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Abstract— The railway industry is investigating new ways to
improve the safety and the performance of signalling functions
(e.g., train localization) and automate other complex train func-
tions, such as signal and sign recognition, obstacle detection,
and track discrimination. Such tasks require the artificial per-
ception of the railway environment through the data acquired
from different types of sensors, including cameras, LiDARs,
wheel encoders, GNSS receivers, and inertial measurement units.
However, testing new algorithms and solutions that use such
sensory data requires the availability of a large amount of labeled
data, acquired in different scenarios and operating conditions,
which are difficult to obtain in a real railway setting, due
to strict regulations and practical constraints in accessing the
trackside infrastructure and equipping a train with the required
sensors. To cope with such difficulties, this paper presents a
visual simulation framework able to generate realistic railway
scenarios in a virtual environment and automatically produce
a variety of labeled datasets from different types of emulated
sensors, including cameras, LiDARs, and inertial measurement
units. Such scenarios and datasets can be used for testing
innovative algorithms, as well as for training and testing deep
neural networks for a variety of tasks, as image segmentation,
object detection, visual odometry, track discrimination, etc. The
proposed framework is particularly relevant for the railway
domain, considered the lack of similar datasets and the difficulty
of reproducing critical situations in a real environment. A set of
experimental results are reported to show the effectiveness of the
proposed approach.

Index Terms— Railway simulator, dataset generation, LiDAR
simulation, LiDAR modeling.

I. INTRODUCTION

RAILWAY stakeholders have started many initiatives to
accelerate the migration of European railways towards a

unique sustainable and safe railway system without frontiers,
and increase the integration with the multi-modal European
transportation system. To this end, they are working on
solutions to increase the capacity of the lines, reduce the
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setup phases of European Rail Traffic Management System
(ERTMS) lines, and accelerate the integration of Auto-
matic Train Operations over European Train Control System
(ETCS), as demonstrated by the activities of the ERTMS User
Group [1]. However, reaching these goals requires not only
improving the performance of some railway functions, such
as train odometry and train localization, but also automating
other functions, such as track discrimination, which consists of
identifying the track where the train is running with respect to
the other tracks present on the line, track elements recognition,
and obstacle detection.

All these functions require the execution of sophisticated
perceptual tasks that process and integrate data from different
heterogeneous sensors, including cameras and LiDARs. Given
the high criticality of such railway functions, any solution has
to follow a rigorous development process, analysis, and tests
to show that the tolerable hazard rates associated with these
functions and with the whole system are below given targets
(e.g., 10−9 per hour and per function).

Unfortunately, carrying out an exhaustive field test cam-
paign is impractical, due to the difficulty of replicating a large
variety of critical scenarios in a real environment, especially
those involving faults and degraded conditions. In addition,
planning acquisition campaigns is complex and quite expen-
sive for a number of reasons, such as overcoming the strict
regulations and practical constraints in accessing the track-side
infrastructure, equipping a train with the required sensors, and
properly labeling the huge amount of data acquired.

Simulation is a crucial technique to speed up the develop-
ment and test of algorithms for perception and control, because
it has the great advantage of creating many types a scenarios,
while automatically generating labeled datasets for different
types of sensors. This is why many simulations tools have been
developed in the last years for different application domains,
as CARLA [2] for self-driving cars, AirSim [3] for unmanned
aerial vehicles, Open AI Gym [4] for robot control, and so on.

The railway domain, however, lacks of a similar simulation
tool, as well as public datasets properly labeled for training
and testing deep neural models and vision-based algorithms
for camera and LiDAR sensors. This is probably due to the
fact that railway systems evolved more slowly with respect to
other applications domains, given the strong regulations they
are subject to for safety reasons that normally lead to the use
of consolidated technologies and methodologies.

To fill such a gap, this paper proposes TrainSim, a sim-
ulation framework that can automatically generate synthetic
datasets for training and testing neural networks in a variety of
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Fig. 1. Examples of images from the same scene produced by the simulator.
Left: RGB camera; center: depth camera (each pixel value encodes the
distance between the object represented by the pixel and the camera); right:
segmented image (each pixel color encodes a different object class).

railway scenarios and operating conditions for verifying new
solutions based on sensors as cameras, LIDAR, and inertial
measurement units.

In particular, the paper provides the following contributions:
1) It presents a highly configurable and extendable environ-

ment generator to create a wide range of realistic railway
scenarios controlled by a set of user-defined parameters.

2) It proposes a method for generating arbitrarily large
labeled datasets from such virtual environments using
a set of simulated sensors (LiDARs, cameras, and
IMUs) that can produce data similar to their physical
counterparts.

3) It provides a method for exporting the obtained datasets
in a standard format for training deep neural networks or
streaming them to ROS [5] for real-time visualization.

At present, TrainSim, can generate the following datasets:
• RGB images: taken from one or multiple cameras placed

on the train, in positions specified by the user.
• Depth images: taken from one or multiple cameras placed

in user-defined positions. They can be used as ground
truth data for depth estimation algorithms.

• Segmented images: taken from one or more cameras
placed in the same position of the RGB or Depth cameras,
where each pixel value encodes the class of the object
corresponding to the pixel. They are used as labels for
semantic segmentation and other tasks.

• Point Clouds: taken from a LiDAR sensor placed on the
locomotive in a position specified by the user. A point
cloud includes a set of 3D points acquired accord-
ing to the scanning pattern of the user-defined LiDAR
configuration.

• Segmented Point Clouds: taken from the same LiDAR.
Each point is associated with a label that identifies the
object hit by the LiDAR beam. They are used as ground
truth data for the point cloud segmentation task.

• IMU dataset: 6-axes accelerometric and gyroscopic data
computed with user-defined IMU models from the
ground-truth acceleration and angular velocity data.

In addition, the tool provides the ground truth for the vehicle
position, attitude, speed, and acceleration data, computed
according to the kinematics of the train trajectory.

Figure 1 shows an example of images produced by the RGB
and depth cameras, along with the segmented image from the
same simulated scene.

Figure 2 shows two point clouds of the same scene produced
by the virtual LiDAR: in Figure 2a each color encodes a

Fig. 2. (a) Example of a segmented point cloud generated by TrainSim,
where each color encodes a different object class; (b) the same point cloud
where each color encodes the back-scattered intensity value computed by the
LiDAR model.

different object class, whereas in Figure 2b the color encodes
the back-scattered intensity.

To summarize, the TrainSim framework aims at providing
datasets and ground truth data for the following tasks: Visual
Odometry, LiDAR Odometry, Image Segmentation, Point
Cloud Segmentation, Image Depth Estimation, and Inertial
navigation. The generation of datasets for tasks like 2D and
3D object detection is in progress and will be part of future
work.

The rest of the paper is organized as follows. Section II
discusses the related works; Section III presents TrainSim;
Section IV reports some experimental results; and Section V
states the conclusions and future work.

II. RELATED WORKS

The design of proper datasets for training and testing
purposes is crucial for developing and verifying effective
perception algorithms. The tools developed for the automotive
domain typically use benchmarks that provide several visual
frames captured in different environments, such as the KITTI
benchmark [6] and its semantic segmentation variant [7], or the
Cityscapes dataset [8]. Most of such datasets are focused
on urban scenarios, and the vast amount of images required
for training is typically obtained by data augmentation [9],
mixing real and virtual images. The lack of open datasets
in the railway domain represents a severe obstacle to testing
and verifying novel algorithms. Zendel et al. [10] pointed out
that, excluding the thousands of labeled images taken from
street-view or spectator-view, image datasets of railway envi-
ronments taken directly from the train are nearly nonexistent.
Many solutions presented in the literature for the railway
domain are tested and verified on private datasets that only
include a few hundred data samples for camera and LiDAR
frames, as declared by the authors [10], [11], [12].

Simulators offer the possibility to test perception and control
algorithms in a variety of situations that would be hard to
reproduce in the real world. For this reason, several synthetic
generation tools have been presented in the last years to over-
come the lack of real datasets, as CARLA [2] for automotive
simulation and AirSim [3] for unmanned aerial vehicles (UAV),
both based on the Unreal Engine 4 (UE4) [13] graphic engine.
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Fig. 3. Architecture of TrainSim (the gray dashed line indicates the modules
integrated in the UE4 Editor). More details are reported in Sections II and III
of the supplementary material.

Another tool is AutonoVi-Sim [14], which supplies LiDAR
frames gathered into a virtual world.

Unfortunately, most of the existing simulators have been
developed for self-driving cars and drones, and there is a lack
of tools for the railway domain that support the integration of
the LIDAR, Camera, IMU an GNSS technologies. This work
presents TrainSim, a train simulation framework for generating
realistic datasets of images, point clouds, and inertial data
to test and validate novel algorithms for tasks such as iner-
tial navigation, object detection, and semantic segmentation
in the railway domain. In particular, the camera model is
naturally derived from the graphic engine frame, producing
RGB, semantic, and depth images directly from the graphic
environment of UE4. On the other hand, the emulation of the
LiDAR sensor exploits the ray-casting system of UE4, which
allows the detection of objects between two endpoints, making
the LiDAR emulation straightforward. Unlike CARLA and
AirSim, the proposed approach also generates the backscat-
tered intensity of the LiDAR sensor by exploiting a simplified
version of the Labertian-Beckmann model [15] that describes
how different surfaces reflect light rays. More details on the
images and point clouds generation models are described in
Section III-F and Section III-E, respectively.

III. SIMULATION FRAMEWORK

The architecture of TrainSim is depicted in Figure 3 and is
composed of three main modules: the Environment Generation
Tool (EGT), which manages the creation of the rail-track
surrounding environment, the Environment Manager (EM),
which instantiates the created environment in Unreal Engine,
and the Simulation Manager (SM), which simulates the train
movement, emulates the sensors working principles, and gen-
erates the various datasets.

The environment generation is based on the GeoGen project
of Matěj Zábský [16], which is a tool for creating realistic
terrains with desired height maps. The virtual environment
is generated starting from the train route specified in a file,
which contains set points that are either sampled from a real

trajectory or synthetically generated by a separate trajectory
generator, described in Section III-H.

In the following, we refer to a track as the physical structure
(a pair of rails) where a train can run, and to the railway
environment as all the ensemble of tracks placed in the
environment. A track is defined as a sequence of 3D waypoints
(referred to the track centerline), called track points and is
divided into blocks, where each block identifies a specific type
of railway structure, namely a straight line, a curve, a station,
a tunnel, or a bridge. The main track, also called the route,
is the one traveled by the train, whereas the remaining tracks
are referred to as auxiliary. Then, a trajectory refers to a
specific train journey on a route (i.e., the sequence of positions,
velocities, and accelerations of rear and front bogies of the
front vehicle sampled at a given frequency). The Environment
Generation Tool is responsible for managing the creation of
the railway environment and consists of three main modules:

• Multi-track generator. It creates a number of auxiliary
tracks that run parallel to the main track, but can also join
it or depart from it with different given rules. It produces
a Railroad .json file that contains the list of tracks
(the main and the auxiliary ones). Each track is divided
into blocks (e.g., straight, curve, bridge, etc.) and it is
associated with a 3D point sequence and other informa-
tion needed in the generation of the virtual environment.
Refers to Section III-B for further details.

• Landscape Generator. It creates the area surrounding the
tracks, including the terrain and the mountains. It pro-
duces a height-map (i.e., a grid of vertices) in which each
vertex is associated with a defined height that derives
from the elevation of the tracks. Section III-C describes
the height-map generation in more detail.

• Object Position Generator. It generates random spawn
points near the tracks, where different types of objects
can be placed (e.g., trees, rocks, buildings). Thanks to
its modularity, the placement algorithm can easily be
extended to add other types of objects to the scene.
In particular, positions are selected taking object size into
account to avoid reciprocal overlapping.

The outputs of the modules are sent to the Environment
Manager, responsible for creating the virtual environment
within Unreal Engine by placing the landscapes, the environ-
mental objects, and the railway building structures into the
simulated world. It exploits the 3D object models (meshes,
materials and textures) of the TrainTemplate plugin [17],
which provides high-fidelity models for railways objects,
vehicles, stations, tunnels, and bridges. The meshes for other
objects (e.g., trees and rocks) are randomly chosen from a set
of different meshes to diversify the simulated environment,
both for images and point clouds. Furthermore, ballast and
landscape materials can be randomly drawn at the start of
each simulation, avoiding reusing the same texture in each
generated dataset.

The Simulation Manager takes as input the train trajectory
and a set of files (described in Section III-A) containing
the configuration parameters needed to emulate the working
principles of specific sensors. It tightly interacts with Unreal
Engine sending the sequence of train positions and receiving
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Fig. 4. Example of a railroad section divided into blocks.

the data produced by the simulated sensors. It includes three
main modules:

• Movement System. It manages the train movement,
advancing the train in each point of the specified tra-
jectory.

• Sensors Simulator. It consists of a set of blocks, each
responsible for emulating a specific sensor.

• Dataset Export. It exports the generated dataset saving it
on the disk. The generated datasets can also be transferred
in real-time to a ROS Bridge application for visualization
or test purposes by the ROS communication system.

The following sections describe the details of the main
architecture components, whereas more details about the
remaining modules (e.g., Object Position Generator, Environ-
ment Manager) are described in the supplementary material.

A. Input Files
The train route is specified in a file as a sequence of 3D

points P = {Pk | k = 1, . . . , N } in local north-east-down
(NED) coordinates [18]. This sequence is used to generate the
corresponding main track, which is divided into construction
blocks of different types (e.g., straight, curve, station, bridge,
etc.). Each block type has specific characteristics that constrain
the construction of the relative way-point sequence and the
velocity profile (e.g., curve blocks have a minimum curvature
radius and constrain the maximum travelling speed of the
train). An example of a railroad section divided into blocks is
illustrated in Figure 4.

The train trajectory file specifies the position, the velocity,
and the acceleration of both front and rear of the vehicle at
each timestamp. The trajectory can either be sampled from real
IMU and GNSS sensors, or it can be synthetically generated
by a proper tool, briefly described in Section III-H.

Each configuration file provides information on a specific
sensor, describing its type, features, parameters, and noise
models. These data allow the Sensors Simulator to produce
a realistic output by applying the noise models to the data
acquired in UE4.

B. Multi-Tracks Generation
The Multi-track generator randomly creates a number of

additional tracks next to the main track to populate the railway
environment. This can be useful to test the performance of
track discrimination algorithms. The user can also decide to
duplicate the point sequence of the main track to have double
track instead of a single one. The duplicated track is generated
to the right of the main track, since the train hand of drive is
on the left at a fixed inter-track distance defined by the user.

Fig. 5. Entering part examples with 2 parallel tracks, a single line (blue
or red) represents a single track): (a) the auxiliary track is generated in
correspondences of a straight block, hence it is composed of a straight and
a curve blocks; (b) the auxiliary track is generated in correspondence of a
curve block, hence it can be composed of a straight block only.

To generate additional tracks, the module parses the list of
railroad blocks of the main track to decide where to begin
or end auxiliary tracks, following the constraints imposed by
each track block. Figure 4 shows an example of a railroad
blocks division, given as input to the Multi-tracks generator.
An auxiliary track has three parts: an entering part, a parallel
part, and an outgoing part. The entering part is composed of
a straight dead-end block, and a curve that joins it to block
parallel to the main track. If the railroad block is a curve,
the entering part can be composed only of a straight block,
as depicted in Figure 5.

Some of the building rules are derived from the railway
standards [19], [20], such as the inter-track distance or the
minimum curve radius, whereas others need to be user-defined,
like the number of auxiliary tracks. The creation of auxiliary
tracks follows pseudo-random decisions based on a user-
defined probability. In this way, the user can manage the
auxiliary tracks generation, creating different scenarios from
the same train route.

C. Landscape Generation

Once the auxiliary tracks have been generated, the landscape
generation module creates the terrain of the virtual environ-
ment, containing the ground, mountains, and valleys.

In UE4, a landscape is defined from a height map, which
is a matrix M of vertices, referred to as main map, in which
each vertex vi, j has its own height value Mi, j . The main map
has a rectangular size that includes all track points. The final
height map is produced by GeoGen [16], a library that allows
manipulating height maps using different operations, such as
noising, scalar multiplication, and composition.

The landscape is partitioned into three different sections
with respect to its distance from the outermost tracks, as illus-
trated in Figure 6. In particular, if the minimum distance d
of vertex vi, j to the track is less than or equal to dnear ,
its height is set equal to the one of the most immediate
track point. If the distance to the track is greater than d f ar ,
the height is sampled from a noise function Ni, j , using the
method proposed in [16]. Finally, if d is between the two
thresholds, the assigned height grows linearly between the
two values according to the distance function f (d) illustrated
in Figure 7.
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Fig. 6. Example of UE4 generated landscape showing how the terrain
surrounding the track is partitioned in three areas: the area denoted as Same
has a height equal to the closest track point; the area denoted as Noise has
a noisy height; while the area in the middle (Smooth) smoothly changes the
height between the two values.

Fig. 7. Distance function used to set the height of the vertices located in
the smooth region at a distance from the track between dnear and d f ar .

The two distance bounds dnear and d f ar can be set by the
user. Please note that dnear has a minimum value imposed by
the railway construction standards [19], [20], namely 1.5 m.
This solution is needed to safely place a number of environ-
mental objects (e.g., trees) around the railway structure.

More specifically, given a vertex vi, j in the main map, let
Pn(vi, j ) be the track point with the minimum distance to
vi, j and let di, j be such a distance. For the sake of clarity,
the point coordinates are expressed in the East-North-Up
(ENU) reference system, and PU

n represents the Up component
(i.e., the height). Then, the height value Mi, j associated with
vertex vi, j is computed as

Mi, j = PU
n (vi, j ) ∗ [1 − f (di, j )] + Ni, j ∗ f (di, j ). (1)

Furthermore, the sub-module generates a valley patch (i.e.,
a sub-matrix of vertices) that is superimposed to the main
map every time a railway bridge is present in the trajectory,
so allowing to possibly create a river in that specific position.
In station blocks, the value of dnear is increased to accommo-
date buildings and other structures.

Once the whole main map is generated, it is divided into
sub-maps, so that the user can save memory by storing only
those sub-matrices near the track, as shown in Figure 8. In the
proposed implementation, a sub-matrix has 1009 × 1009 ver-
tices. A scale factor on the E-N axes equal to 100 is required
since the UE4 measurement unit is expressed in cm.

With this setting, the distance between two vertices in the
horizontal and vertical direction results to be 1 m.

D. Movement System

The movement system is responsible for updating the posi-
tion of the train along the route, following the train trajectory
specified in the corresponding input file. Each trajectory point

Fig. 8. Example of sub-matrices (red squares) that can be selected based on
their distance from the track (blue line).

Fig. 9. Timelines corresponding to the train trajectory, the simulator frames,
and LiDAR acquisitions. Black dashed arrows show the timestamps associated
with the graphic frames, while brown dashed arrows show the graphic frames
associated with the LiDAR acquisitions.

includes the position, speed, and acceleration of the front and
rear bogies, as well as the corresponding timestamp.

To reproduce the train motion according to the given tra-
jectory, the positions of the bogies have to be computed at
each frame by interpolating the position of the two consecutive
points in the trajectory that are before and after the tick
absolute time. This solution, however, gives rise to two distinct
problems:

1) The interpolation introduces an error on the virtual
position of the train that increases with the train speed
(the higher the speed, the higher the distance between
trajectory points).

2) If graphic frames are visualised at a time that is differ-
ent from the timestamps associated with the trajectory
points, then the data produced by virtual IMU are not
synchronized with those produced by visual sensors
(cameras and LiDARs), hence they are not consistent.

To address these problems, the real time associated with the
train trajectory has been decoupled from the simulated time
at which UE4 produces a visual frame. While the difference
between the time stamps of any two consecutive trajectory
points is constant and equal to the sampling period TS =

tk −tk−1, the time elapsed between two consecutive frames can
vary depending on the machine running the graphic engine.
Hence, each frame produced by the graphic engine must
be associated with a trajectory point and its corresponding
timestamp, so ignoring the simulation time. Figure 9 compares
the timelines associated with the trajectory, the simulator
frames, and the acquisitions from a LiDAR sensor, visualizing
the time stamps associated with each frame.

In the example shown in Figure 9, the LiDAR is acquired
with a period that is twice the one used for the trajectory.
Black dashed arrows show the timestamps associated with the
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Fig. 10. Example of a point cloud captured from the simulated environment,
where each point is colored according to the height value of the point itself.

graphic frames, while brown dashed arrows show the graphic
frames associated with the LiDAR acquisitions. In the current
implementation, the acquisition period of a visual sensor must
be a multiple of the sampling time of the trajectory points.

E. LiDAR Sensor Model

Light Detection And Ranging (LiDAR) sensors are active
devices that emit light rays and compute the time needed for
the rays to be backscattered to the sensor receivers, or the
phase change of the backscattered ray. If the emitted rays
are backscattered, the distance between the LiDAR and the
object hit by the ray can be computed from the travelling time
and the speed of light, or from the phase difference between
the emitted ray and the backscattered one. Namely, a LiDAR
sensor emits several laser beams (or a flash light) and uses a
matrix of receivers to create a depth map of the surrounding
environment, referred to as a point cloud.

Common LiDARs emit a vertical array of laser beams that
rotates around the vertical axis to acquire the surrounding
scene. The angular inclination of each laser beam defines the
vertical resolution of the sensor, whereas the horizontal angular
step at which the rays are emitted defines the horizontal
resolution. The json input file for a LiDAR specifies the
horizontal resolution, the horizontal and vertical field of view
(FOV), the number of beams (from which it is possible to
derive the vertical resolution knowing the vertical FOV), the
range of the laser beams, and the frame rate.

The LiDAR working principle is emulated by exploit-
ing the ray tracing system of UE4. In particular, the
SingleLineTraceByChannel function of UE4 generates
a ray from a starting point to an ending point given as inputs.
If there are objects along the ray, this function returns the
closest 3D point in which the ray intersects the first object
surface. It also returns a reference to the object hit, from
which it is possible to retrieve other object features stored
in the system. Hence, the relative position of the hit point is
computed by subtracting the absolute position of the starting
point. To make the data more realistic, the distance associated
with each LiDAR beam is perturbed by adding a Gaussian
noise with zero mean and user-defined variance.

The sensor is implemented as a UE4 actor component
positioned on the front vehicle of the train in a user-defined
location. A point cloud is produced with a user-specified
period that must be a multiple of the period at which the
trajectory points are generated. Figure 10 depicts a sample
point cloud captured in the simulated environment.

Note that, in the real world, if the LiDAR is moving,
the 3D points belonging to a full scan refer to different
LiDAR positions. To compensate for such a mis-alignment

Fig. 11. Object (blue rectangle) response to an emitted light ray (yellow
arrow). Part of the light energy is diffused in all directions (green arrows),
while an other part (red arrow) is reflected in the opposite direction of the
emitted ray.

due to motion, most of LiDAR sensors incorporate an IMU
that automatically compensates for the LiDAR movements
during a scan. For this reason, TrainSim does not take this
phenomenon into account and acquires the point cloud in
a single graphic frame, also providing velocity and position
information for considering motion distortion effects by a post-
processing algorithm. For high-speed trains, flash LiDARs are
more suitable than laser-scanner LiDARs, because they are
less prone to motion blur effects. Note that each object in
the virtual environment is associated with an identifier that
specifies its class and its instance (e.g., Rock_0). Such an
identifier is associated with each 3D point to create labeled
datasets for semantic segmentation.

Real LiDAR sensors also provide the intensity of each
backscattered ray, in terms of light energy, which can be used
to discern objects in the environment. As shown in Figure 11,
a fraction of the incident ray is reflected in the opposite
direction (red arrow) with an angle equal to the incidence
angle, but opposite with respect to the normal to the object
surface, whereas another fraction is diffused in all directions
(green arrows). The backscattered ray detected by the LiDAR
is the diffused ray reflected back in the same direction of the
incident ray.

As proposed by Tian et al. [15], we used the Labertian-
Beckmann model to compute the backscattered intensity as
a function of three factors:

1) The distance between the sensor and the object;
2) The incident angle between the emitted ray and the

normal to the object surface;
3) The material of the object.

In particular, each object is associated with a diffusive and
reflective coefficient and a maximum incidence angle, over
which the object results to be completely diffusive. The model
can also be extended to consider other parameters of the
environment, as air density and humidity, which, at present,
are not taken into account.

To reproduce the backscattering effect in the LiDAR
simulation, the incident angle and the material of the
object are needed. The object reference gathered by the
SingleLineTraceByChannel function provides the nor-
mal to the object surface, which is used to compute the ray
incident angle. Furthermore, a mapping between each object
class in the virtual environment and the material parameters
needed in the Labertian-Beckmann model is defined and
exploited to compute the response of each single object to the
LiDAR rays. In this work, the parameters of different material
are taken from the study presented by Tian et al. [15].
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Fig. 12. Examples of RGB images generated by TrainSim at different
daytimes: left, morning; middle, evening; right, night.

Figure 2a shows an example of a point cloud where each
point is colored with the class of the corresponding object,
whereas Figure 2b shows the same point cloud where each
color encodes the backscattered intensity value normalized as
an integer in the range [0, 255].

F. Camera Sensor Model

Unreal Engine 4 allows the user to create cameras to gather
images of the virtual environment from user defined-locations.
In particular, a camera can be placed in front-top of the
locomotive to capture an image at each tick of the graphic
engine. As for the LiDAR sensor, the camera capture period
can be specified as a multiple of the one used for the trajectory.
The user can also define a number of parameters of the
camera, such as shutter speed, aperture, ISO, and resolution.
It is worth to notice that UE4 allows to set post processing
parameters to handle motion effects, such as blur effects, and
shutter speed. Such effects can then be filtered out, exploiting
well-known computer vision algorithms. Additionally, UE4
allows generating a depth image of the scene, where each
pixel value encodes the distance between the camera and the
object represented by the pixel. The distance is normalized into
a range [0, depthmax ], where all the values above depthmax
are cut off and set equal to depthmax . The value of depthmax
is set to 100 m by default and can be redefined by the user.

UE4 also allows defining post-processing routines that
exploit custom stencils to create a segmented version of
an RGB image. Each type of object placed in the virtual
environment is assigned a specific custom stencil value used
to distinguish each object in a segmented image. Figure 1
shows an RGB image (left image) with the corresponding
depth image (middle image) taken from the same scene, and
along with the corresponding segmented one (right image),
where each object class is identified by a different color.

At last, TrainSim allows defining different ambient aspects
and weather conditions used to test visual based-algorithms
in a wide range of operating conditions. In particular, it is
possible to define:

• the Sun position, for creating images with different
shadows and light intensity. The framework defines
three different time slots, morning, evening, and night,
as shown in Figure 12;

• the fog, with a desired intensity, by inserting the Expo-
nentialHeightFog UE4 actor in the environment.

G. IMU Model

The proposed simulation framework includes a model of a
9-axis inertial measurement unit (IMU) with accelerometers,

gyroscopes, and magnetometers, for estimating the current
position, velocity, and orientation of the train by means of
inertial navigation algorithms [18]. To reproduce realistic data
with high fidelity, the IMU model allows the user to specify
noise properties, calibrated bias, and other parameters that
affect the quality of the measures.

The simulated measured quantity ã in the IMU reference
frame is computed from the ground-truth quantity a in the
NED frame by means of the accelerometer model A to obtain
ã = A(a, θ), where θ is the orientation of the IMU, necessary
to return readings in the IMU frame.

Function A depends on the following factors:
1) The gravitational acceleration g, added along the Down

component of a and converted to the IMU frame
using the rotation matrix C I MU

N E D(θ) computed from the
orientation θ .

2) The misalignment matrix Mis (due to geometrical
imperfections of the orientation of the individual
accelerometer axes) and a constant calibrated bias ϵ,
used to alter the ground-truth acceleration.

3) A drift term δ, which depends on noise parameters, such
as Bias Instability, Noise Density, Random Walk, and
environmental causes, as temperature-induced bias.

4) A quantization factor Q, used to replicate the resolution
of the sensor.

The resulting function for the accelerometer is then:

ã = A(a, θ) = Q
(

Mis C I MU
N E D(θ)(a + g) + ϵ + δ

)
. (2)

Similar formulations are used for simulating the outputs
of gyroscopes and magnetometers. Changing the noise, bias,
resolution, or any other parameter in the datasheet of a specific
sensor allows simulating different IMUs.

H. Trajectory Generator

This tool generates pseudo-random train routes and related
journey trajectories to be used as input files for the simulator.

As a first step, the route is generated as a sequence of
curves and straight blocks that follow the constraints imposed
by the construction standards. The output is a sequence of
spatially evenly distributed points P = {Pk | k = 1, . . . , N }.
Then, among the straight blocks, some of them are randomly
selected as bridges, tunnels, and stations, using constraints and
probability provided by the user. It is possible to interpolate the
position between points by fitting three smoothing splines [21]
on such points P , one for each axis (north, east, down). This
approach allows importing the set P from the digital map of
an actual route.

The second step defines the maximum train velocity on
each block of the track, e.g., inside tunnels, on bridges, within
stations, and in each curve as a function of its curvature. The
details on the generation of such synthetic routes and velocity
profiles are omitted for space limitations, also considering that
the algorithm could be extended to better adapt to the final
dataset produced by the simulator.

Then, the tool exploits the kinematic model and the control
law of the train, combined with the geometry of the route and
the maximum velocity profile, to yield the final trajectory of
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the front and rear bogies of the vehicle (position, velocity,
acceleration, and orientation) with the desired sampling time
TS . Note that the orientation at each sampling instant is
computed only using the geometry of the track. In fact, since
the motion of the train is heavily constrained by the track,
the only allowed orientation of a vehicle is the orientation
of the track itself. Hence, the yaw, pitch, and roll angles are
computed from the line tangent to the track in the current bogie
position. At the same time, the angular velocity is obtained by
kinematics as a function of the orientation and orientation rates
on the three axes.

The trajectory of a generic point on a vehicle can be
computed from the trajectories of its front and rear bogies.

I. Dataset Export

The generated dataset can be transmitted for online usage
or stored to be employed offline.

The proposed online method allows the user to directly
connect the UE4 simulator to a ROS network, creating a sensor
node that exposes the frame data right after the acquisition,
providing a simulation system that can be tested and evaluated
online. The ROSIntegration plugin [22] for UE4 is used to
create distinct topics for images, point clouds, and inertial data
that are transmitted through a TCP connection to a ROS [5]
bridge node.

Datasets are saved on the disk with the same data format
used by other urban open datasets that can be found in the
scientific community, such as the KITTI dataset [6]. In this
way, most of the automotive algorithms can be tested on the
saved train dataset to evaluate their performance in a railway
environment without additional pre-processing.

Along with the (x, y, z) coordinate values for each point in
the LiDAR frames, TrainSim also provides the surface normal
related to each object hit by the simulated LiDAR laser (the
relative object which each point belong to). It is worth to
remarking that, even so a LiDAR sensor does not provide
such information, and that it must be computed with proper
computer vision algorithms, it is an important local feature
exploited by different point cloud processing methods.

IV. EXPERIMENTAL RESULTS

This section presents some experimental results aimed at
testing the realism of the simulated datasets. Section IV-A
compares a real point cloud gathered in a static environment
with a point cloud generated by TrainSim on a similar static
scene re-created on the graphic engine. Section IV-B com-
pares the performance of a state-of-the-art LiDAR odometry
algorithm on a sequence LiDAR frames generated by TrainSim
and taken from the KITTI dataset. Finally, Section IV-C
compares the results of an image semantic segmentation
algorithm applied to both the TrainSim generated data and
the RailSem19 [10] dataset.

A. LiDAR Working Principle Analysis

This section aims at evaluating the emulation of the working
principles of a LiDAR sensor in TrainSim, considering both
distance and backscattered intensity measurements. Real point

Fig. 13. Real-world reference static scene (left) and similar scene re-created
in the simulation framework (left).

Fig. 14. Top and frontal view of real and simulated point clouds.

clouds were acquired using a Scout Mini Robot1 equipped
with a Velodyne VLP-162 LiDAR sensor. As illustrated in
Figure 13, the robot was positioned on an courtyard in front
of a wall (Figure 13, left) and a similar scenario has been
re-created in TrainSim (Figure 13, right).

The VLP-16 is a 360◦ rotating LiDAR with 16 vertically
aligned laser beams covering a vertical Field Of View (FoV)
of 30◦, vertical resolution of 2◦, and horizontal resolution of
0.2◦ for the default rotation speed. In the following, θ denotes
the yaw orientation angle, while φi and ρi denote the vertical
angle displacement and the distance reading of the i th beam,
respectively.

The Root Mean Square Error (RMSE) between the real
and the simulated cloud points was computed to evaluate the
realism of the LiDAR simulation, as done in [23]. To be
more consistent with some restrictions in the reconstructed
environment, the point clouds have been cropped to reduce the
horizontal FoV, setting θ ∈ [−

π
2 , π

2 ]. It is worth noting that
the simulated virtual scene has been re-constructed manually,
introducing position errors due to measurement errors and
shape misalignment imprecisions, which increased the result-
ing RMSE. Figure 14 illustrates the top and frontal view of the
two point clouds (real data are presented in blue and simulated
ones in purple). Note that the largest misalignment between
points is due to the irregular shape of the real sidewalk,
which is simply represented by a flat surface in the simulation.
Excluding the sidewalk points from the comparison, the RMSE
resulted of 0.035 m, which is in accordance with the precision
of the VLP-16 LiDAR.

The presented results were obtained with a simulated point
cloud without considering the noise, since the datasheet of
the LiDAR device reports the precision only for the distance
ρ and not for the ray angular displacements. Adding to the
measured distance ρ a Gaussian white noise comparable with
the VLP-16 precision (i.e., zero mean and variance 0.015) did
not significantly change the RMSE, which resulted of 0.081 m

1https://global.agilex.ai/products/scout-mini
2https://velodynelidar.com/products/puck/
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Fig. 15. Frontal view of the real (left) and simulated (right) point clouds. The
color associated with each point encodes the backscattered intensity values.

considering the whole point cloud and 0.04 m excluding the
points belonging to the sidewalk.

Concerning the backscattered intensity, there is not a
standard way to process data, thus LiDAR manufacturers
use different methods to compensate the measurements with
respect to various parameters, as distance and incidence angle
(see SectionIII-E). Such compensation methods are frequently
unknown, making it challenging to precisely reproduce the
output backscattered intensity values for a specific LiDAR
device. In particular, VLP-16 divides the intensity values into
two sub-ranges: values in [0, 100] map diffuse reflectors with
a reflectance in the range 0−100%, while values in [101, 255]

represent retro reflectors with an ideal reflection. Unfortu-
nately, the calibration mechanism is not precisely described in
the VLP-16 User Manual, restricting the possibility of repro-
ducing an exact representation of the backscattered intensity
in TrainSim. For this reason, a qualitative comparison between
the intensity values is presented, showing the distribution of
the intensities with respect to incidence angles, distances,
object materials, roughness, and reflectance. The model to
account for the last three parameters has been taken from [15].
In the reference scene, retro-reflected elements are not present,
and the intensity values are scaled in the [0, 100] range to
match the VLP-16 specifications. Figure 15 shows the point
clouds gathered from the reference scene and the simulated
one, showing three different effects that can be underlined:

• the backscattered values of the sidewalk in front of the
LiDAR decrease by increasing the angle of incidence;

• the metal pole has high-intensity values in the frontal part
of the pole, rapidly decreasing on the pole boundaries;

• the effect of the angle of incidence on concrete material
such as the wall is lower than the effect on metallic or
plastic material.

B. LiDAR Odometry Analysis

This experiment compares the results obtained with sim-
ulated point clouds against real ones on an odometry task.
Due to the lack of public point cloud datasets acquired from
a train, the KITTI [6] urban automotive dataset was select for
comparison.

The purpose of LiDAR odometry is to predict the motion
of the LiDAR sensor from consecutive LiDAR frames. The
ego-motion estimation is done by iteratively computing the
homogeneous transformation matrix Tk between two con-
secutive frames Fk and Fk+1 that maximize the alignment
between the two frames. Formally, the transformation matrix

is defined as Tk =

[
Rk tk
0̄ 1

]
, where Rk is a rotation matrix,

tk is a translation vector, and 0̄ is a vector of zeros. The best

alignment can be defined as an optimization process aimed at
minimizing the following distance function:

dm(Tk) =

Nk∑
i=1

((Rk · pi + tk − qi ), (3)

where Nk is the number of points in frame Fk , pi ∈ Fk is
a point in frame Fk , and qi ∈ Fk+1 is the point closest to
pi after applying transformation Tk to Fk . From the estimated
transformation Tk+1, computed at time k + 1, it is possible
to predict the ego-motion of the LiDAR sensor in terms of
orientation Rk and translation tk .

In this work, the LiDAR Odometry And Mapping
(LOAM) [24] algorithm was used for the odometry task.
In particular, the LOAM algorithm is divided into two con-
secutive modules: (i) an odometry algorithm that is computed
at a high frequency with low precision, and (ii) a mapping
algorithm that is executed at a lower frequency but with a
higher accuracy. By default, the odometry algorithm extracts
24 features, whereas the mapping algorithm extracts 240 fea-
tures to have higher precision, with a ratio of 1:2 between
corner and planar features. Both algorithms extract a fixed
number of corner and planar features from frame Fk+1, find
and matches the same features in the frame Fk , and iteratively
minimize the distance presented in Equation 3 to compute the
best alignment transformation Tk+1.

To distinguish between planar and corner features, a feature
factor c is computed [24] for each point, where a low c value
indicates a planar feature, whereas a high c value indicates
a corner feature. Then, features are ordered based on the c
values and N corner points are selected taking the highest
c values, and 2N planar points are selected taking the lowest
c values, where N is a user-defined parameters (set to 8 for
the odometry step and to 80 for the mapping step).

The estimation error of the LOAM depends on the quality
of the extracted features: environments containing repetitive
features, such as tunnels or highways (hard to be detected in
different frames), or with a low number of peculiar features
leads to higher estimation errors. Moreover, since train and car
motion mostly evolve in the X-Y plane, with low variations of
the Z values, the Z evolution is not observable in such envi-
ronments, unless the terrain presents substantial Z variations
during motion.

In this experiment, three different sequences of the KITTI
dataset have been chosen. The sequence with the identifier
00 is completely gathered in a urban environment with abun-
dant high-quality features. The second, with identifier 01,
is gathered on a highway, which has low-quality features. The
third sequence, identified as 09, is divided into two parts: the
first is collected in a leaning street with a lot of vegetation on
the sides, and the second is gathered in a urban environment.
The comparison is made against three different sequences
generated by TrainSim, where the environment is composed of
vegetation, railway structures (e.g., poles, electrified structures,
and rails), fences, and stations.

Three different metrics have been chosen to evaluate the
LOAM algorithm on the selected sequences: the estimation
error of the translation along the X and the Y axis on the
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TABLE I
LOCALIZATION RESULTS OF THE LOAM ALGORITHM [24] APPLIED

TO THREE SEQUENCES GENERATED WITH TRAINSIM AND THREE
SIMILAR SEQUENCES FROM THE KITTI DATASET [6]. THE

VALUES INDICATE THE MEAN ± THE VARIANCE AND THE
MAXIMUM ERROR VALUE OF THE TRANSLATION ERROR

ALONG THE X AXIS (TEX), THE TRANSLATION ERROR
ALONG THE Y AXIS (TEY) COMPUTED IN A SINGLE

ESTIMATED TRANSFORMATION BETWEEN TWO
CONSECUTIVE LIDAR FRAMES EXPRESSED

IN METERS, AND THE OVERALL ERROR
OVER DISTANCE (EOD)

IN PERCENTAGE

single transformations between each two consecutive LiDAR
frames (TEX and TEY), and the cumulative position error in
the X -Y plane computed over the traveled distance (EOD).
The translation over Z was not taken into account due to the
low variability of the Z coordinates, whereas the orientation
estimations were not reported because the estimation error
resulted to be below 1◦. Table I shows the results of the LOAM
algorithm applied to the six sequences.

The results indicate that the estimation error obtained on the
simulated environment is comparable with the one over the
KITTI sequences. In particular, the first simulated sequence
is surrounded by vegetation and buildings, whereas the sec-
ond and the third sequences present some fence stripes that
introduce repetitiveness in the distribution of the features; in
particular, the second sequence contains some heathland that
is comparable with the highway environment. The same trend
can be seen in the KITTI sequence, where the highest error
occurs in the KITTI 01 sequence gathered in the highway,
while the lowest error is achieved in the KITTI 00, which is
entirely acquired in a urban environment.

C. Image Segmentation Analysis

In several works in the autonomous driving domain
(e.g., [25], [26], [27], [28]), synthetic scenarios are used with
domain adaptation (DA) techniques to improve the accuracy
of a neural model whenever there is a scarce availability of
real-world annotated samples, which is particularly true for the
railway domain. In particular, during training, such techniques
help to select learnable features from synthetic images that
enhance the model outcome in real-world testing scenarios.
Therefore, this section presents an experiment aimed at eval-
uating the improvement obtained on a neural model when
augmenting the training set with synthetic images generated
by TrainSim.

To do that, we evaluated the performance of a neural
network on a real-world test set by comparing two different
training modes: semi-supervised (SS) and semi-supervised
with domain adaptation (SSDA) [28]. More specifically, in SS
mode, the neural model is trained using only real-world

TABLE II

PERFORMANCE OF THE BiseNET MODEL [29] ACHIEVED BY A
SEMI-SUPERVISED (SS) APPROACH (WITH ONLY RAILSEM19

SAMPLES) AND A SEMI-SUPERVISED DOMAIN ADAPTATION
(SSDA) WITH BOTH REAL-WORLD AND SYNTHETIC SAMPLES

(RAILSEM19 + TrainSIM). THE VALUES DENOTE THE
INTERSECTION OVER UNION (IoU) AND std × 10 OF

EACH CLASS AMONG A 4-FOLD CROSS-VALIDATION
ON RailSEM19. ‘10’ AND ‘20’ DENOTE THE

NUMBER OF REAL-WORLD ANNOTATED
SAMPLES, RANDOMLY EXTRACTED

FROM RailSEM19

images, following supervised and unsupervised paradigms for
labeled and unlabeled samples, respectively. In SSDA mode,
instead, the model is trained using the same paradigms for real-
world samples, but the training set is augmented with labeled
synthetic images.

In the experiment presented here, SSDA was performed via
a discriminator approach [26] and, for consistency, the SS
mode was also implemented by a discriminator approach [27]
using the real-world annotated samples as the source dataset.

Real-world images were taken from the RailSem19
dataset [10], containing more than 8000 annotated samples
collected from both railway and urban scenarios. In our tests,
6000 samples were used for the training set: 6000 − k with
annotations and k without annotations, setting k = 10 and
k = 20 to observe the difference in performance. Other
2000 samples were used for the real-world test set.

In SSDA mode, the training set was augmented with
6700 annotated synthetic images collected from different sim-
ulated scenarios, similar to those described in Section IV-B,
where different materials were randomly applied to the
trackbed and the landscapes, and various lighting conditions
were used to add some variability to the gathered images.
Since RailSem19 and TrainSim define two different sets of
object classes, the analysis was conducted on a subset of
RailSem19 classes also present in TrainSim (see Table II and
Figure 16), while all the remaining classes were considered as
‘background’.

The neural architecture selected for the semantic segmen-
tation task is a BiseNetX39 [29], trained by the Adam
optimizer [30] with its default settings and a learning rate of
0.003. Batch size and training steps were set to 30 and 8000,
respectively. The training was performed by using the classic
pixel-wise cross-entropy loss. Input images were resized to
(H=680, W=720) to reduce the computational cost, while
random crop (scale 1/2) and random horizontal flip were used
for training set augmentation.

Table II reports the performance achieved on the RailSem19
dataset (details in the caption), showing that the use of Train-
Sim improves the IoU on crucial classes (rail-track, trackbed,
and terrain), whereas the performance on other classes is
reduced, most likely due to a more accentuated domain shift
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Fig. 16. Output predictions of RailSem19 real-world images.

between synthetic and real-world textures. Figure 16 shows
two real-world images taken from RailSem19 (a) and the
corresponding segmented images produced by SS-20 (b) and
SSDA-20 (c). In accordance with Table II, the model trained
using synthetic samples (SSDA-20) produces more accurate
segmentation maps.

Despite the benefits discussed above, we also noticed that
increasing the number of annotated real-world samples (i.e.,
more than 50) SSDA yields lower performance than SS (with-
out TrainSim images). We believe this is due to a semantic
domain shift between the simulated and real-world images,
which become more relevant for a higher number of real-world
samples. For instance, TrainSim does not account for complex
textures contained in RailSem19 (e.g., crowded urban and
driving scenarios). This forces the model to learn a constrained
subset of visual patterns during SSDA, forgetting those that
are not well-represented in TrainSim but still useful in real-
world scenarios. Please also note that such a domain shift
is more accentuated when running an unsupervised DA or
without any DA strategy. This motivated us to explore SSDA,
where a small subset of real-world data helps alleviate the
domain shift.

These points open interesting future works for investigating
novel DA approaches for railway scenarios. Finally, it is also
worth remarking that, to the best of our knowledge, this work
is the first one that proposes an SSDA approach for semantic
segmentation in railway scenarios.

V. CONCLUSION

This paper presented TrainSim, a visual simulation frame-
work designed to automatically generate a number of realistic
railway scenarios and produce labeled datasets from emulated
sensors, as LiDARs, cameras, and inertial measurement units.
Such datasets are exported in a format suitable for training
deep neural models for object detection, semantic segmenta-
tion, and depth estimation for camera data, or for processing
3D point clouds from a LiDAR. For each 3D point, the LiDAR
model also provides the intensity of the backscattered ray,
which can be used to simplify the discrimination of the tracks
from other objects with higher diffusion coefficients.

The preliminary experiments carried out on the simulated
sensors showed the effectiveness of the proposed approach,
making the simulator a useful tool for investigating, training,
and testing new perception algorithms for railway applications.

As a future work, we plan to extend the simulator by
adding several new features as: (i) effects of adverse weather
conditions (e.g., rain and snow) on visual sensors; (ii) rail-
road switches and turnouts; and (iii) moving objects in the
environment. Other objectives will be the refinement of the
train dynamics with a more accurate physical model, a better
photorealism in terms of meshes, and the optimization of the
code to reach a real-time performance, useful for using the
tool in hardware-in-the-loop simulations.

Finally, we plan to conduct future investigations in domain
adaptation methods for point-cloud data, since the current lack
of proper real-world annotated samples limits a comprehensive
evaluation of models trained with simulated LiDAR data in
railway scenarios.
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