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ABSTRACT Embedded computing systems are becoming increasingly relevant in the Internet of Things
(IoT) and edge computing domains, where they are often employed as the control entity of a cyber-physical
system. When operating in such interconnected domains, a software system is susceptible to cyber-attacks
from external agents, which can compromise the correct behavior of the system. In addition, the software
executing in these systems is typically characterized by stringent timing constraints, which must be satisfied
during system execution. Enabling software protections to enhance the security level of the embedded
software comes at the cost of increasing the computation times of the tasks, introducing the risk of deadline
misses that could also jeopardize the system behavior. This paper presents a methodology to optimize
the security level of real-time software while preserving system-wide schedulability by leveraging timing
analysis. The proposed approach is based on a mixed-integer linear programming (MILP) formulation that
maximizes the security level of the tasks and integrates a response-time analysis technique to assess the
schedulability of the system whenever additional protections are activated to shield the software against
cyber-attacks targeting specific classes of vulnerabilities. An experimental evaluation is presented to assess
the performance of the proposed approach on a representative set of tasks included in standard benchmarking
suites for embedded software.

INDEX TERMS Real-time systems, schedulability analysis, cyber-security, vulnerability, optimization.

I. INTRODUCTION
In the domain of cyber-physical systems, real-time embedded
computing systems are typically employed to control and
monitor a physical process. Cyber-physical systems most
often feature an external interface to perform distributed
process control, real-time monitoring and data collection,
and high-level supervision tasks.When operating in intercon-
nected domains of this kind, an embedded software system
is open to cyber-attacks that can be carried out by external
agents, introducing additional risks concerning the security
of the cyber-physical system. Compromising the security of
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such a software system constitutes an immediate and critical
threat to the safe operation of the physical process, which
must be carried out in accordance with strict safety criteria
and operational constraints to guarantee both performance
and safety. The design of real-time embedded software
requires coping with timing constraints, which mandate that
each computational task, typically executed in a periodic
or sporadic fashion, is assigned a completion deadline
corresponding to the time by which the task should finish its
job with respect to its release time. Safety-critical systems
typically include a subset of hard real-time tasks whose
deadlines should be guaranteed off-line in all execution
scenarios to ensure the correct operation of the system. This is
relevant in several application domains, such as robotics [1],
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[2], [3], [4], autonomous driving [5], [6], [7], [8], smart
cities [9], [10], and Industry 4.0 [11], [12].

The implementation of software security mechanisms to
protect a program against a set of known cyber-attacks [13]
comes at the cost of introducing non-negligible overheads in
the execution of the targeted software systems [14]. When
a large number of software protections are activated for a
given program, the resulting processing overheads may hence
significantly affect the timing performance of the system due
to, for instance, the increase of the execution times of the
tasks. This may clearly jeopardize the satisfaction of timing
constraints.

It is hence relevant to study how to best protect real-
time systems from cyber-attacks while still guaranteeing
deadlines. This requires dealing with multiple challenges,
such as (i) determining appropriate parameters to model the
security of a real-time application, (ii) including them in
a new, security-aware, real-time task model, (iii) selecting
suitable analysis methods to guarantee the real-time con-
straints of target applications, and (iv) devising optimization
strategies to maximize security while guaranteeing the
temporal constraints.

A. CONTRIBUTION
This work presents a methodology to optimize the security
level of real-time software while preserving its schedulability.
In particular, it provides the following contributions:

• A security-aware real-time task model that allows
describing the internal structure of each task by means
of its control-flow graph while capturing the security
vulnerability that can affect each individual basic block
(sequential blocks of execution within the code) and the
corresponding impact of installing security protections.

• A mixed-integer linear programming (MILP) formula-
tion that allows maximizing the security level of a given
task set by selectively activating software protections
for each task while ensuring that the task set remains
schedulable.

• An extensive experimental evaluation to assess the
performance and efficiency of the proposed approach
based on representative task sets taken from state-of-the-
art benchmarking suites for embedded software.

The optimization is carried out at the level of the
basic blocks of each task. To verify system schedulability,
an efficient response-time analysis technique for fixed-
priority scheduling is integrated into the MILP formulation.

To the best of our knowledge, no prior work is specialized
on deriving an optimal trade-off of this kind, instead
focusing on either selectively applying specific protections or
analyzing real-time software with pre-configured protections
in terms of its timing properties.

B. PAPER STRUCTURE
The rest of this paper is organized as follows. Section II
introduces the system model and the terminology used in the
paper and identifies the problem approached by the proposed

FIGURE 1. Workflow of the proposed approach.

methodology. Section III introduces a characterization of
relevant classes of software vulnerabilities and the related
protections considered in the paper. Section IV provides an
overview of the proposed analysis and optimization approach,
while Section V presents the proposed MILP formulation.
Section VI provides the results of an experimental evaluation
of the proposed approach. Section VII presents an overview
of related works in the literature. Finally, Section VIII
concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT
This section first provides an overview of the proposed
methodology to perform a joint security- and timing-related
optimization starting from the application source code. Then,
it introduces the task model, as well as the security and threat
model.

A. OVERVIEW
This paper aims at answering the following question:
Research Question 1: Starting from the source code of an

application composed of multiple real-time tasks, how to
derive the optimal trade-off between the security protections
to be enabled in the application and its schedulability?

Clearly, to maximize security, one should implement as
many security protections as possible. On the other hand,
enabling security protection mechanisms introduces non-
negligible overheads that can easily jeopardize schedulability.
Therefore, a potential trade-off arises between security and
schedulability. The exploration of this trade-off can be carried
out by means of optimization methods, provided that suitable
models for both the application and the corresponding
security protections are available. Differently from prior work
(see Section VII for a detailed discussion), we tackle this
optimization problem at a fine-grain level. In particular, for
each software task in the system, we leverage a control-flow
graph (CFG) that encodes all the possible execution paths of
the task. The CFG nodes correspond to the basic blocks (BBs)
of the program, i.e., sequential blocks of execution, for which
the optimizer is called to decide whether it is convenient to
enable a set of security protection mechanisms (if any), also
considering that different protections applied to different BBs
do not contribute the same to the overall security level of the
system.

To this end, we propose the following workflow, illustrated
in Figure 1. First, a model extraction tool is used to extract
the CFG and the corresponding worst-case execution time
information for each task in the target application. This
procedure, detailed in Section IV, leverages the Heptane
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state-of-the-art static WCET analysis tool [15]. The same
tool is also adopted to quantify the overhead introduced by
enabling each security protection at the level of the BBs.

The resulting information is then used to generate an
optimization problem based on the execution paths in the
CFGs that can be encountered by executing the tasks. The
optimization problem is based on an MILP formulation,
presented in Section V, which allows deriving the most
convenient security protections to be enabled to maximize
the security level of the application while guaranteeing its
schedulability. Protection scores to quantify the security
level are derived according to the relevance of well-known
vulnerabilities, leveraging information obtained from cyber-
security vulnerability databases, as discussed in Section III.

B. TASK MODEL
This work considers an application consisting of a set 0 =

{τ1, . . . , τn} of n sporadic real-time tasks to be executed
on a multiprocessor platform consisting of m identical
processing cores (or processors) P1, . . . ,Pm. Tasks are
managed according to partitioned fixed-priority scheduling,
meaning that each task is assigned to a core at design
time, and, at runtime, the tasks assigned to each core are
managed by a fixed-priority scheduler for uniprocessors.
This scheduling strategy is highly predictable from a timing
perspective [16], [17] and is available in many popular
target operating systems. For example, on Linux, partitioned
fixed-priority scheduling can be configured by using the
SCHED_FIFO scheduling class and specifying affinities to
individual cores with thesched_setaffinity() system
call. The processor to which a task τi is assigned is denoted
by P(τi). Without loss of generality, we assume that each task
is assigned a unique priority level. Given an arbitrary task
τi ∈ 0 allocated to core Pk , the set of tasks with higher
priority than τi allocated on the same core is denoted by
hpk (τi). Each task τi releases a potentially infinite sequence
of jobs, each separated by the previous one by a minimum
inter-arrival time Ti, and is subject to a relative deadline Di,
meaning that each job is expected to terminate withinDi units
of time from its release. In the following, we consider the
case of constrained deadlines, meaning that the value of the
deadline parameter Di is constrained such that Di ≤ Ti.
The computational structure of each task is represented

by a control-flow graph (CFG) that encodes all the possible
execution paths. In particular, each task is composed of a
set of ni,B basic blocks (BBs) Bi =

{
bi,1, bi,2, . . . , bi,ni,B

}
,

where each basic block bi,j represents a sequential block
of execution within the program. Then, the CFG of a task
τi consists in a directed graph Gi = (Bi,Ei), where the
set of basic blocks Bi corresponds to nodes (or vertices) in
the CFG and Ei is a set of edges. Edges in Ei encode the
possible sequences of execution of BBs yielded by executing
the program, in the sense that an edge between two nodes
bi,j and bi,k represents the potential flow of control from the
starting BB bi,j towards the destination BB bi,k , resulting

from the execution of a flow control statement at the end of
BB bi,j. Such flow control statements include conditional or
unconditional branches and function calls. Without loss of
generality, it is assumed that each DAGGi has a single source
BB (at the task entry point) and a single sink BB (at the task
exit point). Within a CFG Gi of a task τi, a path is defined as
an ordered sequence of BBs from the source BB to the sink
BB, where each pair (bi,j, bi,k ) of adjacent BBs in the path is
connected by an edge in Ei, directed from bi,j to bi,k .

In order to enable static WCET analysis techniques
applicable, an upper bound has to be provided on the number
of times in which each cycle in the CFG is traversed. For
instance, this information can be provided by means of code
annotations [18]. Under this assumption, it is possible to
apply standard static program analysis techniques to unroll
all cycles that are present in the CFG. The result is a set of
paths of finite length for the CFG Gi of a task τi, denoted
by paths(τi), where each path in paths(τi) may traverse each
BB in Bi multiple times. In the following, for any path λ ∈

paths(τi), the notation bi,j ∈ λ is used to indicate that the BB
bi,j belongs to the path λ.
An example of CFG representing the control flow of a task

is provided in Figure 2(a). The figure highlights a loop in the
control flow provided with a bound on the number of times
the BBs within the loop are traversed during task execution.

An example intermediate representation of the control
flow of the task following a loop unrolling procedure is
provided in Figure 2(b). Observe that this representation
allows enumerating the paths of the CFG and derive the set
of paths paths(τi).

Each task τi is then characterized by a baseline worst-case
execution time (BWCET) Ci, which denotes the worst-case
execution time of the task when no security protection is
installed. Then, for each task τi, each BB bi,j ∈ Bi is itself
characterized by a BWCET, denoted by Ci,j, representing
the worst-case execution time required to execute the BB
when no protection is installed in it. Both parameters can
be extracted by state-of-the-art WCET analysis tools [15],
as discussed next in Section IV. The response time of a job
of a task τi is defined as the difference between the finishing
time of the job, i.e., the time at which the job completes its
execution, and its release time. Then, theworst-case response
time (WCRT) Ri of the task τi is defined as the maximum
response time across all possible jobs of τi in all possible
schedules of the application 0.

C. SECURITY AND THREAT MODEL
The application 0 may be susceptible to cyber-attacks due
to the presence of vulnerabilities in the program executed by
each task. For the purpose of deriving a method to optimize
the security of the application, we consider vulnerabilities to
be classified into types. Several classifications of program
vulnerabilities are available in the literature [13], [19]. The set
of vulnerability types is denoted by V . For each vulnerability
type v ∈ V , we assume that a corresponding set of security
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FIGURE 2. Example of CFG for a program before (inset (a)) and after (inset (b)) unrolling loops. Node labels correspond to the WCETs of the basic blocks.

countermeasures is available to shield the program against
attacks leveraging that vulnerability. The countermeasures
available for each vulnerability are modeled as a protection
mechanism for the specific vulnerability v, which can be
installed within the program at the level of BBs.

Parameter xvi,j is introduced for each BB bi,j to denote that
the protection for a vulnerability of type v is installed within
bi,j by setting xvi,j = 1; otherwise, xvi,j = 0. The proposed
approach is applicable to a broad class of vulnerability types
provided that protections to be installed in BBs are available.
The class of vulnerabilities and protections considered in this
work are further detailed in Section III.
To quantify the security level of the application 0 with

reference to the above security and threat model, the negative
impact of a certain vulnerability type is quantified by means
of a security susceptibility score (SSS), defined as a real value
between 0 and 1, where larger values of the SSS correspond
to a larger impact on the security of the application. For each
vulnerability type v ∈ V , the corresponding SSS is denoted
by sv, with sv ∈ [0, 1]. A practical way of defining such
SSSs for some relevant types of vulnerabilities is presented in
Section III. In essence, the higher the value of sv, the higher
the benefit, in terms of security, of having the corresponding
protection installed in a BB (i.e., xvi,j = 1). For simplicity, this
paper assumes a one-to-one correspondence between each
vulnerability and each protection, meaning that a protection
mechanism only protects from a single vulnerability, and a
vulnerability can be protected only by a single protection
mechanism.

D. IMPACT OF PROTECTIONS ON TIMING
Installing a protection mechanism in a BB comes at a cost
in terms of real-time performance, since additional runtime
overhead is introduced in the protected version of the BB. The
overheads resulting from installing protection mechanisms in
some of the BBs of a task produce an increase in the expected
execution time of the task. The overhead contribution of the
protection for a vulnerability of type v is assumed to be
bounded by σv.

By leveraging the availability of the WCETs Ci,j of each
BB bi,j ∈ Bi of a task τi, it is possible to define the WCET C i
of τi when a number of protection mechanisms are installed

in some of its BBs, as follows:

C i = max
λ∈paths(τi)

∑
bi,j∈λ

(
Ci,j +

∑
v∈V

xvi,j · σv

) . (1)

The maximum in Equation (1) is computed across all
paths in paths(τi) to cover all possible execution flows of the
program, thus accounting for the presence of control flow
statements at the boundary of each BB.

E. QUANTIFYING THE SECURITY LEVEL
The overall security level S0 of the application0 is quantified
with an index given by a real value between 0 and 1 by
computing the normalized weighted sum of the SSS of the
protected BBs of each task, across all vulnerability types and
all BBs, as follows:

S0 =

∑
τi∈0

∑
bi,j∈Bi

∑
v∈V x

v
i,j · s

v∑
τi∈0

∑
bi,j∈Bi

∑
v∈V s

v . (2)

The rationale behind Equation (2) is that the less BBs are
protected, the more likely a successful attack on the program
is. In general, an attacker may be capable of stimulating the
execution of any path by providing appropriate inputs; hence,
all the BBs are considered to contribute to the overall SSS of
a task equally. Again, for the sake of simplicity, we consider
that all BBs have the same probability of being vulnerable to
a certain kind of attack. The model can be easily refined by
introduce a per-BB weight in Equation (2) to differentiate the
relevance of each BB to the overall security level according
to properties of the corresponding code or even the likelihood
of executing it (when available). For instance, for buffer
overflow vulnerabilities the weights of the BBs involved in
the access to a certain buffer could depend on the buffer size.1

Under this definition, the highest security level (S0 =

1) for the application 0 is obtained when all protection
mechanisms are installed in all the BBs of all tasks in 0

for each vulnerability type in V . Conversely, a security level
S0 = 0 means that no protection mechanism is installed in
any of the basic blocks of the tasks composing the application
0.

Table 1 summarizes the symbols used in the systemmodel.

1This is in line with compiler-assisted protections for stack overflows that
avoid protecting functions that access small buffers.
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TABLE 1. Symbols used in the system model.

F. PROBLEM STATEMENT
Introducing additional protections for a task in the application
0 comes at the cost of increasing the expected execution
time of the corresponding task. The aim of the proposed
methodology is to optimize the security of the application 0

while ensuring that the timing constraints of all tasks in 0 are
guaranteed to bemet. In practice, thismeans that the proposed
approach aims at maximizing the achieved security score S0

of the application, as defined in Equation (2), while ensuring
that the WCRT Ri of all the tasks in 0 does not exceed the
corresponding deadline Di, meaning that the application is
schedulable.

III. SECURITY VULNERABILITIES AND PROTECTIONS
The security and threat model provided in Section II requires
a characterization of the SSS value sv for each protection
in V . This value quantifies the negative impact of the
corresponding vulnerability on the security of a task in the
application 0, and, thus, also quantifies the positive impact
on the security of the application given by installing the
corresponding protection in the task.

To define SSS values, it is possible to refer to existing cate-
gorization and evaluation systems for security vulnerabilities.
The CommonVulnerabilities and Exposures (CVE) program,
managed by the MITRE Corporation with funding from the
U.S. Department of Homeland Security (DHS) Cybersecurity
and Infrastructure Security Agency (CISA), was introduced
in 1999 to provide a common reference for known secu-
rity vulnerabilities [19]. In particular, the CVE program
identifies, defines, and catalogs vulnerabilities of publicly
released software. By itself, the CVE cataloging system
does not provide severity scoring or prioritization features.

Another standard, the CommonVulnerability Scoring System
(CVSS), operated by the Forum of Incident Response and
Security Teams (FIRST), a global forum of collaboration
for security teams, can be used to score the severity and
prioritization of software vulnerabilities identified by CVE
entries. CVSS provides a way to generate a numerical score
reflecting the severity of a vulnerability by capturing its
principal characteristics and the associated attack patterns
as a way to aid prioritization for organizations involved in
managing or analyzing the security of critical software and
computing systems. The MITRE Corporation also manages
the Common Weakness Enumeration (CWE) program, again
funded by the CISA, to provide a categorization of the large
number of threats cataloged in the U.S. National Institute
of Standards and Technology (NIST) National Vulnerability
Database (NVD), currently counting more than 200,000 CVE
entries. The CWE program also leverages the CVSS scores
associated with each CVE entry to evaluate the vulnerabilities
and provide a baseline for weakness identification, analysis,
and mitigation. The CWE program also maintains the CWE
Top 25 Most Dangerous Software Weaknesses list (CWE
Top 25), which reports the 25 most common and dangerous
weaknesses (i.e., types of vulnerabilities) affecting publicly
available software, updated on an annual basis to reflect the
current security scenario.

The vulnerability classes presented in the CWE Top 25 are
easily found in software and can be used to craft cyber-
attacks of high severity, which enable the attacker to mount
secondary attacks to access confidential information, disable
a service, or take over the system completely. Entries in
the CWE Top 25 are selected and ranked according to an
aggregate score obtained by considering the number of CVE
entries and the corresponding average CVSS score for each
weakness collected as part of the CWE program. In particular,
the evaluation of each weakness is performed with reference
to a subset of CVE entries in the NVD, with a focus on
entries corresponding to vulnerabilities that are known to
have been exploited, collected in the CISA Known Exploited
Vulnerabilities (KEV) catalog. The 2022 CWE Top 25 was
assembled with reference to a total of 37,899 CVE entries
from the previous two calendar years. The CWE Top 25 can
be used by software maintainers as a guideline to ensure and
assess the security of a piece of software by eliminating or
mitigating as many weaknesses as possible among those in
the list, and, subsequently, as a basis to formulate independent
claims on the security of the product with a higher level on
confidence. The score assigned to each entry in the CWE
Top 25 ranges between 0 and 100, and represents the level of
danger of the respectiveweakness, determined bymultiplying
a normalized severity score by a normalized frequency score
calculated by considering the corresponding CVE entries in
the dataset.

A. MATCHING CWE TOP 25 WITH OUR MODEL
The list of vulnerabilities in the CWE Top 25, together with
the respective scores, represents a relevant set of software
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TABLE 2. Selection of vulnerability classes for embedded software from
the 2022 CWE Top 25, with corresponding score (normalized in [0, 1]).

weaknesses that can be considered when building the set
of vulnerability types V for optimizing the security level
of a real-time application with the proposed approach. The
advantages of leveraging this list when building the set V
include the availability of a normalized score that relates to
the level of danger of each weakness, which can be directly
correlated to the concept of SSS sv for a vulnerability type
v ∈ V . Then, each type of vulnerability can be associated with
a corresponding set of software mitigations, to be applied at
the level of the basic block. Nonetheless, it should be noted
that the proposed approach is general enough to support other
quantitative scoring systems for software security, and is not
necessarily tied to scores derived with the CVSS.

Table 2 reports the most significant CWE entries in
the 2022CWETop 25 [20] related to the domain of embedded
systems, in terms of rank, weakness identification number
(CWE ID), vulnerability description (shortened, from the
CWE database2), and overall score associated with the
SSS parameter sv (normalized in [0, 1] by dividing the
corresponding score in the 2022 CWE Top 25 by 100).

For each vulnerability type v ∈ V , it is possible to assign
the value of the protection cost parameter σv by evaluating
the overhead introduced by applying the corresponding
countermeasures for the vulnerability type v in a BB of the
task. As a result, a protection pattern, usable at the level of
the BB, should be defined for each vulnerability type v ∈ V
and evaluated in terms of its overhead.

B. THE CASE FOR OUT-OF-BOUND WRITES AND READS
According to the CWE Top 25 ranking, the most critical
software weakness is that of ‘‘out-of-bounds write’’. This
weakness enables an attacker to change the values of memory
areas located outside the memory area intended to be
accessed by the software when writing contents in a data
structure. This can result in data corruption or system failure
and can also enable arbitrary code execution by the attacker.
This weakness is related to the well-known stack-based
buffer overflow and heap-based buffer overflow conditions.
The CWE Top 25 also lists the related ‘‘out-of-bounds
read’’ weakness, which affects a piece of software when the

2https://cwe.mitre.org/

program can read data outside an intended memory area. This
can allow an attacker to access sensitive information stored
in other memory locations or cause a crash by attempting to
access protected memory areas.

For instance, a basic condition resulting in a vulnerability
of the class of out-of-bounds write occurs when using
memory-unsafe programming languages (e.g., C/C++) with
programs that accept an external input from the user to select
the index of a buffer for a write operation, without checking
whether the index is within the intended range of indexes.
This notoriously allows an attacker to overwrite sensitive
information stored in memory such as return addresses or
function pointers [21], [22], [23], hence hijacking the control
flow of the attacked task.

An effective mitigation for both out-of-bound writes and
reads consists in checking that each memory access to a
certain memory buffer is actually within the boundaries
of the buffer itself. These checks are generally generated
by compilers (e.g., when using memory-safe languages)
[21], [23], [24], [25], [26] and tend to have a significant
impact on timing performance when extensively applied.

Measuring the timing overhead for these kinds of boundary
checks is essential for estimating the increase in execution
time of a protected basic block. Such an overhead can
be estimated by means of static program analysis tools
or by conservatively inflating the overheads observed with
profiling tools to provide an upper bound on the actual
execution time, as will be described in Section IV.

IV. MODEL EXTRACTION
The proposed optimization methodology for an application
0, introduced in Section V, requires the availability of the
BWCET Ci of all tasks τi ∈ 0, and the BWCET Ci,j for all
basic blocks bi,j ∈ Bi. StaticWCET analysis tools can be used
to obtain such execution times. Similarly,WCET analysis can
be applied to obtain the overhead introduced by applying a
protection pattern for a vulnerability type v ∈ V , in order to
obtain an execution cost σv for the protection v.

Static WCET analysis tools, as an alternative to
measurement-based WCET estimation [27], derive the
WCET of a program by means of mathematical models of
the timing behavior of a program when it is executed on a
specific hardware architecture.

Several commercial and open-source tool suites implement
static WCET analysis techniques. For instance, Heptane is
an open-source static WCET analysis tool that leverages
the Implicit Path Enumeration Technique (IPET) for static
WCET estimation [15]. IPET analysis combines program
flow and basic block execution time estimations into a set of
constraints related to the structure of the program, represented
by its CFG; then, each basic block and control flow is
assigned an execution time coefficient and a counter variable,
representing how many times that specific piece of code may
be executed in the program. Finally, an upper bound on the
WCET of the program is obtained by maximizing the product
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of the execution time coefficient and the counter variable,
subject to the constraints imposed by the CFG.

For the purpose of evaluating the proposed approach
on standard benchmarking suites for embedded software,
we implemented a model extraction tool by building upon
Heptane to obtain an upper bound for the execution time
of each basic block in the program (corresponding to the
BWCETs Ci,j for the basic blocks bi,j in a task τi ∈ 0),
in addition to the overall WCET of the program without
protections (corresponding to the BWCET Ci of a task
τi ∈ 0). The custom tool also outputs the CFG of the
program, together with the list of all possible paths in the
CFG, obtained after unrolling the cycles in the CFG based
on a safe estimation on the maximum number of times each
cycle can be executed. In the system model, these paths
correspond to the set of paths(τi) for a program τi ∈ 0,
which is needed to estimate the WCET of the task τi when
security protections are activated in the basic blocks of the
corresponding program. Furthermore, in order to realize and
evaluate a specialized analysis framework for the out-of-
bounds write and out-of-bounds read vulnerability classes,
presented in Section V-E, the tool can also extract the number
of memory writes and memory reads performed within each
basic block bi,j of all tasks τi ∈ τ .

V. OPTIMIZATION METHOD
This section presents an optimization approach that aims
at finding a convenient trade-off between security and
schedulability for an application0. The optimization problem
is presented as a mixed-integer linear programming (MILP)
formulation. The following are the primary goals of the
proposed formulation:

• to determine, for each BBs of the tasks composing
the application, whether it is convenient to install a
protection mechanism for a vulnerability type v on that
basic block, based on the benefit given in terms of
security, which is evaluated by means of its SSS sv, and
on its cost, which is given by its overhead σv;

• to guarantee that each task will complete within its dead-
line despite the installation of protection mechanisms in
some of its basic blocks.

Before introducing the actual formulation of the optimiza-
tion problem, we report a practical schedulability test for
fixed-priority scheduling that is particularly suitable for being
encoded in MILP formulations.

A. SCHEDULABILITY ANALYSIS
The schedulability of a task set under preemptive fixed-
priority scheduling can be assessed bymeans of the response-
time analysis approach [28], [29]. With this approach, first
the WCRT Ri of each task τi ∈ 0 is obtained; then, the task
set is deemed schedulable if Ri ≤ Di holds for all tasks, and
not schedulable otherwise. Consider a task τi ∈ 0, statically
allocated to processor P(τi) = Pk , and assume that its WCET
C i was obtained by inflating the BWCET Ci to account for
the overhead related to the protection mechanisms installed

within the program of τi. The WCRT of the task τi is given
by the least positive fixed point of the following recurrent
equation [29]:

Ri = C i +
∑

τj∈hpk (τi)

⌈
Ri
Tj

⌉
· C j. (3)

Note that determining the least positive fixed point of
Equation (3), necessary to obtain the WCRT for a task τi in
0, requires introducing integer variables to model the ceiling
term [30], hence complicating the MILP formulation and
introducing scalability issues in its solution.

By leveraging previous results by Park and Park [31],
Pazzaglia et al. [30] derived a near-exact sufficient schedula-
bility test that supports a muchmore efficient implementation
within optimization problems. This test consists in checking
a subset Yi of the values in [0,Di] for each task τi ∈ 0, where
the set of points Yi is defined as follows [30]:

Yi = {aTj | τj ∈ {hpk (τi) ∪ τi} : a = ⌊Di/Tj⌋} ∪ {Di}}.

(4)

This reduces the schedulability conditions to just a very
limited set of linear constraints. The accuracy drop with
respect to the exact test in Equation (3) was experimentally
found to be in the order of 1% on average [30].

The resulting test is then given by:

∃yi,g ∈ Yi | C i +
∑

τj∈hpk (τi)

⌈
yi,g
Tj

⌉
· C j ≤ yi,g. (5)

If a point yi,g satisfies the above inequality, then it is a valid
WCRT upper bound for τi.

Provided that the application 0 is schedulable according
to the test in Equation (5) when no protection mechanism
is installed in any of the basic blocks of its tasks (i.e.,
when the WCET C i of each task τi is set to its BWCET
Ci), the proposed MILP formulation will have at least one
feasible solution, corresponding to the situation where no
protection mechanism is applied. Instead, if the application
without protections is deemed not schedulable, then theMILP
formulation will have no feasible solution, since activating
protections can only increase the response times of the tasks
in the application.

B. VARIABLES
The proposed MILP formulation problem utilizes the follow-
ing variables:

• For each v ∈ V , for each τi ∈ 0, for each bi,j ∈ Bi, Xv
i,j ∈

{0, 1} is a binary variable that is set to 1 if a protection
mechanism for vulnerability v is installed in bi,j, and is
set to 0 otherwise.

• For each τi ∈ 0, Wi ∈ R≥0 is a security-aware worst-
case execution time bound for task τi, i.e., an upper-
bound on the inflated WCET C i of the task τi obtained
by accounting for the overhead introduced by the
protections installed in each BB of the task.
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• For each τi ∈ 0, for each yi,g ∈ Yi, RTCi,g ∈ R≥0 is
a candidate worst-case response time upper bound for
the task τi, needed for the implementation of the test in
Equation (5) within the optimization problem.

• For each τi ∈ 0, for each yi,g ∈ Yi, Ei,g ∈ {0, 1} is a
binary variable set to 1 if yi,g is the candidate worst-case
response time upper bound selected by the optimization
problem among those encoded by variables RTCi,g.

• For each τi ∈ 0, RTi ∈ R≥0 is a worst-case response
time upper bound of τi.

C. CONSTRAINTS
This section presents the set of constraints needed to compute
worst-case response time bounds that are aware of the
protection mechanisms installed in each BB. Constraint 1
bounds the inflated WCET C i for each task τi, obtained by
accounting for the overhead σv introduced due to the use of
protection mechanisms.
Constraint 1 (Security-Aware WCET Upper Bound): ∀ τi

∈ 0, ∀λ ∈ paths(τi),

Wi ≥

∑
bi,j∈λ

(Ci,j +
∑
v∈V

Xv
i,j · σv). (6)

It follows directly from Equation (1).
Constraint 2 establishes a WCRT upper bound for each

task τi, when considering the WCET bounds determined
within the variables Wi that account for the overhead σv
introduced by the use of a protection mechanism. In the
following, we leverage the so-called big-M method, where M
is a large constant representing infinity, needed to implement
the existential quantifier in Equation (5) and the selection of
the WCRT upper bound among the candidate upper bounds
in Yi.
Constraint 2 (Security-Aware WCRT): ∀τi ∈ 0, ∀yi,g ∈

Yi,P(τi) = Pk ,

RTCi,g ≥ Wi +
∑

τj∈hpk (τi)

⌈
yi,g
Tj

⌉
· Wj, (7)

RTCi,g ≤ yi,g + (1 − Ei,g) · M, (8)

RTi ≥ RTCi,g − (1 − Ei,g) · M. (9)

∀τi ∈ 0, ∑
yi,g∈Yi

Ei,g = 1. (10)

The first set of inequalities in Constraint (2) (Equation (7))
derives a WCRT upper bound candidate RTCi,g for each
point yi,g ∈ Yi. The second set of inequalities (Equation (8),
Equation (9), and Equation (10)) establishes exactly one
WCRT upper bound candidate RTCi,g as a validWCRT upper
bound for the task τi. In fact, the constraint in Equation (10)
forces the MILP solver to select exactly one point yi,g ∈ Yi
for which the corresponding variable Ei,g is going to be set
to 1. If, for a given yi,g ∈ Yi, Ei,g = 1, then the inequality in
Equation (9) enforces RTCi,g ≤ yi,g; otherwise, if Ei,g = 0,
the same inequality enforces RTCi,g ≤ ∞, meaning that the

constraint has no effect. Finally, the inequality in Equation (9)
sets the WCRT upper bound of τi to be greater than or equal
to the WCRT upper bound candidate corresponding to the
point yi,g ∈ Yi for which Ei,g = 1. This implementation of
Equation (5) within the MILP formulation is analogous to the
implementation presented in [32].

Constraint 3 enforces the schedulability of each task
τi ∈ 0 by ensuring that the corresponding deadlines are
always guaranteed to be respected.
Constraint 3 (Schedulability): ∀τi ∈ 0,

RTi ≤ Di. (11)

If the task system with no protection installed is not
schedulable according to the test in Equation (5), then it
will not be possible to guarantee the satisfaction of both the
constraints in Equation (9) and in Equation (11); therefore,
the problem will have no feasible solution.

D. OBJECTIVE FUNCTION
The objective function maximizes the overall security score
S0 of the task set, defined as in Equation (2):

maximize

∑
τi∈0

∑
bi,j∈Bi

∑
v∈V Xv

i,j · s
v∑

τi∈0

∑
bi,j∈Bi

∑
v∈V s

v . (12)

E. REFINED MODEL AND ANALYSIS
Given their high relevance in the CWE Top 25, in the
following we present a specialized version of the model to
protect against vulnerabilities of the type out-of-bounds write
(CWE-787) and out-of-bounds read (CWE-125).

Themodel is modified to introduce an additional parameter
nvi,j for each task τi, each basic block bi,j ∈ Bi, and each
vulnerability type v ∈ V , which represents the number of
times the protection mechanism for the vulnerability type v is
activated within the basic block bi,j. For the specific case of
out-of-bounds write and out-of-bounds read weaknesses, this
parameter may be used to represent the number of memory
writes, and the number of memory reads within the basic
block bi,j, respectively. Then, in this case, the meaning of
the execution cost parameter σv of each protection type v
is modified to represent the unit cost in terms of execution
time relative to a single protection instance within the basic
block. For the case of out-of-bounds write and out-of-bounds
read vulnerabilities, this represents the overhead in terms of
execution time introduced by protecting a single instance of
buffer write or buffer read operations, respectively, within a
generic basic block of a task, for instance, by performing
additional boundary checks before writing to a buffer or
reading from a buffer.

In this case, Constraint 1 is modified as follows to account
for the updated model:
Constraint 4 (Security-Aware WCET - Updated): ∀τi ∈

0, ∀λ ∈ paths(τi),

Wi ≥

∑
bi,j∈λ

(Ci,j +
∑
v∈V

Xv
i,j · n

v
i,j · σv). (13)
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TABLE 3. Complexity of the MILP formulation in terms of the number of
constraints and number of variables per constraint.

F. COMPLEXITY ANALYSIS
Table 3 reports the complexity of the MILP formulation in
terms of the number of constraints per type of constraint
and the number of variables involved in each constraint type.
In Table 3, MP represents an upper bound on the maximum
number of paths in paths(τi) across all tasks τi ∈ 0.
In addition, note that, for each task τi ∈ 0, the number
of points in Yi is O(n) [30]. The total complexity of the
MILP formulation in terms of the number of constraints is
O(n2 + n×MP).

VI. EXPERIMENTAL RESULTS
This section presents the results of an experimental evaluation
of the proposed approach, carried out on a representative set
of tasks included in a state-of-the-art benchmarking suite for
embedded software.

A. BASELINE APPROACHES
We compared the proposed optimization approach with
two greedy heuristic algorithms that determine suboptimal
solutions to the investigated problem and that serve as a
baseline for the evaluation.

1) PRIORITY-BASED HEURISTIC
The priority-based heuristic (PB-H) iterates over all tasks
in the task set 0 in decreasing priority order. For each
vulnerability type v ∈ V , and for each basic block bi,j ∈

Bi of the current task τi, the protection for vulnerability
v is activated for bi,j (i.e., xvi,j is set to 1) if activating
that protection (in addition to the protections that were
already enabled by the heuristic) does not make the system
unschedulable. The heuristic starts activating protections to a
new task once all the protections of higher-priority tasks are
enabled. The schedulability is determined according to the
test in Equation (5), while the WCET of protected tasks is
computed in accordance with the refined model presented in
Section V-E.

2) ROUND-ROBIN HEURISTIC
Similar to PB-H, the round-robin heuristic approach (RR-H)
iterates over all tasks in decreasing priority order and then
iterates over vulnerability types and basic blocks. However,
unlike PB-H, it only activates one protection for each task
(if allowed by the schedulability test) before moving to the
following one, in a round-robin fashion.

B. EVALUATED TASK SET
A selection of test programs from the Mälardalen WCET
benchmarks [18] was adopted for the purpose of evaluating
the proposed approach. These benchmarks consist of standard
and specialized test programs for the evaluation of WCET
estimation methodologies for a wide range of applications,
and include a diverse range of program structures designed to
aid testing of multiple program behaviors. Heptane includes
a test platform based on the Mälardalen WCET benchmarks.

An application 0 composed of six tasks τ1, . . . , τ6 was
constructed for the evaluation, using varying system parame-
ters across the experiments. The following test programs from
the Mälardalen WCET benchmarks were considered as the
program to be executed by each job of the corresponding task
in 0.

1) lcdnum: Read ten values, output half to LCD. Loop
with the iteration-dependent flow.

2) minver: Inversion of floating point matrix. Floating
value calculations in 3 × 3 matrix. Nested loops
(3 levels)

3) ns: Search in a multi-dimensional array. Return from
the middle of a loop nest, deep loop nesting (4 levels).

4) bs: Binary search for the array of 15 integer elements.
Completely structured.

5) insertsort: Insertion sort on a reversed array of size 10.
Input-data dependent nested loop with worst case of
(n2)/2 iterations (triangular loop).

6) fibcall: Iterative Fibonacci, used to calculate the
Fibonacci series. Parameter-dependent function,
single-nested loop.

Overall, these programs allow testing multiple program
structures and constructs, including array and matrix com-
putation, nested loops, input-dependent loops, inner loops
depending on outer loops, floating-point computation, and bit
manipulation.

The above test programs were analyzed with the static
program analysis approach described in Section IV to obtain
theWCETCi, the set of paths paths(τi), and theWCETCi,j of
each basic block bi,j ∈ Bi for each task τi ∈ 0. The execution
time estimations for the experiments were performed with the
ARM instruction set. In particular, the reference processor
was the ARM7TDMI Reduced Instruction Set Computer
(RISC) CPU for embedded systems, which implements the
32-bit ARMv4T architecture.

C. GENERATION OF SYSTEM PARAMETERS
The system parameters for the experiments were generated
as follows. Let U =

∑
τi∈0 Ci/Ti be the system utilization,

and Ui = Ci/Ti the utilization factor of each task τi.
To avoid biasing effects, for a given system utilization U , the
utilization factor Ui of each task τi ∈ 0 was generated by
the UUniFast algorithm [33], in such a way that

∑
τi∈0 Ui =

U . Then, the minimum inter-arrival time for each task
was assigned as Ti = Ci/Ui, while the deadline Di was
selected from a discrete uniform distribution in the range
[Ci + (Ti − Ci) · α,Ti], where α is a generation parameter
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such that α ∈ [0, 1] so that Ci ≤ Di ≤ Ti (constrained
deadlines). Note that if α = 1, then the relative deadline is
assigned as Di = Ti (implicit deadlines).

An additional parameter rand was introduced to represent
the fact that not all basic blocks in a program may be subject
to a certain vulnerability or applicable for a corresponding
protection mechanism. In particular, a certain percentage of
basic blocks in Bi for each task in 0, selected randomly up to
the percentage given by the parameter rand , were considered
as not being applicable for a protection mechanism and
discarded from the optimization procedure, meaning that
the protections corresponding to those basic blocks were
statically disabled. This parameter also serves for introducing
a diversity among the task sets evaluated in different iterations
of the experiments, in addition to the minimum inter-arrival
time and deadline parameters. Note that, when computing the
security level of the application 0, defined in Equation (2),
the contribution of the basic blocks discarded from the
optimization bymeans of the rand parameter is not accounted
for when considering the resulting security score of the
application.

The experiments considered a platform composed of a
single processor P1, and all tasks in 0 were assigned to
processor P1. Task priorities were set based on the Deadline
Monotonic algorithm, which assigns higher priority levels to
tasks with smaller relative deadline Di.

D. VULNERABILITY PARAMETERS
Two representative vulnerability types were considered in the
experiments, one related to the out-of-bounds write weak-
ness, and one related to the out-of-bounds read weakness in
the 2022 CWE Top 25, presented in Section III. For each
vulnerability type v, the corresponding SSS sv was assigned
based on the score attributed to the corresponding weakness
in the 2022 CWE Top 25, as reported in Table 2; that is,
the SSS of the vulnerability type corresponding to the out-
of-bounds write weakness was set to 0.6420, while the SSS
of the vulnerability type corresponding to the out-of-bounds
read weakness was set to 0.1767.

For the purpose of carrying out the experimental evalua-
tion, a protection mechanism implemented in the C language
was considered for both vulnerability types. As discussed in
Section III, this protection mechanism consists in checking
that the index to be accessed with a write or read access
to a buffer translates to a valid location inside the memory
buffer. If the condition is not satisfied, a security violation is
triggered, and the program is terminated, otherwise the buffer
access operation is performed normally. The cost of applying
this kind of protection mechanism for one buffer access of the
corresponding type was evaluated with Heptane (under the
same settings used for analyzing the tasks), resulting in worst-
case overheads of 20 time units (processor cycles). Therefore,
the protection costs σv were set to 20 for each v ∈ V .
The corresponding protection overheads in terms of execu-

tion times utilized for the experiments for the out-of-bounds

TABLE 4. Vulnerability types considered in the experiments.

FIGURE 3. Evaluation of utilization levels of each task in an application 0.

write and out-of-bounds read vulnerability types are reported
in Table 4.

The number of times a protection v can be activated for
a basic block bi,j of a task τi, given by the parameter nvi,j,
corresponds in this case to the number of memory writes and
memory reads performed within the basic block bi,j, with
reference, respectively, to the out-of-bounds write and out-
of-bounds read vulnerability types. In the experiments, the
value of nvi,j for each basic block bi,j of all tasks τi ∈ 0 was
extracted using the custom analysis tool based on Heptane,
presented in Section IV.

E. CHARACTERIZATION OF TASK SET GENERATION
The first set of experiments evaluated the relevance of apply-
ing the proposed optimization approach to an application 0

generated according to the proposed generationmethodology,
by comparing the difference in terms of utilization of the
generated task sets introduced when additional security
protections are installed. Figure 3 reports the results of an
experiment that analyzes the utilization value obtained for
each task in a single application 0 when no protection is
active (Utilization) and when all protections are active for
all basic blocks in the corresponding task (UtilizationP),
with respect to a representative system utilization value
U = 0.42 for the case of implicit deadlines (α =

1), with rand = 0.2. The difference between the two
utilizations (UtilizationP minus Utilization) is also reported
(UtilizationDiff). These results show that the decisions to
be performed by the optimization method have a large
impact on the final utilization of the system, essential in
order to optimize the security level of the application while
maintaining its schedulability.

In the following, let 1U represent the utilization gap for
an application 0, defined as

1U =

∑
τi∈0

Up
i − Ui, (14)
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FIGURE 4. Utilization gap 1U obtained when varying the system
utilization U .

whereUp
i is the utilization factor for the task τi obtainedwhen

all protection mechanisms available for the basic blocks of τi
are installed. The utilization gap metric is useful in order to
evaluate the potential system utilization difference introduced
by applying all the protections available for the application
0. In particular, the larger the value of the utilization gap, the
higher the relevance of the security protection overheads with
respect to the overall system utilization. The cases where the
value of the utilization gap is higher correspond to situations
in which applying the proposed optimization approach can
be considered more relevant and advantageous. In fact,
performing a fine-grained decision on whether to apply each
protection mechanism to each basic block in the application
has a higher impact on the resulting schedulability. Figure 4
reports the average, minimum, and maximum value of the
utilization gap 1U obtained over 1000 generated task sets
when varying the system utilization U from 0 to 1 in
increments of 0.05. This experiment considers the case of
implicit deadlines (α = 1), with rand = 0.2.

F. SCHEDULABILITY RATIO AND SECURITY LEVEL
In the following set of experiments, the value of the system
utilization parameter U was varied from 0 to 1 with step
0.05. For each value of the system utilization U , 1000 task
sets were generated. For each task set 0, the schedulability
of 0 was first verified using the schedulability test by
Pazzaglia et al. [30] and, if 0 was deemed schedulable by
the test, the optimization procedure and the PB-H and RR-H
heuristic approaches were applied to 0. These experiments
evaluated the schedulability ratio and the average security
level of each generated application. The schedulability ratio
corresponds to the number of task sets deemed schedulable
when applying the schedulability test by Pazzaglia et al. [30],
over the number of task sets generated for a specific
value of the system utilization U . The average security
level for a specific value of the system utilization U was
obtained by averaging the optimal value of the proposed
optimization problem or the security level S0 obtained with
the PB-H and RR-H heuristics (based on Equation (12) or
Equation (2), respectively) among the task sets that were
deemed schedulable. Note that the optimal value obtained
by applying the optimization approach to a schedulable

application 0 corresponds to the security level S0 of the
application when the protections selected by the optimization
approach are installed in the application.

Figure 5 reports the result of these experiments for
various representative system configurations. The value of
the parameters α and rand are reported above each graph.
In particular, Figures 5(a)-(b) report the results for the case
of implicit deadlines (α = 1), while Figures 5(c)-(d)
report the results for the case of constrained deadlines
(α = 0.4). A common trend among the results is that
the schedulability ratio decreases for system utilization
values higher than approximately 0.7, which is expected
for task systems executing under fixed-priority scheduling
policies [34]. In addition, the value of the average security
level decreases with higher system utilization, meaning that
the evaluated approaches are forced to keep some of the
protection mechanisms disabled for some of the basic blocks
of the tasks composing the application 0, in order to keep
the application schedulable. This is due to the fact that
higher utilization values cause higher interference on lower
priority tasks, resulting in an unschedulable task set when
all protection mechanisms are installed in all basic blocks of
the application. On the other hand, a security level of 1 is
achieved for lower values of the system utilization, meaning
that the task set can tolerate an increase in execution time up
to a certain threshold before the optimizer and the heuristics
are forced to keep some of the protections disabled for at
least some basic block. As expected, both heuristics achieve
lower performance values than the MILP approach, given
that they typically perform suboptimal choices. Among the
two heuristics, RR-H performs the closest to the optimization
approach, while PB-H exhibits a steeper performance drop.
The case of constrained deadlines (Figures 5(c)-(d)) shows a
faster schedulability loss due to the tighter deadlines imposed
for the tasks in the system. The fact that the deadlines are
tighter in this case also has an impact on the achieved average
security level. In fact, in this case, the optimizer and the
heuristics are forced to keep even more protections disabled
to meet the tighter timing constraints. When the value of rand
is increased from rand = 0.2 to rand = 0.5, the results
show a marginal increase in the security level achieved with
the MILP approach. This is due to the fact that achieving a
certain security level when a smaller number of basic blocks
in a task are vulnerable (i.e., when the rand parameter has
a higher value) requires installing protection mechanisms
in less basic blocks. Additionally, in this case, the PB-H
heuristic shows a larger performance gain than the RR-H
heuristic.

G. OTHER RESULTS
This section presents additional experimental results that
show how the schedulability ratio and the security level of the
application change when the protection costs are increased.
In addition, results concerning the runtimes of the evaluated
algorithms are reported.
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FIGURE 5. Schedulability ratio and average security level for applications generated with different system configurations.

The experimental results reported in Figure 6 show how
the average security level obtained by applying the evaluated
approaches varies with higher values of the protection cost σv
with respect to a fixed system utilization value U = 0.42 for
the case of implicit deadlines (α = 1), with rand = 0.2.
In the experiment, the value of σv is varied from 0 to 1000,
in increments of 50 time units, and a total of 1000 task sets
were generated for every such value of σv. Again, we applied
the test by Pazzaglia et al. [30] to assess schedulability, and
all task sets resulted in being schedulable for this experiment.
As expected, the results show that the security level attained
after the proposed optimization approach is applied decreases
with an increase in the execution cost of applying a protection
mechanism to a basic block. Moreover, this experiment
highlights a drastic performance loss for both the PB-H and
the RR-H heuristics with larger values of σv, with respect to
the results obtained with theMILP approach. This is arguably
due to the fact that the greedy decisions performed by the
heuristics have a larger impact on future decisions when the
cost of each protection is higher.

Figure 7 illustrates the average security level and the
schedulability ratio as a function of the system utilization,
obtained with α = 1 and rand = 0.2 when the cost σv
of the two evaluated protections v ∈ V is set to 1000 time
units. In this case, the PB-H and RR-H heuristics show a
steep performance drop starting with small values of the
system utilization U , while the MILP approach yields a
more robust performance in terms of the achieved security
level.

FIGURE 6. Security level obtained when varying the protection cost σv .

Figure 8 reports statistics on the runtime of the proposed
optimization and heuristic approaches, measured when
performing the experiment in Figure 5(a) on a computer
equipped with an Intel Core i9-9900 processor with 8 mul-
tithreaded cores running at a base operating frequency of
3.10 GHz, and 32 GB of DRAM. The average runtimes of
the proposed optimization approach are reported for each
value of the system utilization U . Overall, the runtimes of
the approaches are in the order of tenths of seconds.

Finally, Figure 9 reports the average and maximum
runtimes for the evaluated approaches obtained when varying
the number of tasks n in 0 from 1 to 30, with U = 0.42,
α = 1.0, and rand = 0.2. In this experiment, the n
tasks in the application 0 were randomly selected among
the six benchmarks considered in the evaluation (with an
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FIGURE 7. Schedulability ratio and average security level for applications
generated with different system utilization.

FIGURE 8. Average runtimes collected in the experiment in Figure 5(a).

FIGURE 9. Average and maximum runtimes obtained when varying the
number of tasks.

equal chance); then, the task parameters were generated as
in Section VI-C. These results show that the MILP approach
scales better than the PB-H and RR-H heuristics with respect
to the number of tasks in the application, while the two
heuristics perform similarly, given that they execute the same
amount of schedulability assessments. Overall, these results
show that all the evaluated approaches can efficiently be
applied off-line during the system design phase. However,
in such off-line design scenarios, the MILP approach should
be preferred due to the higher security level it can achieve.

VII. RELATED WORK
This section reviews related works in the literature con-
cerning both real-time systems and security from a broad
perspective.

A. TRADE-OFFS BETWEEN SECURITY AND
SCHEDULABILITY
A number of existing works aim at integrating security fea-
tures into real-time systems by means of heuristic or optimal
techniques that improve the security of the system while
maintaining its schedulability. On this front, Xie and Qin [35]
proposed a security overhead model for security-critical
tasks in real-time applications, which provides a quantitative
measure for the evaluation of overheads related to security
services, coupled with a security-aware scheduling strategy
incorporating the Earliest Deadline First (EDF) policy.
Lin et al. [36] extended this methodology by adopting
a group-based security approach where security services
are partitioned into groups, combined with a scheduling
algorithm based on the EDF policy. Then, an associated
security-aware schedulability analysis is provided, while
optimization techniques are explored to select the best
combination of security services while guaranteeing the
schedulability of the system. Roy et al. [37] considered the
problem of maximizing the quality level of software systems
with multiple implementations producing solutions with
different degrees of accuracy while still finding a feasible
schedule. Similar to this paper, it finds a trade-off between
schedulability and another requirement, but it does not target
security. Lesi et al. [38] proposed a method to improve
the quality of control in the presence of security attacks
on sensor measurements that undermine data integrity,
focusing on real-time control tasks and EDF scheduling.
Differently, this work focuses on fixed-priority scheduling,
and it is not limited to control tasks and integrity-based
attacks; instead, it tackles the problem from a more general
perspective. Mohan et al. [39] proposed a methodology
to integrate security requirements into real-time fixed-
priority scheduling algorithms, with reference to security
issues related to information leakage via shared resources.
The methodology implements additional constraints on the
scheduling algorithm as a way to mitigate potential security
issues, and is coupled with an analysis of the resulting
scheduling overheads. Hasan et al. [40] focused on the
integration of security mechanisms into real-time systems,
by combining opportunistic execution of security tasks with
hierarchical scheduling. The proposed technique is based on
an optimization problem, which guarantees the schedulability
of the tasks while maximizing the security of the system with
reference to a specialized security metric. Hasan et al. [41]
proposed an optimization approach for task-to-core alloca-
tion of security tasks in multiprocessor systems that leverages
opportunistic execution to maximize the security of the
system while preserving schedulability. Völp et al. [42]
introduced variant versions of standard real-time resource
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locking protocols that preserve the confidentiality guarantees
of the underlying schedulers, thus preventing information
leakage while preserving the related timing guarantees.

While these papers share the purpose of balancing the
trade-off between security and schedulability with this work,
none of them focus on enabling security protections at the
level of the basic blocks, rather than introducing additional
security services into the task set.

B. SECURITY AT THE BASIC-BLOCK, OS, AND
HYPERVISOR LEVEL
Other related research was carried out to improve the security
of real-time systems at the level of the basic block or
by modifying the operating system and hypervisor-level
scheduler and services. Fellmuth et al. [43] presented a safe
approach for artificial software diversity in safety-critical
real-time systems aimed at preventing code-reuse attacks
while preserving the timing properties of real-time tasks.
The approach leverages software diversity at the level of the
basic blocks and employs static WCET analysis techniques
to control the impact on the resulting WCETs. Specialized
algorithms are provided to determine the diversification
strategy. Singh et al. [44] proposed a new scheduling
algorithm called RT-SANE to address security and real-
time requirements on fog networks. However, different from
this work, it focuses on online strategies to handle the
submission of non-recurring jobs in a distributed system.
Chai et al. [45] presented a short review of different security-
aware techniques used in real-time embedded systems.
Designers of safety-critical real-time systems need to be
aware of attack vectors as they can leak important temporal
information, such as future arrival times of real-time tasks.
Chen et al. [46] presented an algorithm that demonstrates how
to exploit scheduler side channels in fixed-priority real-time
systems.

Despite threads having access to exact times, a change
to fixed-priority schedulers allows them to bypass timing
channels. A fixed-priority budget enforcer is changed to
handle active threads that block or stop early and might
potentially leak information as if they were ready. While
this lengthens the system’s idle time, information can no
longer be accessed and some threads results isolated from
the behavior of others. Völp et al. [47] demonstrated how
conventional techniques may be employed to achieve real-
time guarantees for amodified scheduler. The technique beats
time-partitioning schedulers in terms of obtained real-time
guarantees while giving equivalent isolation properties.

However, isolation is not a suitable method if applied
alone, as demonstrated by Mergendahl et al. [48]. The
addition of priority and budget awareness to IPC processing
can cause severe interference due to the kernel’s prioritization
mechanism, as demonstrated in this study. As a result,
temporal isolation is required to reduce the impact of
malicious software. Multiple client threads using IPC to
seek service from a shared server will affect each other’s

response times. A Thundering Herd of malicious threads
can dramatically delay the activation of mission-critical
processes in both scenarios. Priority-sorted endpoint queues
and replenishment strategies are common mitigations for
these attacks. Unfortunately, the authors discovered that these
technologies could be used to launch new and powerful
attacks. Borgioli et al. [49] proposed an I/O virtualization
mechanism resilient to denial-of-service (DoS) attacks due
to I/O-related memory traffic, leveraging the QoS-400
regulators by Arm [50].

Jero et al. [51] presented Patina, a prototypical real-time
operating system API that supports ubiquitous functions in
feature-rich OSes, but not in more reliable kernel-based
systems. Two Patina implementations are shown, one on
Composite and the other on seL4, which aim at boosting
system security using the Principle of Least Privilege (PoLP).
The evaluations show that the performance of the PoLP-based
version of Patina is equivalent to or better than Linux, while
also providing increased isolation.

Son et al. [52] presented a mathematical framework for
investigating the influence of the Rate Monotonic real-
time scheduling policy on covert timing channels. They
demonstrated that in some system configurations, it is not
feasible to close the covert channel totally and that High and
Low can use the noisy channel for secret communication.
They suggested a straightforward way to develop a security
metric that compares covert channels in terms of the relative
amount of probable information leakage by comparing the
degree of deducibility of one covert channel to another.

Nevertheless, none of these works focus on optimization
methods to balance security and schedulability.

C. SECURITY AT THE HARDWARE LEVEL
Other work focuses on enforcing security at the micro-
architectural level, either by considering attacks that can
occur due to the design of the hardware platform, or lever-
aging the hardware itself (e.g., through specialized devices
implemented in FPGA) to protect from cyber-attacks.

Serra et al. [53] presented PAC-PL, a hardware-assisted
solution to enable CFI in FPGA-equipped SoCs. PAC-
PL consists mainly of a hardware accelerator deployed in
programmable logic that allows cryptographically signing
and authentication of pointers to enforce their integrity.
The hardware accelerator is accompanied by a compiler
plugin that recognizes the storage of pointers in memory
(such as return addresses pushed into the stack) generating
instructions to sign those pointers and authenticate them on
usage.

Bechtel and Yun [54] presented an operating-system-
level method to avoid denial of service (DoS) attacks
on multicore systems with shared caches. They extended
a memory bandwidth management technique to minimize
cache DoS attacks on the shared cache’s writeback buffer.
They found that the shared cache’s writeback buffer is a
viable DoS attack vector. Hence, their approach implements a
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distinct read-and-write memory bandwidth control technique
to effectively resist write-intensive cache DoS attacks while
reducing performance implications on read-heavy regular
workloads.

Differently, the Aker [55] design and verification frame-
work adopts a hardware module - called Access Control
Wrapper - to manage the accesses to shared resources.
The access control system is guaranteed to be safe and
secure by a property-driven security verification leveraging
MITRE CWE, which is also used in this work. Other works
leveraging custom hardware modules to enhance security,
e.g., to protect the system from attacks occurring at the bus
level [56], [57], [58].

However, all these works target attacks that cannot be
tackled at the level of the basic block, and hence they are
orthogonal and complementary to this paper.

Overall, to the best of our knowledge, no prior work
derived the optimal trade-off between security and schedu-
lability, considering the susceptibility of tasks to security
vulnerabilities and fixed-priority real-time scheduling.

VIII. CONCLUSION AND FUTURE WORK
This paper presented a methodology to optimize the security
of real-time software while preserving the schedulability
of the system in terms of timing analysis. The approach
leverages anMILP formulation tomaximize the security level
of each task in the system by applying additional protection
mechanisms at the level of the basic block of the correspond-
ing program, while ensuring the system schedulability by
applying an efficient response-time analysis approach within
the optimization problem. The performance and efficiency
of the proposed approach were assessed in an experimental
evaluation that was carried out on a representative set of
tasks from standard benchmarking suites, with reference
to protection mechanisms that shield the software against
critical weaknesses of embedded software, namely, out-of-
bounds write and out-of-bounds read conditions.

The flexibility and modularity of the proposed optimiza-
tion problem gives ample possibilities for extension in future
work. Directions for future extensions include considering a
refined model to account for complex protections distributed
across basic blocks, accounting for end-to-end delays of task
chains [59], [60], accounting for the EDF scheduling policy
in the optimization, developing a complete tool chain for
security optimization of real-time software, and specializing
the optimization problem to other relevant vulnerability
classes from the CWE rankings.
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