspond to 
a higher priority

Task Name Period (ms) Priority Called functions

HB checker 4 4 Heartbeat validation
Safety module 10 1 LiDAR processing

Low-Level controller
Setpoint switch

Flight control 4 2 Flight controller
IMU processing
Radio acquisition
Motor mixer

Backup Controller 4 3 Backup Controller

Table 5  Execution times of the 
FreeRTOS tasks

Task Name Min ( �s) Avg ( �s) Max ( �s)

HB checker 10 11 35
Safety module 338 349 351
Flight control 437 438 450
Backup Controller 0.062 0.08 0.126
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FPGA programmable logic. Additionally, this device has a configurable filter that 
can be used to reduce noise and improve communication reliability.

The radio receiver also takes advantage of FPGA acceleration. It uses the custom 
AXI peripheral we designed to handle the PPM external interrupts (EXTI line) to 
offload the CPU from the interrupt service routine and reduce interferences and jitter 
on the control task.

LiDARs communicate through a dedicated UART implemented in FPGA with a 
baud rate of 115,200 bit/s. Although it is possible to generate PWM signals using 
the hardware timers provided by the processing system, we built our custom PWM 
peripheral to be completely independent from the CPU, ensuring exclusive access 
by the RTOS domain using a dedicated driver.

The Electronic Speed Controllers (ESCs) used in the quadcopter are the BL-Heli, 
which accept PWM pulses from 50Hz (legacy PWM) to 12KHz (OneShot-42 proto-
col), so they can perfectly handle the 250Hz PWM signal of the custom HLS periph-
eral. The Racestar 980 KV brushless motors are paired with the 1045 propellers and 
can provide a thrust of 3.2 kg.

Fig. 4  Hardware platform application diagram
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The Xilinx DPU is the most complex and resource-demanding FPGA device 
required by the application because it uses a very large portion of LUTs in the pro-
grammable logic region and almost all the marginal resources of the board, like Dig-
ital Signal Processors (DSP), Block RAM (BRAM), and Ultra RAM (URAM), as 
reported in Table 6.

Note that the design occupies less than half of the available resources. This 
choice is motivated by the fact that, in the next future, the complete application 
will be moved to the Kria K26 SOM, with an ad-hoc carrier board to further reduce 
weight and consumption, but its SoC contains half of the resources available on the 
XCZU7EV-2FFVC1156 powering the ZCU104 board.

This specific setup led to the power specifications reported in Fig. 5. How it can 
be seen from the figure, the major source of power consumption resulted to be the 
dynamic one in PL due to the DPU runtime and the intense switching activity it 
involves.

The battery selected as a power source for the system is a 3300 mAh 4 S LiPo, 
which is sufficient to guarantee the maximum power consumption specified in 
Fig. 5. In fact, it can always provide a sufficient voltage/current to the D36V50F12 
voltage regulator to maintain it in its optimal operating spot and a stable power rail 
of 12 V with a maximum load current of 4.5 A. The maximum payload of the quad-
copter resulted be 1.5 kg in this specific configuration. Additionally, the external 
devices connected to the platform present the following power specifications. The 
Racestar BR2212 motor datasheet reports that, applying a Voltage of 11.1 V, each 
motor paired with 1045 propellers (the ones we used) absorbs a maximum current 
of 10.6 A, for a total maximum current of 10.6 × 4 = 42.4 A. The Fs-iA6 radio 
receiver, supplied with a voltage between 4 and 6.5 V, has a maximum power con-
sumption no higher than 520 mAh. The power consumption of the MPU-9250 is 
quite low, since it must be supplied with a voltage of 3.3 V and reaches 3.7 mA 
when all three sensors (gyroscope, accelerometer, and magnetometer) are powered 
on. Each directional LiDAR works with an input voltage between 3.7 V and 5.2 V, 
absorbs an average current less or equal to 70 mA, a peak current of 150 mA, and a 
total power of less than 0.35 W. In this setup, we used two of these sensors.

Table 6  Utilization of FPGA 
resources

Resource Utilization Available Utilization %

LUT 50966 230400 22.12
LUTRAM 5741 101760 5.64
FF 102121 460800 22.16
BRAM 107 312 34.29
URAM 40 96 41.67
DSP 690 1728 39.93
IO 22 360 6.11
BUFG 4 544 0.74
PLL 1 16 6.25
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5.2  Object detection

In this experiment, the execution behavior of the Detector task has been ana-
lyzed both on the multi-domain system and the Petalinux default flow, to evaluate 
the impact of the hypervisor. For the sake of fairness, since the multi-domain imple-
mentation allocates three out of four available cores to Linux, the measures in the 
configuration without hypervisor have been performed by turning one core off for 
the Linux application. Furthermore, in the multi-domain implementation, the core 
running FreeRTOS was programmed not to generate traffic on the bus to avoid extra 
memory access conflicts, which would cause a performance degradation not due to 
the hypervisor.

Figure 6 shows the frame rate distribution of the object detector task under the 
configuration without hypervisor (red bars) and with hypervisor (blue bars). The 
part of the plot in purple color represents the overlapping portion of the two histo-
grams. The smoother envelopes of the two histograms are also shown with the corre-
sponding colors. As clear from the plot, the two histograms almost overlap, meaning 
that the hypervisor introduces negligible overhead and does not degrade the overall 
system performance significantly. On the other hand, the hypervisor allows isolating 
the two execution domains, preventing malicious attacks carried out on the Linux 
domain to propagate and affect the critical functions running in the RTOS domain.

In another test, the object detection performance resulting from a 3-core configu-
ration with hypervisor has been compared with the one achievable on the full ZCU-
104 without hypervisor, that is, assigning all four cores to Linux. The results are 

Fig. 5  Xilinx Ultrascale+ 
MPSoC power report
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illustrated in Fig.  7, which shows that, by allocating one extra core to Linux, the 
average frame rate of the object detection task increases from 27.5 FPS to 29.6 FPS.

Note that, in the 4-core configuration, the object detection pipeline uses four par-
allel threads to match the number of physical cores available on the platform. As 
expected, this leads to a performance increase, but the observed improvement is not 
significant, since the processing pipeline is constrained by the acquisition rate of the 
camera (30 FPS), which limits the benefit of the increased HW and SW parallelism.

Viewed from another angle, the results reported in Fig. 7 show that the two-domain 
architecture enabled by the hypervisor does not significantly degrade the performance, 
with respect to a full platform configuration, but certainly provides other relevant advan-
tages in terms of time predictability and security for the critical components of the system.

5.3  Application‑level end‑to‑end delays

This section reports on two experiments aimed at showing the time it takes for the 
generated data to be propagated from one domain to the other. Since this operation 
involves a data exchange between two very different operating systems, the com-
munication latency depends on different factors. In particular, from the moment in 
which the data is written by Linux into the shared memory, three factors come into 
play: (i) the period of the consumer task running in the FreeRTOS domain, (ii) the 
time at which this task is scheduled by FreeRTOS, and (iii) the interference experi-
enced by the consumer from the other tasks, which depends on the assigned priori-
ties and the task execution times.

Fig. 6  Frame rate distributions for the Detector task on a 3-core configuration without hypervisor (red 
bars) and with hypervisor (blue bars)

Fig. 7  Frame rate distributions for the Detector task on a 3-core configuration with hypervisor (blue 
bars) and on a 4-core configuration without hypervisor (red bars)
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Figure 8 illustrates a possible interleaving of the producer and consumer tasks, 
where the delay is significant. In the figure, the message is sent by the producer at 
time t

1
 , it is delivered to the other domain at time ta , and finally consumed at time 

t
2
 . As it can be seen, the overall end-to-end delay ( t

2
− t

1
 ) is given by the sum of the 

channel latency ( Lc ), the activation interval ( Ac ), the interference of the high-prior-
ity tasks ( Ihp ), and the computation time of the consumer task ( Cc ). Since the chan-
nel latency is always below one microsecond and the execution times of FreeRTOS 
tasks are in the order of a few hundred microseconds, the major contribution to the 
end-to-end communication delay is due to the period of the consumer task, which is 
in the order of milliseconds.

The best-case situation for the end-to-end communication delay is illustrated in 
Fig. 9, where the consumer task is executed just after the message is delivered to the 
FreeRTOS domain. In this case, the end-to-end delay is in the order of a few hun-
dred microseconds.

The end-to-end delay measurements performed in this experiment confirm the 
observations reported above. Figure  10 shows the distribution of the end-to-end 
delay for the setpoint communication, measured over one hour of continuous execu-
tion from the time the setpoint is generated in Linux to the time it is read in FreeR-
TOS by the Safety module task, which has a period of 10 ms and the lowest 
priority.

As expected, the maximum observed delay resulted to be 9.5 ms (close to the 
period of 10 ms assigned to the Safety module task), whereas the minimum 
observed delay resulted to be 890 � s, due to the sum of its own execution time and 
the suffered interference from some higher priority task.

Figure 11 shows the distribution of the end-to-end delay from the time the heart-
beat is generated in Linux to the time it is received in FreeRTOS.

In this case, the maximum observed delay resulted to be of 3.74 ms (close to the 
period of 4 ms of the HB checker task), whereas the minimum observed delay 
resulted to be of about 303 � s, shorter than the other, because the HB checker 
task has the highest priority and cannot suffer interference from the other tasks.

Fig. 8  Example of task interleaving characterized by a long end-to-end delay. In this case, the delay is 
mainly dominated by the activation interval Ac , which has the same order of magnitude of the consumer 
period Tc (ms), whereas the channel latency Lc , the interference Ihp from the high-priority tasks, and the 
consumer computation time Cc are at least two orders of magnitude smaller
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5.4  Fault reaction time

A final experiment was carried out to measure the latency of the fail-safe procedure 
triggered by a system fault. For this specific test, the drone is programmed to track 
a target by controlling only the yaw angle. Hence, Fig. 12 reports the variation of 
the yaw angle during a tracking operation, when the backup controller is invoked to 
keep the drone in a safe state after a system fault is injected in Linux.

In this experiment, the system heartbeat validation threshold was set to 3, mean-
ing that the HB checker task can tolerate 3 readings of heartbeat data in the Fre-
eRTOS domain without detecting an update. Note that, since the period of the HB 

Fig. 9  Example of task inter-
leaving characterized by a short 
end-to-end delay. It is mainly 
caused by the channel latency Lc 
and the execution time Cc of the 
consumer task

Fig. 10  Setpoint transmission delay

Fig. 11  Heartbeat transmission delay
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checker is set to 4 ms and the threshold is 3, the expected delay to detect a fault 
is between 8 and 12 ms. In Fig. 12, the measured delay is represented by the pur-
ple arrow between the two vertical red dashed lines, denoting the transient interval 
between the normal functioning and the fail-safe mode.

In this test, the fault has been injected in Linux after 6.235 s from the beginning 
of the plot and the backup controller took place at t = 6.245 seconds, that is, after 
about 10 ms. The orange horizontal line highlights the yaw angle recorded when the 
fail-safe mode was enabled. In this implementation, the backup controller has been 
programmed to keep the yaw angle to that reference value.

The plot shows that, when the backup controller was activated, the yaw angle was 
36.3◦ and the flight controller acted to keep the yaw angle at this reference value, 
while simultaneously keeping both pitch and roll angles at 0◦ (hovering). Notice that 
a little overshoot occurs in most cases, since the yaw PID controller is the one with 
less authority over the physical system. In fact, yaw actuation is generated by differ-
ences in motor torques, while pitch and roll are generated by changing thrusts, so the 
faster the control (larger gains) the higher the overshoot to be compensated. This can 
be observed in the figure after the second red line, when the angle continues increas-
ing for a few milliseconds, after which it converges to the reference angle recorded 
at the fail-safe activation. This behavior is caused by the system dynamics rather 
than by a delay in the execution of the flight control task.

Note that, without the fail-safe mechanism, the drone would no longer receive 
a setpoint and therefore would continue to apply the last valid setpoint received, 
thus keeping rotating around itself. In a more complex use case involving multiple 
degrees of freedom, this situation would inevitably lead to dangerous consequences.

6  Conclusions

This paper presented a fully functional implementation of a multi-domain archi-
tecture for running software components of different criticality and performance 
requirements on a single heterogeneous platform. The architecture has been imple-
mented on a Xilinx ZCU104 MPSoc to perform AI-based visual tracking on a drone.

Fig. 12  Reaction time for the 
Backup controller to a system 
fault
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The CLARE-Hypervisor (Accelerat: The CLARE Software Stack) has been used to 
realize two isolated execution domains: one powered by Linux, responsible for image 
acquisition, object detection, and AI-based tracking, and one powered by FreeRTOS, 
responsible for running more critical tasks as the low-level control of the drone.

The results presented in Sect. 5 confirm that the proposed approach is effective 
to achieve both high timing predictability, needed for guaranteeing a real-time per-
formance, as well as a contained power consumption, essential to save energy in 
battery operated cyber-physical systems. An example of hypervisor-assisted health 
monitoring was demonstrated in the context of the studied application to trigger fail-
safe routines to bring the drone in a safe state when a fault is detected.

To evaluate the improvement of the proposed solution in more complex scenar-
ios, the ZCU104 board will be replaced with a Kria K26 SOM paired with an ad-
hoc carrier board to better fit the SWaP-C requirements of drone systems.
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