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ABSTRACT The effectiveness of current railway signaling systems heavily depends on the accuracy in
the localization of trains on the track, which is currently enforced using static markers mounted along the
line, called balises. However, balises are expensive, sparse, prone to tampering, and subject to maintenance,
hence they need to be integrated by additional onboard sensors. Also, the harsh operational environment
and the strict safety regulation do not allow a straightforward adoption of solutions from other application
domains, like the GNSS in automotive systems. Hence, finding novel cost-effective solutions to improve
the localization accuracy is an emerging research topic in modern railway systems. Low-cost inertial sensors
provide the required level of availability and thus represent a viable approach to integrate physical balises, but
they need to be coupled with a rigorous methodology for integrating the inertial data with the track geometry
features extracted from a digital railway map. This paper presents a novel methodology for exploiting inertial
data in train localization. It is based on a two-phase approach: in an offline phase, track data from the digital
map are analyzed to extract a number of features (curves, switches, slopes, etc.) that are stored in the map
as position markers; at run time, such markers are detected by analyzing the inertial data and matched
with those stored in the map. Such a marker matching allows reducing odometry errors by a significant
extent. Preliminary experiments on synthetic and real data show the effectiveness of the proposed approach
in enhancing train odometry.

INDEX TERMS Train localisation, inertial navigation, map matching, curvature reconstruction, railway
odometry.

I. INTRODUCTION
An accurate train localization is of paramount importance
for ensuring safety and efficiency of the railway network.
Today, the absolute position of a train along the track is deter-
mined by using radio-frequency transponders, called balises,
installed along the track at predefined locations with a given
accuracy (for instance, in Italy the balise location accuracy
has been set to be no higher than ±5 meters) [1]. Between
consecutive balises, the position of the train is estimated by
an odometry system, which typically integrates the speed
measured by a set of encoders installed on the train wheels.
Due to the integration operation, the relative position (with
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respect to the last passed balise) estimated by odometry can
be affected by a significant drift. Such a drift depends on
several reasons, among which wheel wearing and slip/slide
phenomena caused by different environmental conditions; for
example, the adhesion factor between a wheel and the rail
depends on the quantity and type of debris, as snow, ice, and
various slippery materials.

To account for the drift introduced by the odometry,
the European Train Control System (ETCS) performance
requirements for interoperability [2] state that, for every mea-
sured distance s from the last passed balise, the accuracy on
themeasured distance shall be better or equal to±(5m+5%s).
Figure 1 shows an example in which a train with a distance s
from the last passed balise accumulates a worst-case relative
position error 1 = (5 + 0.05s), meaning that its length L
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FIGURE 1. Effect of the position error on the train length.

has to be increased by 21, considering both the effect on the
front end and the one on the rear end and an equal contribution
from under-reading and over-reading errors in the measured
distance s.

The accumulated position error has the effect of increasing
the length of track segment occupied by the train, thus reduc-
ing the capacity of the railway system in terms of number
of trains that can occupy the line simultaneously, that is,
the efficiency of the whole signalling system. It is worth
observing that increasing the number of balises to reduce the
position error would significantly affect the overall cost of
the line, also considering that balises are typically installed
in groups for safety and availability reasons and are subject
to frequent maintenance, due to wearing or tampering.

For the reasons discussed above, in the recent years, espe-
cially with the need of improving the capacity of railway
lines, accurate and precise train position functions became an
emerging research topic, and many research projects [3], [4]
were launched to investigate enhancements of the odometry
function.

However, most of the solutions proposed in the literature
focused on improving the localization accuracy by integrating
wheel odometry with other sensors, as Global Navigation
Satellite System (GNSS) [5] and Inertial Measuring Unit
(IMU). However, both of these sensors have their shortcom-
ings, since the GNSS signal could be absent or not reliable
due to multipath and non-line-of-sight phenomena and radio
frequency interferences, while inertial navigation, which
derives the position by integrating inertial data, is affected by
noise and drift.

Differently from previous works, the solution proposed in
this paper exploits inertial data not for directly computing the
odometry, but for detecting specific features on the track (e.g.,
curvatures, slopes, and switches) to be matched with the cor-
responding ones stored on a digital map. As a consequence,
the reconstructed positions are not affected by an error drift
due to integration, making this method suitable for being
used as an absolute input reference in localization solutions
based on data fusion. In particular, when a feature is matched
with the corresponding one present in the digital map, the
confidence interval of the odometry error can be reset with
a mechanism logically equivalent to the one performed when
encountering a balise.

Although, at present, a digital map is not regulated by
the European standard, a significant effort is being car-
ried out for taking a digital map into account within the
European Rail Traffic Management System User Group [6]
and the European Community under specific research
projects [3], [7].

A. PAPER CONTRIBUTIONS
This paper presents a new methodology for reducing the
odometry error by exploiting inertial data to recognize a set
of features on the track (e.g., curves, switches, and slopes),
which are matched with the corresponding ones extracted
from a digital map in an offline phase and stored as position
markers. More specifically, the following novel contributions
are provided in the paper:

• A new method is proposed to reconstruct the curvature
profile of a railway track based on the lateral accelera-
tions sensed by an IMU.

• A new map matching algorithm is presented to align
the curvature features detected by the IMU with those
extracted from a digital map and stored as positionmark-
ers. The alignment with the map also exploits the rough
train position estimated by the odometry.

• An approach to employ the matched markers to reset the
confidence interval of the odometry error is introduced.

• Several experiments are reported to validate the pro-
posed approach both on simulated and real data.

The rest of the paper is organized as follows: Section II
discusses the state of the art in the field, Section III presents
the proposed solution, Section IV reports the experimental
results, and Section V states our conclusions.

II. STATE OF THE ART
The efficiency of a railway transportation system is highly
related to the number of trains that can travel on the tracks,
which, in turns, depends on the position error of the localiza-
tion system. Given the constant demand for higher efficiency
and high-speed trains, accurate train localization became an
emerging topic in computing systems posing great research
challenges [4]. Hutchinson et al. [8] provided an overview of
the research activities on this topic within the Shift2Rail Joint
Undertaking, showing the strong commitment to bringing
such solutions into operation in the near future. For example,
the GRAIL-2 [9] European project aims at integrating GNSS
data in a demonstrator to enhance odometry capabilities
and verify its adherence to current standards on safety and
security.

Nowadays, the train position refers to the position of train
front-end with respect to the position of a reference marker.
Such a relative position is obtained by measuring the trav-
eled distance from the last position marker located on the
track. The traveled distance is safely measured by the odom-
etry function implemented in the onboard signaling platform
using wheel encoders or a combination of sensors such as
wheel encoders, monoaxial accelerometers, and radars. The
types of sensors and how they are used depend upon the sup-
pliers of the onboard platforms. An onboard signaling plat-
form implements many other functions such as those respon-
sible for (a) reading the information sent by the beacons
(balises) installed on the track sleepers, (b) associating the
origin of the measurement reference system to the location of
the last balise, and (c) carrying out the continuous supervision
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of specific locations on the line and at the stations to safely
guarantee that the train reaches each specific location with
the allowed speed.

Many different odometry algorithms have been developed
during the last decades with the primary objective of improv-
ing both the accuracy and the availability of the measured
distances under all the various operational conditions (e.g.,
snow, water, leaves on the rails). Typically, the error models
associated with the accuracy of the measured traveled dis-
tance foresee an error contribution equal to a percentage of
the traveled distance (e.g., 5% for the European Rail Traffic
Management System (ERTMS) system [2]).

Around 2004, the Italian Infrastructure Manager and Ital-
ian Railway Undertaking started the deployment of the
national Automatic Train Protection (ATP) system. In par-
ticular, due to the vital role of the odometry function in
terms of both safety and performance, they have provided
detailed specifications for the Odometry Algorithm [10] and
the Train Brake Model [11]. The odometry function specifi-
cation comes from many research activities and experimental
analyses performed on different types of trains. For example,
Allotta et al. [12] proposed an odometry algorithm, compliant
with this specification, which can detect under not severe
environmental conditions when the train is slipping or sliding
by comparing different measured speeds acquired employing
multiple encoders placed on separate wheel axes. The same
group performed further research activities to extend the
proposed algorithm by including an IMU [13]. However, this
extended version has not been included in the ATP spec-
ification; therefore, no industrial implementation has been
developed and put into service.

Regarding the ERTMS Standard, in the last decade, the
evolution of the specifications has improved the functional
specification of many functions related to the determination
of brake deceleration curves and the Traction/Braking mod-
els. In this context, the ERTMS User Group has recently
activated a working group to define and deliver new user
requirements [14] for a train localization system. In partic-
ular, they state that lifecycle length and cost are currently
weak points of the safe part of the Command and Con-
trol System (CCS), making railways often less sustainable
and competitive than other means of transport. Furthermore,
updates of ERTMS specifications or ERTMS instantiations
sometimes make complete system re-certification compul-
sory. Moreover, high-density populated areas are currently
demanding higher capacity and cost-effective solutions capa-
ble of improved exploitation of existing infrastructures.

In 2015, the European Union Agency for Railways (ERA)
also recognized the need to carry out a detailed ERTMS
Longer Term Perspective analysis [15]. In this analysis, they
reported the main potential ‘game changers’, which can sig-
nificantly impact the ERTMS business case (due to a signif-
icant increase in operational performance and/or substantial
cost reduction for the overall ERTMS system). This analysis’s
strategic challenges are mainly linked to the need for further

capacity increase and a decrease in the overall life cycle costs
of the ERTMS implementations.

In the last decade, the railway stakeholder community has
recognized the benefits attainable from new technologies for
innovating the railway sector [16]. Thus, many Infrastruc-
ture Managers and Joint Undertakings have started R&D
programs to define new generations of control, command,
and signaling systems. One of such systems is the GNSS
satellite positioning. However, the achievable performances
and, especially, the reachable integrity depend on factors
like the surrounding environment (e.g., tunnels, mountains,
buildings).

Otegui et al. [4] provided a survey on train localiza-
tion, specifying that the three critical issues that need to
be accounted for in this type of applications are: reducing
the maintenance costs of the infrastructure, ensure the inter-
operability of the system on different types of trains and
structures, and guaranteeing the safety-critical constraints of
the applications.

Denng et al. [17] proposed an approach based on Kalman
filters to fix the IMU drift and the odometry with GNSS and
velocity measurements. Other works [18], [19], [20] com-
bined the GNSS with a Doppler sensor to reconstruct the cur-
vature of the train trajectory and used a map-matching algo-
rithm to refine the position of the train. Lauer and Stein [21]
proposed a stochastic approach to fuse GNSS data with the
velocity to locate a train on a digital map represented as a
graph. Heirich [22] presented a solution employing a particle
filter to merge inertial and GNSS data, also exploiting a
digital map to refine the computed location and detect the
traveled track. Note, however, that all these works use the
digital map only to reduce the localization error of an initial
solution obtained exploiting the GNSS signal, which is not
always available and reliable. Moreover, they use the track
as a geometric constraint and are not exploiting its peculiar
features.

Cai et al. [23] designed a GNSS-free algorithm based on
a set of high-precision lasers mounted in suitable positions
of the train to measure the distance to the buildings along
the path with an accuracy up to few millimeters. Assuming
that the environment’s topology remains constant, sensors
measurements are stored and re-used for comparing future
train positions. Although this approach can be effective in a
urban context, its accuracy degrades in rural environments.
Tschopp et al. [24] performed a comparison between visual
and visual-inertial odometry algorithms applied to railway
datasets, showing that visual-aided odometry can achieve
higher accuracy for rail vehicles, but it is not reliable enough
to be used in isolation for safety-critical applications.

Trehag et al. [25] estimated the railroad plane geometry
through onboard IMU measurements, integrating the GNSS
with an extended Kalman filter for removing the bias from
the measurements in the yaw rate estimate, used to create a
curvature’s profile. Heirich et al. [26] derived a set of geomet-
ric characteristics of the track, as curvature and inclination,
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from inertial data and speculated that such features could
eventually be exploited to localize the train, but no method
is proposed to reduce the localization error. The problem of
map-matching using IMU has been analyzed by Belabbas
et al. [27], who pointed out that different curvature estimation
methods perform differently depending on the sensor charac-
teristics, proposing to combine them to overcome distinctive
sensors limitations.

The solution proposed in this paper does not rely on GNSS,
and it is only based on inertial data and the current odometry
estimation. The key idea of the proposedmethod is to perform
offline processing of a digital route map to extract a number
of features (e.g., curvatures, switches, and slopes) and save
them in the map file as virtual position markers. Then, inertial
data are used at run time to recognize such features and
match them with those stored in the map. The position of
the matched virtual marker can be used to reduce the error
accumulated by the wheel odometry system, as presented in
Section III, but it can be integrated as a new input in more
complex data-fusion approaches, exploiting its independence
from GNSS data and balises.

III. PROPOSED SOLUTION
As IMU sensors are affected by error sources that are totally
independent of those concerning the GNSS positioning, the
proposed work describes an approach for extracting cues
from the track layout (e.g., curvatures, slopes, cross switches)
using inertial data, matching their location with the corre-
sponding ones stored in an enriched version of the Digital
Map. The navigation of the Digital Map is done by using
the train odometry. Once the locations of a cue is detected,
an onboard signaling subsystem can potentially use this loca-
tion as an a-priori known position marker.

Such position markers can be used to reset the odometry
confidence intervals, independently of the equivalent train
confidence interval reset done by the ETCS kernel1 by using
linked balise groups and the linking information [1]. The
detection of position errors greater than a specified threshold
(a configuration parameter) can be used as a fault detec-
tion mechanism whose design has to be carefully done con-
sidering the recommendations on the Detection and Nega-
tion Times provided in [28]. The detected position can be
exploited for other uses, such as one of the inputs for 3D local-
ization algorithms or a monitoring technique for detecting
unbounded GNSS position errors, but the research on these
benefits goes beyond the scope of the paper.

The employment of inertial sensors has also the main
advantage of not relying on any external signals, which could
be either tampered or unavailable in some sections of the
railway paths or, in the worst case, disturbed by intentional
or unintentional radio frequency interferences.

Among the track features, the path curvature ρ, defined as
the inverse of the curve radius r , has a significant importance
and has been selected as the key index for this paper. Nev-

1The core of the ERTMS/ETCS onboard equipment.

FIGURE 2. Block diagrams of the offline and online processes used for
extracting features from the digital map (top) and matching them with
those estimated by inertial data (bottom), respectively.

ertheless, the proposed approach can be extended to other
track parameters, as discussed in the final remarks. On the
other hand, the proposed approach requires a precise Digital
Map to achieve train positions with a desired accuracy and
availability.

A. SYSTEM ARCHITECTURE
The overall architecture used to implement the proposed
method is illustrated in Figure 2. It consists of two macro
blocks, one executed offline and one executed online.

The off− =line macroblock extends the row Digital Map
(M ) generating a new enriched map (ME ), containing a set of
features along the path. A path in the map is represented as a
sequence of 3D points, each characterized by its coordinates
expressed in the North, East, Down (NED) reference sys-
tem [29].2 In particular, the Curvature Reconstruction block
receives the Digital MapM as input and computes the curva-
ture ρ(q) as a function of the traveled distance q, expressed in
the odometry coordinate system. Then, the curvature data are
sent to the Feature Extraction block, which extracts a set of
features along the path, corresponding to the railway sections
with the highest absolute curvature derivative. In particular,
each feature fi is represented by a tuple (qi, ρi, ρ′i ) storing its
position, its curvature, and the curvature derivative. The setF
of all the features selected on the Digital Map is then stored
in the enriched mapME .

The online macro block estimates the features from inertial
data, matching them with the ones stored in the enriched
map ME . Every time a match is found, the odometry error is
reduced. In particular, the Curvature Estimation block recon-
structs the curvature ρ̃(t) from the inertial data (acceleration
vector −→a (t) and angular speed vector −→ω (t)) and the train
velocity v(t) provided by the odometry (e.g., based on wheel
sensors). The Feature Estimation block extracts the features

2Coordinates are stored in the map in the Earth-centered Earth-fixed
(ECEF) reference system and converted to the NED reference system to be
used in the algorithm.
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from the curvature ρ̃(t) at runtime, applying an algorithm
similar to the one used offline.

In the following, the actual train position is denoted as q(t),
the position estimated by odometry is denoted by q̃(t), and the
odometric error is denoted by ϵ̃(t) = q̃(t)− q(t).

As soon as a new feature is detected by the Feature Estima-
tion block at time t∗, it is directly sent to the FeatureMatching
block, which performs the matching with the features stored
in the digital map ME . The matched feature is denoted by
f ∗(q∗, ρ∗, ρ′∗). To restrict the set of features F to be com-
pared, a subset F is selected by the Feature Selection block
within a moving window on the route centered on the current
estimated train position q̃(t) and having awidth [δlb(t), δub(t)]
established by the maximum current error bounds of the
odometry. Such bounds can be computed as follows. The
odometry system is built to guarantee a maximum error spec-
ified as a function of the actual position q. In particular, the
regulation requires the estimated position q̃ to be in the range

q−a− b(q− qL) < q̃ < q+ a+ b(q− qL) (1)

where qL denotes the position of the last detected feature,
while the constants a and b depend on the specific coun-
try (e.g., ETCS performance requirements for interoperabil-
ity [2] specify a = 5 m and b = 0.05). The value of qL is
initialized by q̃(t0). Inverting Equation (1), it is possible to
state that, given the position q̃ estimated by the odometry, the
actual train position is within the range

δlb < q < δub (2)

where

δlb =
q̃+ b qL − a

1+ b
, δub =

q̃− b qL + a
1− b

. (3)

The Feature Matching block produces as output the
matched feature f ∗, whose position q∗ is used to reduce the
odometry error by the amount λ = q̃(t∗)− qL .

If the detected feature is used for odometry error correc-
tion, when a matching occurs, the value of qL is set to q∗ and
the correction is performed. The fixed error is computed as
ϵf = ϵ̃ − λ.

A more detailed explanation of the functional blocks illus-
trated in Figure 2 is reported in the following sections. Table 1
summarizes the most common symbols used throughout the
paper.

B. OFFLINE CURVATURE RECONSTRUCTION
At the moment, the digital map under investigation in Hitachi
Rail STS [30] is an oriented graph of interconnected nodes
with variable distances between them, not including infor-
mation on curves, gradients, and superelevations. Therefore,
an offline curvature reconstruction process has to be per-
formed taking into account the characteristics of the current
Digital Map.

To understand the curvature reconstruction process con-
sidered in this paper, we recall some basic geometric crite-
ria adopted to design rail transit, aimed at providing cost-
effective, efficient, and comfortable transportation, while

TABLE 1. List of Symbols used in the paper.

maintaining adequate safety factors [31], [32]. For exam-
ple, the Italian track design specification [32] states that the
minimum radii of the horizontal and vertical curvatures of a
railway track in line are 275 m and 500 m, respectively; the
horizontal value is further decreases to 170 m for some tracks
located in train stations.Moreover, transitions between curves
have to follow a clothoid or a cubical parabolic function. For
instance, a curve subsequent to a straight section starts with
a curvature ρ equal to zero that is increased linearly until the
desired plateau value and is kept constant for the central part
of the curve. The end of the curve follows the same profile,
where the curvature linearly reduces to zero. In addition, the
track design criteria state that between a curve with a positive
radius and another one with a negative radius there must be a
straight section with a minimum length of 50 m.

A convenient representation of a track used in several
industrial solutions makes use of a graph where the nodes
are geolocalized points of the track, and a link represents the
connection between two consecutive nodes [30], [33]. The
basic rule used to develop a Digital Map is to sample the
nodes’ positions following the convention that the link length
should be inversely proportional to the curvature and less than
a maximum sampling distance.

The curvature reconstruction algorithm receives the
sequence of geolocalized nodes from the map M and esti-
mates the curvature at each node, using Taubin’s method [34].
The reconstruction algorithm must also deal with errors in
nodes coordinates due to measurement inaccuracies. Such
errors in node positions can cause large errors in the esti-
mated curvature when nodes are separated by a small dis-
tance. To reduce such errors consecutive points closer than
a minimum distance dmin are discarded. Since the maximum
location error affecting the node positions is a specification
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FIGURE 3. Example of a feature selection on the track curvature and its
absolute derivative.

requirement for the Digital Map, the best value for dmin is a
function of the map features. Section IV-E will present some
preliminary results on an actual track while describing the
map used to evaluate the proposed approach on real data.

C. OFFLINE FEATURES EXTRACTION
Curvature features are selected offline by the Feature Extrac-
tion block from the curvature profile ρ previously recon-
structed from the Digital Map M . To increase the accuracy
of the feature-matching algorithm, features are selected by
choosing those points on the track whose curvature variation
has a local maximum above a certain threshold ηM (a config-
urable parameter).

Figure 3 illustrates how the curvature error affects the
position error of the feature, when this is selected based on
the maximum absolute curvature derivative.

The threshold is selected as a trade-off between the radius
range admitted by the construction rules and the error intro-
duced by inaccuracies in the geolocalization of points com-
posing the map. A low threshold value allows detecting
curves with a large radius, while a higher value provides
robustness against computation errors due to inaccuracies in
the Digital Map locations. In this paper, a value ηM = 5 ×
10−6m−2 has been used to define the intervals in which local
maxima of the absolute curvature derivative are computed.

Algorithm 1 presents the pseudocode of the procedure used
by the Feature Extraction block to select the features on the
digital map M from the curvature profile ρ and its derivative
ρ′.

In particular, the proposed algorithm sequentially analyzes
theKM points describing the curvature profile of the track and
selects each feature by choosing the point with the maximum
absolute curvature derivative within a search interval. The
beginning of the search interval is set to the point in which
the absolute curvature derivative becomes higher than the
threshold ηM (lines 4-7), while the end of the interval is
set as the first successive point where the absolute curvature

derivative returns below the threshold (line 14). Within each
search interval, the algorithm keeps track of the point (qmax ,
ρmax) with the maximum absolute curvature derivative ρ′max
(lines 8-13), which becomes a new feature. The condition
(qmax > 0) at line 9 is necessary to avoid computing a feature
in the case in which the track starts with an absolute curvature
derivative above the threshold. The new feature is then added
to the set F of detected features that will be embedded in the
enhanced Digital MapME (line 16).

Algorithm 1 Select Features on the Curvature From the
Digital Map

Input: ρ(q), ρ′(q)
Output: F

1: procedure Features_Selection
2: qmax ← 0
3: for (k ← 0 to K − 1) do
4: if (| ρ′(qk−1) |< ηM ) ∧ (| ρ′(qk ) |≥ ηM ) then
5: qmax ← qk
6: ρmax ← ρ(qk )
7: ρ′max ← ρ′(qk )
8: end if
9: if (qmax > 0) then
10: if ρ′(qk ) > ρ′(qmax) then
11: qmax ← qk
12: ρmax ← ρ(qk )
13: ρ′max ← ρ′(qk )
14: end if
15: if (| ρ′(qk−1) |≥ ηM ) ∧ (| ρ′(qk ) |< ηM )

then
16: F ← F ∪ (qmax, ρmax, ρ′max)
17: end if
18: end if
19: end for
20: end procedure

Figure 4 shows a curvature profile reconstructed from a
synthetically generated track. Red crosses denote the selected
features corresponding to the points in which the absolute
curvature derivative has a local maximum.

D. ONLINE CURVATURE ESTIMATION
The online curvature estimation process exploits the inertial
data to reconstruct the curvature profile of the route followed
by the train.

The train velocity vector can be defined as −→v = vx ûX +
vyûY , where uX and uY represent the unit vector of longitudi-
nal and lateral axes in the body frame, respectively. Assuming
that the velocity vector is directed along the longitudinal axis
of the track, the lateral speed is null (vy = 0) and the train
acceleration can be expressed as

−→a =
d(vx ûX )
dt

=
d(ṡûX )
dt
= s̈ûX + ṡ ˙̂uX , (4)

where s represents the traveled space.
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FIGURE 4. Example of a curvature profile reconstructed from a
synthetically generated track (top). Red crosses denote the selected
features corresponding to the points in which the absolute curvature
derivative has a local maximum (bottom).

Since the acceleration vector lies on the plan defined by
(uX , uY ), it can be decomposed into two components exploit-
ing the relation ˙̂uX = 9̇ûY , where 9̇ is the yaw angular
rate obtained from the IMU in the NED frame. Therefore the
acceleration can be expressed as −→a = ax ûX + ayûY , where
ax = s̈ and ay = ṡ9̇. It is possible to write s and its derivative
in the form:

s = r9
ds
dt
=
dr
dt

9 + r
d9

dt
. (5)

Under the hypothesis that the local radius r is constant, the
derivative can be represented as ṡ = r9̇, and the normal
acceleration ay can be expressed as:

ay = r9̇2
= r

(
ṡ
r

)2

=
ṡ2

r
=
||v||2

r
. (6)

Equation (6) describes the relationship between the lon-
gitudinal speed ||v||, the curvature radius r , and the cross
track acceleration ay. Since the curvature ρ is the inverse
of the radius, this formula allows defining three methods for
deriving it:

ρ(1)(t) =
9̇2

ay
=
w2
z

ay
,

ρ(2)(t) =
9̇

||v||
=

wz
||v||

,

ρ(3)(t) =
ay
||v||2

. (7)

The first method (ρ(1)) does not require integration,
because the IMU directly senses the dynamic variables. How-
ever, when the train is covering a straight segment of the track,
both the numerator and the denominator are zero and the ratio
becomes indeterminate, making the result only depending on

FIGURE 5. Example of raw curvature derivative (black curve) and filtered
one (thick red curve).

the noise in the sensory data. For this reason, this method
cannot be exploited alone.

The second and the third methods (ρ(2) and ρ(3)) are sim-
ilar, with the speed appearing at the denominator. However,
in the third method, the speed is quadratic, meaning that ρ(3)

is more sensitive to errors in the speed value provided by
the odometry function. This effect is also more significant at
low speeds, because the error component in the measurement
becomes more prominent and is no longer negligible.

Bellabas et al. [27] compared the three methods and
showed that no one dominates the others, suggesting that
a robust solution should merge them. Although this goal is
outside the scope of this work, Section IV-A presents some
remarks on the performance of some integrated methods
applied to data acquired in a real-world scenario.

E. ONLINE FEATURES ESTIMATION AND MATCHING
While the train is moving, the online Feature Estimation
block detects a feature f using the curvature ρ̃ computed
from the inertial data by the Curvature Estimation block and
provides it to the Feature Matching block, which compares it
against the setF stored in the enhancedmapME and provides
the current positions q∗ corresponding to the matched feature.
As inertial data are typically very noisy, the curvature

derivative is first processed by a low-pass filter before being
analyzed by the feature extraction algorithm. Figure 5 shows
the raw curvature derivative (thin black plot) and the corre-
sponding envelop (thick red plot) filtered using a root mean
square function with a window of 50 samples.

The curvature ρ̃ computed from the inertial data and the
corresponding filtered derivative ρ̃′ are analyzed online by
the Feature Estimation block with an approach similar to the
one applied offline to the curvature obtained from the map
by the Feature Extraction block. The pseudocode of Feature
Estimation is detailed in Algorithm 2.
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When a new curvature is computed from inertial data at
time t , the algorithm evaluates whether its absolute derivative
crosses the threshold ηI (line 6). The crossing is detected if
the value ρ̃′(t) is above ηI and ρprev is below it, where ρprev
is the value of ρ̃′ stored at the previous iteration (line 24).
If a crossing is detected, the feature f is associated with the
curvature ρ̃(t) and derivative ρ̃′(t) values of the current time
t . (lines 6-11). The algorithm performs two activities when
the new data arrives within a search interval (line 12). If the
new absolute curvature derivative is greater than the current
maximum, it is selected as the new maximum (lines 13-18).
Then, if the absolute curvature derivative has decreased below
the threshold ηI (line 19) the selected maximum is passed to
the Feature Matching block (line 20). Note that the Curvature
Estimation and the Feature Estimation blocks are executed at
the rate imposed by the inertial data, while the matching is
invoked only when a new feature is detected.

Algorithm 2 Detect a New Feature on the Curvature Com-
puted From the Inertial Data

Input: ρ(t), ρ′(t)
1: procedure Feature_Estimation
2: if (first_iteration) then
3: qmax ← 0
4: ρ′prev← ηI
5: end if
6: if (| ρ′prev |< ηI ) ∧ (| ρ̃′(t) |≥ ηI ) then
7: t∗← t
8: qmax ← q̃(t)
9: ρ∗← ρ̃(t)

10: ρ′∗← ρ̃′(t)
11: end if
12: if (qmax > 0) then
13: if ρ̃′(t) > ρ̃′∗ then
14: t∗← t
15: qmax ← q̃(t)
16: ρ∗← ρ̃(t)
17: ρ′∗← ρ̃′(t)
18: end if
19: if (| ρ′prev |≥ ηI ) ∧ (| ρ̃′(t) |< ηI ) then
20: f ← (t∗, ρ∗, ρ′∗)
21: F ← Feature_Selection(t∗)
22: Feature_Matching(f ,F)
23: qmax ← 0
24: end if
25: end if
26: ρ′prev← ρ̃′(t)
27: end procedure

Figure 6 presents the features detected on the curvature
ρ estimated from the inertial data while traveling the same
synthetic track analyzed in Figure 4. In particular, red crosses
denote the points with the maximum absolute curvature
derivative (i.e., the selected features).

FIGURE 6. Feature estimation with inertial data on the synthetic track
layout.

The Feature Selection block chooses the possible matching
features for the estimated one f , and its pseudocode is detailed
in Algorithm 3.

Given the time t∗ at which feature f is detected, the algo-
rithm defines the search interval W as a moving window
shifted on the track with the motion of the train (line 2). The
window is centered on the position estimated at time t∗ by
the odometry q̃(t∗), whereas its width is determined by the
odometry error bounds, as illustrated in Figure 7. A subset of
features F is extracted from the set of features F , computed
offline by the Features Extraction block and stored in the
enriched Digital MapME , and including all features fi whose
position qi is within the search intervalW (line 3). The subset
F is provided to the Feature Matching block for the actual
matching.

Algorithm 3 Identifies the Set F of Eligible Features in the
Map to Match With the Estimated One f

Input: t∗

Output: F
1: procedure Feature_Selection
2: Gets F , δLB(t∗), δUB(t∗)
3: W ← [δLB(t∗), δUB(t∗)]
4: F ← {fi ∈ F | qi ∈ W ∧ qi > qLM }
5: end procedure

The Feature Matching block performs the final step of
the proposed approach. Among the features in the subset F
extracted from the enriched Digital MapME , it computes the
one matching the feature f estimated from the inertial data.

This pairing allows determining the error accumulated by
the odometry estimation q̃(t) at time t∗. Algorithm 4 presents
the pseudocode of the Features Matching block.
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FIGURE 7. Example of the moving window centered on the current train
position q̃ estimated by wheel odometry, and the selected feature qi .

The algorithm starts creating a new set FN of features
including those belonging toF and following the lastmatch fL
(i.e., those features with a position qi greater than the position
of the last detected feature qL), as performed in line 5.
A feature can be characterized by considering the signs of

the curvature and its derivative. Hence, by evaluating them
is possible to know whether the position is relative to the
beginning or the ending of a curve and if the turn is right or
left. The approach exploits this information to create a new set
FC selecting the features in FN whose curvature and related
derivative have a concording sign with those of f (line 6).
Note that, given the geometric criteria in track design and the
constraints in the maximum tolerance in the odometric error,
the subset FC usually contains only one feature. If the set
includes more than one feature, the algorithm selects the first
one along the track based on the consideration that features
are engaged sequentially (i.e., with an increasing value of q),
as performed in line 8.

Algorithm 4 Match the Estimated Feature f With the Ones
in F

Input: f , F
Output: q∗

1: procedure Features_Matching
2: if (first_iteration) then
3: qL ← 0
4: end if
5: FN ← {fi ∈ F | qi > qL}
6: FC ← {fi ∈ FN | ρ(qi)ρ∗ > 0 ∧ ρ′(qi)ρ′∗ > 0}
7: if (FC ̸= ∅) then
8: q∗← min{qi | fi ∈ FC }
9: qL = q∗

10: else
11: q∗←MATCH_NOT_FOUND
12: end if
13: end procedure

FIGURE 8. Comparison between the odometry error with and without the
proposed correction.

The feature-matching algorithm produces as output a tuple
of values (t∗, q̃(t∗), q∗), where t∗ is the time at which the
feature is detected, q̃(t∗) is the odometry estimation at time t∗,
and q∗ is its position of the matched feature on the enhanced
Digital Map.

F. ODOMETRIC ERROR CORRECTION
If the detected feature is used for correcting the odometry
error, the position correction λ(t), performed at detection
time, is computed as

λ(t) = q̃(t∗)− qL . (8)

Figure 8 compares the error of the odometry without cor-
rection ϵ̃(t) = q̃(t) − q(t) against the one fixed with the
proposed method ϵf (t) = ϵ̃(t)− λ(t).
Note that applying the correction is not enough to reset

the error. In fact, the residual error is only partially ascrib-
able to the map-matching algorithm, due to the errors in
the geolocalization of the points in the map and those in
the curvature reconstruction. Also observe that the feature
correction is performed at time t , when the curvature deriva-
tive goes below the threshold (line 19 in Algorithm 2), after
time t∗. In the meantime, the odometry has accumulated an
additional error that will be handled when the next feature is
matched.

Finally, it is worth noting that, although this paper only
focuses on features coming from curvature variations, other
types of track features can be considered, like switches,
as well as altitude and roll gradients. For example, the
proposed algorithm can detect pitches due to slopes and
roll variations related to track inclinations present on the
train route. Each feature can potentially act as a posi-
tion marker used for resetting the odometric error, detect-
ing unbounded GNSS position data, and performing 3D
localization.
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FIGURE 9. Curvature ρ estimated using ρ(2) (a) and ρ(3) (b), shown along
with the longitudinal train speed (c).

IV. EXPERIMENTAL RESULTS
This section presents a set of experiments carried out to test
the proposed approach, both on synthetic and real-world data.

A. CURVATURE ESTIMATION
As described in Section III-D, the curvature of the actual train
route can be estimated at runtime using different methods
applied to inertial data, as presented in Equation (7). This
subsection compares the performance of two approaches (i.e.,
ρ(2) and ρ(3)) using real data acquired from the Hitachi Rail
STS trial site. The achieved results show that the effectiveness
of the two approaches depends on the quality of the inertial
data (i.e., noise) and the operating conditions (mainly the train
speed).

Figure 9 compares the curvature estimated by using the two
approaches for a given speed profile.

In particular, the first two plots report the curvature esti-
mated with the second (ρ(2)) and third (ρ(3)) approaches,
while the third plot shows the profile of the longitudinal
train speed during the arrival to a station, where the speed
decreases to zero. As it can be observed, the difference
between the two approaches depends on the train speed.
When the speed is higher than 20 m/s, the curvature profiles
obtained by the two approaches are comparable, as illustrated
in Figure 10, which compares the two curvature profiles
when the speed is between 20 and 30 m/s. Conversely, the
third approach (ρ(3)) shows a significant degradation for
low speeds, due to the quadratic term at the denominator,
which amplifies the odometry error. This is also confirmed
by Belabbas et al. [27], who reported that the approach using
the yaw angular rate (ρ(2)) is better than the one based on the
lateral acceleration (ρ(3)) for low-medium speed ranges, up to
30 m/s.

In particular, Figure 11 compares the two approaches for
low speeds, showing that both results diverge when the speed
is close to zero. However, the difference between them is

FIGURE 10. Curvature ρ estimated using ρ(2) (a) and ρ(3) (b), shown
along with the longitudinal speed (c) in high speed conditions.

FIGURE 11. Curvature ρ estimated using ρ(2) (a) and ρ(3) (b), shown
along with the longitudinal speed (c) in low speed conditions.

significant, as the curvature estimated by the acceleration
(ρ(3)) is affected by an error that is more than ten times higher
than the one achieved using the angular velocity (ρ(2)).

This comparison confirms that the performance of both
approaches depends on the quality of the inertial data and the
train speed, and their optimal integration depends on the char-
acteristics of the specific inertial sensors and the train and line
operational conditions. Integrating such methods, however,
is outside the scope of this paper and will be carried out in a
future work. In the following experiments, the curvature has
been estimated by exploiting the angular speed of the yaw
angle (ρ(2)) due to its robustness.

B. EXPERIMENTAL SETUP
To evaluate the performance of the proposed approach in
a large variety of situations, a generator of synthetic rail-
way paths has been developed. To obtain realistic paths, the
generator follows the specifications provided by the Italian
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Infrastructure Manager [32]. Initially, the path is generated as
a continuous line composed of straight and curved segments
(straight segments are generated as a curve with a radius
equal to 10000 meters). Each curve consists of three ele-
ments: an initial spiral curve, a circular curve with a constant
radius, and a final spiral curve. Spiral curves are generated
using a linearly increasing or decreasing radius to ensure a
smooth transition between two consecutive track segments.
The continuous path is then sampled with a fixed step of
5 m in order to have a fine-grained discrete path, used as
ground truth. A synthetic path is generated by sub-sampling
the fine-grained path, so obtaining a sequence of points with
a structure similar to the one adopted in a real Digital Map,
where the distance between consecutive points is proportional
to the radius.

The map generator takes as input a number of parameters,
as the maximum length of the path, the number of curves,
and, for each curve, its radius and degree of curvature. Each
parameter value is randomly generated within a given range
to obtain a number of pseudo-random paths. Another input
parameter is themaximum allowed train speed, which defines
the maximum allowed curvature and characterizes the guid-
ance law during the simulation. Once a synthetic path is
generated, the simulator directly computes the train dynamics
and uses the train state variables to provide the output of
the inertial sensor, also adding a Gaussian noise with zero
mean and variance compatible with the sensor used in the real
environment.

C. SENSITIVITY TO THE IMU NOISE
A set of three experiments was carried out to verify how the
noise present on inertial data affects the corrected odometric
error ϵf (t). The experiments have been carried out on a syn-
thetic path consisting of two curves illustrated in Figure 12.
Figure 13 reports the corresponding ground truth curvature
(top graph) and the curvature reconstructed by the proposed
algorithm (bottom graph).

In such a path, the proposed approach detects a feature at
the entrance and the exit of each curve, for a total number of
four detected features.

Considering the approach used to estimate the curvature
online, which employs only the yaw angle from the inertial
data, a white noise with a variable standard deviation has
been injected into the yaw angular data of the virtual IMU.
To generate realistic inertial data, a standard deviation σ in
the range [0.08, 0.28] deg/

√
s has been utilized. The value of

the uncorrected odometry q̃(t) was generated from the ground
truth q(t) by adding an error such that q̃(t) is kept within the
bound of 5 m plus 5% of the traveled distance [2].

The first test was carried out for curves with radius of
500 m and degree of curvature equal to 20 degrees. Fig-
ure 14 shows the simulation results obtained over ten runs
for a single value of σ equal to 0.01 deg/

√
s. In particular,

a profile of the residual error ϵf (t) is presented, together with
the uncorrected odometry error ϵ̃(t). Even if remaining sig-
nificantly below the bound, the uncorrected odometry error

FIGURE 12. Track used to study the effect of angular random walk
standard deviation (left) and the corresponding subsampled Digital Map
(right).

FIGURE 13. Reconstructed ρ (top graph) and the corresponding ground
truth (bottom graph) in the study on the effect of angular random walk
standard deviation.

grows monotonically, arriving at a value of 18.92 m in less
than 60 seconds. Instead, the proposed approach is able to
detect all four features, thus limiting the residual error below
a maximum value of 4.85 m, with an average error of 2.52 m.

The second experiment evaluated the impact of noise on the
residual error by varying the value of σ in the whole range
[0.08, 0.28] deg/

√
s with a step of 0.02 deg/

√
s. The ratio

between the residual error ϵf after the correction (t∗+) and the
one before applying the correction (t∗−) is used as a metric
to evaluate the performance of the proposed solution. It can
be computed as e% = 100 · ϵ̃(t∗+)/̃ϵ(t∗−).

The obtained results are not shown because the variation
of the residual error e% resulted to be below 5% in the whole
range of values used for σ . This confirms that the proposed
solution is robust against a wide range of noise present in
the inertial data. This behavior is due to the filtering phase
of the signal performed by the Features Detection block,
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FIGURE 14. Example of the residual error as a function of time on the
reference track with an AWR standard deviation σ = 0.01.

which makes the system robust even to significant changes
in the standard deviation. Since an optimal filter calibration
depends on the knowledge of the IMU characteristics, the
selection of the IMU device and the filter design are two
crucial phases that need to be carefully addressed.

A third experiment was carried out to verify whether the
effect of the noise depends on the geometry of the curves. The
test was performed by generating a set of ten paths formed by
two curves with a degree of curve equal to 20 degrees and a
radius varying in the range [150, 2500] meters. Ten repeti-
tions were generated on each route with the same parameters
used in the previous experiment, computing the average and
the maximum error. The resulting trend as a function of
the standard deviation σ of the noise is similar to the one
observed in the previous experiment and is not reported for
lack of space. Overall, the results confirm that the system is
robust to noise independently of the curve parameters.

D. SENSITIVITY TO THE CURVATURE
The experiments reported here were carried out to evaluate
the effects of the parameters used for filtering the inertial data
and the influence of the threshold used for feature detection.
Other tests were done to evaluate the effect of the curvature
on the odometric error estimation for fixed filter parameters
and threshold. The path shape used in these tests is the same
as the one used in the previous experiments (see Figure 12
and Figure 13). The degree of curvature was kept fixed, while
the maximum curvature radius of the section was varied from
150 m to 4500 m with a step of 50 m to respect the mini-
mum and maximum values allowed by the paths construction
constraints. Ten runs were performed for each value of the
radius, computing the average and the maximum errors over
all repetitions.

Figure 15 shows the route features detected on one of the
paths, where crosses denote the detected features and circles
show the point where the odometry fixes were performed.
Since fixes allow reducing the cumulative error due to the

FIGURE 15. Features detected on the track curvature (denoted by crosses)
and its derivative. The circles show the points where the odometry fixes
were performed.

FIGURE 16. Maximum error as a function of the radius (Top), Percentage
of the odometry error (e%) corrected as a function of the radius (Middle),
Number of detected features (Bottom).

drift in odometry data, precisely detecting all the features is
crucial for containing the position error between balises.

Figure 16 (top) shows the average of the maximum error
of the ten repetitions as a function of the radius, starting from
a minimum of 150 m to a maximum of 4500 m. As expected,
as the curve radius increases, the detection capability of the
approach decreases, since the curvature variation is smaller.
As a result, themaximum corrected odometer error decreases,
as shown in Figure 16 (middle), and the Features Estimation
block cannot detect all the features, as reported in Figure 16
(bottom). This effect can be ascribed to a high threshold, set to
increase the robustness against the noise of the inertial sensor
after filtering. Finding the right trade-off between robustness
and the residual odometry error after the correction is crucial,
because inadequate filtering or thresholds limits the benefit of
reducing the odometry error. In fact, the number of odome-
try corrections decreases as the number of detected features
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FIGURE 17. Mean error as a function of the radius (top), corrected
relative error (middle), and detected features (bottom), obtained with
different thresholds.

FIGURE 18. Curvature profiles reconstructed with different values of dmin.

decreases. Since the filtering is specific for the selected sensor
characteristics, the next test focuses only on the threshold.
It uses the same setup of the previous test and evaluates the
effect of the threshold on the detection quality.

This test was performed to verify whether there exists
an optimal threshold value for detecting the correct number
of features for any radius within the constraints allowed by
tracks construction rules. As expected, the threshold value
strongly depends on the radius of curvature of the path.
However, if the curve radius is reported in theDigitalMap, the
onboard platform can read the radius of the next approaching
curve and select the best threshold associated with it.

Figure 17 shows the results of the previous experiment
repeated with three different threshold values. With a thresh-
old equal to 0.00045 (yellow curve), no feature is detected
for most of the allowed range of curvatures and no odometry
correction is performed during the train path. A threshold

FIGURE 19. Curvature reconstructed on the reference real track.

equal to 0.00015 (orange curve) represents an excellent alter-
native, since all the features are detected up to a radius of
2500 m, and some fixes are performed even for values over
4000 m. A threshold value of 0.00005 (blue curve) produces
inconsistent results, because the number of estimated features
is much higher with respect to the real ones. This generates a
wrong correction in some points detected as features, because
they were associated with some reconstructed features on the
moving window in the map.

E. VALIDATION WITH REAL DATA
To evaluate the correctness of the proposed approach, some
preliminary validation tests have been performed on real
data. The reference track is a short path of around 5000 m
concerning the arrival of the train at a station.

Figure 18 shows a portion of three different reconstructed
curvature profiles obtained with different values of the mini-
mum distance dmin between consecutive points, as described
in Section III-B. As evident from the plots, values of dmin
smaller than 10 m generate curvature errors visible as spikes
(dot-dashed red plot), while values higher than 10 m lead to
a degradation of the reconstructed curvature profile (dashed
pink plot). Hence, in this work, dmin = 10 m has been used to
reconstruct the curvature.

Figure 19 shows the track curvature reconstructed on the
whole traveled path extracted from the map with dmin = 10 m.
Note that the spikes present in the intervals 3200-3500 m and
4000-4500 m are generated by the switches located on the
railway line.

Applying the proposed approach to detect the features on
the track produces the results presented in Figure 20, where
the curvature (top graph) is shown together with its derivative
(bottom graph). Note that the features (indicated by a cross)
correctly match the local maxima of the derivative function,
and the end of the corresponding window (indicated by a cir-
cle) is selected as the first point were the derivative decreases
below the chosen threshold. The final part of the available
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FIGURE 20. Features revealed on the reconstructed curvature of the
reference real track.

FIGURE 21. Features estimated on the real IMU signal acquired while
traveling the reference track.

data was not considered due to the very low speed, requiring a
precise knowledge of the sensor noise model, which was not
available for the inertial unit used during the measurement
campaign.

Finally, Figure 21 shows the curvature derived from the
IMU signal following the presented approach, together with
its derivative and the revealed features.

Note that the derivative of the estimated curvature is signif-
icantly more noisy than the one obtained for the reconstructed
one, implying the use of a proper threshold value. However,
the number of matched features is bounded by the number of
features in the reconstructed track. The choice of the features
to be reconstructed is a task that can be performed offline
and needs to be repeated only if the railway is subjected to
modifications, embedding the results in the Digital Map.

V. CONCLUSION
This paper presented a novel solution to improve the odom-
etry precision in train localization. The proposed method
exploits inertial data (i.e., lateral accelerations and yaw angu-
lar rotations) to estimate the track curvature and detect a
number of track features, which are then matched with those
extracted offline from a digital map of the train path, used
as virtual position markers. The map features considered for
the matching are those found in a moving window centered
in the position estimated by the odometry and with a length
proportional to the uncertainty bounds. Every time a feature
reconstructed from the inertial data matches the correspond-
ing feature stored in the digital map, its position is provided
as output.

The experiments carried out on both synthetic and real
data showed the effectiveness of the proposed approach when
applied to reduce the odometry error, which can be decreased
up to 74% over 4500 m stretch by exploiting the auxil-
iary markers. The results also showed the robustness of the
method to noise in the inertial data. The proposed method can
be exploited to contain the train position confidence interval
without increasing the number of physical balises along the
line, thus saving both infrastructure and maintenance costs.

In a future work, we plan to extend the proposed approach
to extract additional features, such as switches and slopes,
enriching the digital map with a higher number of virtual
position markers. Finally, we envisage a more in-depth anal-
ysis of real-world data obtained from fully-characterized sen-
sors, to be integrated in a comprehensive localization solution
making use of additional sensors, as GNSS and Lidar.
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