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Abstract—Deep neural networks exhibit excellent performance
in computer vision tasks, but their vulnerability to real-world
adversarial attacks, achieved through physical objects that can
corrupt their predictions, raises serious security concerns for
their application in safety-critical domains. Existing defense
methods focus on single-frame analysis and are characterized by
high computational costs that limit their applicability in multi-
frame scenarios, where real-time decisions are crucial.

To address this problem, this paper proposes an efficient
attention-based defense mechanism that exploits adversarial
channel-attention to quickly identify and track malicious objects
in shallow network layers and mask their adversarial effects in
a multi-frame setting. This work advances the state of the art
by enhancing existing over-activation techniques for real-world
adversarial attacks to make them usable in real-time applications.
It also introduces an efficient multi-frame defense framework,
validating its efficacy through extensive experiments aimed at
evaluating both defense performance and computational cost.

Index Terms—adversarial attacks, real-world adversarial de-
fense, neural network monitoring, robust and secure AI

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have demon-

strated remarkable performance in several computer vision

tasks. At the same time, they have been shown to be quite

vulnerable to adversarial attacks [1], where small perturbations

of input data can cause a model to output wrong predictions.

To address this problem, an increased research effort has been

devoted to make DNNs more reliable, robust, and secure, to

be adopted in cyber-physical systems (CPS), as autonomous

vehicles and robots [2]–[4].

Although adversarial perturbations represent a concrete se-

curity threat for DNNs, they raised significant discussions

in the CPS community, mainly questioning the practical rel-

evance of these attacks. It is indeed not entirely realistic

to consider threat models in which the attacker has access

to the digital representation of the frames captured by a

vision system, to run adversarial attacks against DNNs, while

not having the capability of compromising other software

components in the system that could be even easier to attack.

In response to this argument, research efforts have been shifted

towards real-world adversarial attacks [5], which are deployed

through physical objects, such as billboards and patches, that

are specifically crafted and strategically placed in the external

environment to fool DNNs [6], [7].

To enhance the robustness of DNNs against such real-world

adversarial attacks, various techniques have been proposed in

the literature (discussed in Section II). A common paradigm

that can be found in previous work consists in producing

at run-time a mask to cover adversarial objects, thereby

preserving the predictions of the DNNs under attack.

Although recent defense methods have shown a promising

performance to contrast such types of attacks, even on complex

real-world scenarios, previous work mainly focused on single-

image (i.e., single-frame) cases and without paying particular

attention at the computational cost of the proposed defense

method, resulting in more inference passes or additional ex-

pensive neural models. These limitations make state-of-the-

art approaches inadequate for CPS, where efficient solutions

capable to operate in real time on video streams (i.e., multiple

frames) are required.

This work. To face these challenges, we take inspiration

from recent studies [10], [11] that assess strong and provable

connections between anomalous over-activations in convolu-

tional network layers and real-world adversarial effects on

the model output. In particular, this work delves deep into

understanding the over-activation phenomenon by observing

the presence of specific channels even in the first layers of

DNNs, which are predominantly targeted by the real-world

attack for propagating adversarial effects. We systematically

identified this attack pattern through channel-wise weights,

denoted as adversarial trace, that enable a significantly faster

and more accurate identification of attacks by means of

a proper attention strategy. This allows for the immediate

removal of adversarial features before their spatial propagation

in the deep layers, hence detecting and masking attacks in a

single inference pass.

After presenting the results of our analysis and providing

insights into the nature of the adversarial trace, we propose a

defense algorithm for multi-frame vision applications named

Adversarial-Channel Attention Tracing (ACAT). To enable the

efficient tracing of adversarial physical objects in a video

stream, ACAT requires to know a starting spatial position of

the objects, which can be extracted using a single inference

pass of state-of-the-art single-frame defense methods. As

witnessed by the experimental results reported in the paper,
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Fig. 1: Schematic and simplified overview of the proposed multi-frame defense paradigm compared to state-of-the-art, single-frame defense
paradigms. At frame k = 0, with a first inference pass (yellow arrow in the figure), a single-frame defense mechanism extracts a mask to
inhibit the detected attack. Another inference pass is required at frame k = 0 to apply the defense mask (orange arrow in the figure). With
the proposed approach, the mask is used to implement pattern analysis in the shallow layers for the next frames k > 0, which is the core
task performed by ACAT. This allows extracting an adversarial trace that allows for a quick identification of the shape of the adversarial
object, hence efficiently generating and applying defense masks (right side of the figure). At the bottom, we show illustrations of the defense
mechanism in a simulated attacked Carla driving scenario [8] with the BiseNet model [9], where the adversarial object is highlighted in the
red area. For completeness, we also report the output of the same frame without any defense mechanism and the ground truth.

this improves both efficiency in terms of running times and

computing load, as well as the attack detection effectiveness.

The proposed approach is illustrated in Figure 1.

In summary, this work makes the following contribution:

• It advances the understanding of adversarial over-

activations in shallow convolutional layers when aiming

at detecting real-world adversarial attacks, hence intro-

ducing the concept of the adversarial trace.

• It proposes ACAT, an algorithm for multi-frame applica-

tions based on a channel-attention mechanism to make

more computationally efficient and more effective the

defense from real-world adversarial attacks.

• It presents extensive experiments and ablation studies to

show the benefits of the proposed approach in terms of

defense performance and computational costs, focusing

on autonomous driving scenarios.

II. RELATED WORK

a) Real-world adversarial attacks: In the context of the

analysis of adversarial perturbations [12], real-world (RW)

attacks have received particular interest from the secure AI

community, due to their capability of fooling the model out-

comes from the physical environment in which they operate.

Indeed, from the standpoint of the attacker, the RW attack

paradigm ideally avoids injecting adversarial features digitally,

thus circumventing the need for compromising a computing

system. To this end, different use cases addressed in the

literature illustrate how physical attacks pose significant threats

to AI systems. These include deceiving intrusion detection sys-

tems [13]–[15], manipulating the identification of pedestrians

or cars in driving scenarios [6], [16], and fooling steering

angle predictor [17]. From an architectural point of view,

all the vision models can be susceptible to physical attacks,

as image classification [5], [18], semantic segmentation [6],

object detection [19], depth estimation [20].

To comprehensively assess the model’s robustness against

these threats, recent studies have also emphasized the necessity

of proposing proper benchmarks to evaluate model robustness

against RW attacks [8], [21].

b) Defense methods: To enhance the robustness of vision

models against these attacks, various defense mechanisms have

been proposed. While some focus on flagging the presence
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of attacks only, thus allowing to just reject the attacked

frames [6], [22]–[25], more sophisticated mechanisms aimed

at mitigating the attack effects at run-time, providing an attack-

free DNN output. The main idea involves segmenting the

position of the adversarial object within the image with the

purpose of generating a pixel mask, which is capable of

inhibiting the attack effects in the input space or directly in

the network layer.

Some techniques [26]–[28] used a secondary encoder-

decoder model to compute the mask. The mask is then used

to eliminate the adversarial attack from the image before it

is passed to the DNN of the target vision application. These

approaches significantly increase the overall computational

cost for each input (even for the non-attacked ones). More

classic approaches instead, as LGS [29], aim at filtering

out adversarial features from the image using gradient-based

filters, assuming the adversarial features of objects have high

frequency.

Other strategies, instead, are based on internal analysis of

DNN layers to identify anomalous over-activations at run

time [10], [11], which proved to be highly correlated with

real-world adversarial effects in any targeted vision tasks.

Specifically, these defense mechanisms extract masks by ad-

dressing the spatial over-activation of deep features. These

approaches tend to exhibit a more predictable and robust

behavior compared to those based on a secondary model.

Nevertheless, they require two inference (i.e. forward) passes

as the attacks are detected when analyzing deep layers of

the model, where the effects of the attacks are not anymore

recoverable. The second pass is hence needed to process the

input image with the pixel mask applied.

Overall, although all the approaches presented in previous

work to defend from RW attacks have shown promising

performance and the capability to generalize among different

vision tasks, little to no efforts have been made in addressing

their usage in real time within CPS applications.

III. BACKGROUND AND PRELIMINARIES

This section concisely provides background and preliminary

concepts for the rest of the paper. We consider vision models

that take as input an image with dimensions H ×W pixels

and C channels, denoted by x ∈ R
3×H×W . The model output,

denoted as f(x), depends on the specific vision task under

consideration.

For simplicity, the notation is introduced by referring to a

simple feed-forward DNN, with a list of layers {L1, ..., LNL},
where the input is forwarded sequentially. To this end, we use

the operational notation f i→j to denote the processing flow

of features from layer Li to layer Lj . The layer index 0 is

used to refer to the input of the model. For instance, f(x) is

equivalent to f0→NL(x) or f j→NL(f0→j(x)).

A. Real-World Adversarial Attacks

Real-world adversarial attacks can be generated by intro-

ducing adversarial physical objects into specific regions of the

scene captured by the input image x. Following previous work,

we can model these objects as rectangular patches denoted by

δ, where δ is an image of size H̃ × W̃ with C channels,

where H̃ ≤ H and W̃ ≤ W . Crafting an adversarial patch

involves solving an optimization problem aimed at minimizing

a specific attack loss function, while enhancing the robustness

of the patch features against realistic transformations that can

occur while filming the patch in the physical world [5].

Formally, we craft an adversarial patch δ by solving the

following optimization problem:

δ = argmin
δ

Ex∼X,γ∼Γ LAdv(f(x̃),yAdv), (1)

where X is a set of images to attack, x̃ = x + γ(δ) is

the attacked image, Γ is a set of appearance and placement

transformations that can be randomly selected to apply a patch,

yAdv is the adversarial output target, and LAdv is the adversarial

loss function that specifies the objective of the attacker, the

lower LAdv the more adversarial effect. Please refer to [5],

[6], [18] for further details.

B. Defense Mechanisms and Internal Analysis

As discussed in Section 2, several defense strategies have

been proposed in the literature to mitigate real-world adver-

sarial attacks, particularly in single-frame applications. In this

context, our approach aligns closely with works that perform

internal analysis of neural models during inference.

Following this paradigm, we denote by hl ∈ R
Cl×Hl×W l

the features produced by any layer Ll, where Cl, H l,W l are

the corresponding tensor dimensions, i.e., hl = f0→l(x). The

notation (T )c,i,j is used to denote a single element of any 3D

tensor T , where c, i, and j are the indices for the channel,

height, and width dimensions. Given an attacked input x̃, a

defense mechanism based on internal analysis studies one or

more deep features to extract a heatmap H ∈ R
Hl×W l

, which

can in turn allow to highlight the position of the adversarial

object within the input image.

Then, the heatmap can then be binarized, using a threshold,

to obtain a mask Mδ ∈ {0, 1}Hl×W l

, where the elements

set to 0 are deemed adversarial while those set to 1 are not.

Formally speaking, these steps can be summarized by means

of a function Λξ : RCl×Hl×W l → {0, 1}Hl×W l

, which takes

as input the features hl from a given layer and produces a

mask based on a pre-determined threshold ξ. The resulting

mask can then be applied at any layer Lz (e.g., even the input

image itself, z = 0) to filter out the adversarial object, thereby

aiming at making the attack ineffective, i.e.,

fz→NL(f0→z(x̃)� rl→z(Mδ)) ≈ f(x), (2)

where � is the Hadamard product operator on the spatial

dimensions and rl→z is a spatial resizing function to apply

a mask extracted at the l-th layer to the z-th layer (clearly not

needed when l = z). In general, function rl→z consists of a

simple interpolation that resizes the mask to comply with the

spatial dimensions of the desired target layer.. Finally, it is also

convenient to define the complementary mask M̄δ = 1−Mδ .
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Since this work proposes a defense mechanism for multi-

frame cases, from Section IV-B on we adopt a discrete-

time notation with the superscript k to refer to the symbols

introduced above when related to the k-th frame, where

k ∈ {0, . . . ,K}.
IV. ADVERSARIAL-CHANNEL ATTENTION

Inspired by prior research on RW attacks and internal

over-activation analysis for convolutional neural networks,

we observed that attacks can be detected by even analyzing

shallow network layers only (as opposed to deep layers as done

by previous work). In the following, we provide insights into

the existence of over-activation patterns within shallow layers

and then address the definition of adversarial trace, which

is later used to enable the implementation of an adversarial

attention mechanism for multi-frame scenarios.

A. Single-frame Adversarial Attention Analysis

We start by providing insights that link abnormal activations

induced by adversarial objects with a particular pattern of

channels in the shallow layers.

Observation 1: An adversarial object δ is designed to

minimize a specific adversarial loss function by influencing

certain network features (see Eq.(1)). As for instance shown

in Figure 2(a), we argue that in any layer Ll with activations

hl, there exists a subset of channels targeted by the adversarial

object. The channels can be identified by leveraging some

channel weights σ ∈ [0, 1]C
l

that, if applied to hl, amplify

the adversarial features, i.e.,

LAdv(f
l→NL(σ · hl),yAdv) ≤ LAdv(f

l→NL(hl),yAdv).

Observation 2: As known from previous work [30], the

adversarial features introduced by physical attacks are charac-

terized by over-activations. Therefore, from the perspective of

an internal analysis (as introduced in Section III-B), a proper

definition of σ also allows focusing on the channels that are

more subject to over-activation within the attacked area. This

results in a better separation of the attacked area from all

the others in the heatmap H, which can be interpreted as a

more accurate computation of defense masks. Formally, this

observation can be formulated by means of the intersection-

over-union (IoU) [31], which provides the amount of overlap

between two masks. If MGT is the ground-truth mask capable

of perfectly masking the attacked area in the input image, this

observation can be written as a function of the IoU between

the predicted attacked area and the ground-truth mask, i.e.,

IoU
(
Λξ

′
(σ · hl), MGT

)
≥ IoU

(
Λξ

′′
(hl), MGT

)
,

where ξ
′

and ξ
′′

are two thresholds used to extract the masks

from activation values (σ · hl) and (hl), respectively.1

Channel weights σ play a pivotal role in efficiently identi-

fying over-activated areas associated with adversarial features,

even in shallow layers. In fact, while the over-activation phe-

nomenon may look straightforward to detect, our preliminary

1Note that the thresholds must be different because σ scales hl.

experiments revealed that simple operations directly applied to

all channels, e.g., a channel-wise sum compared to a threshold,

do not allow detecting the presence of adversarial objects.

(a) y-axis: mean activation; x-axis: channel-index

(b) Heatmaps with (right) and without (center) the channel-attention

Fig. 2: (a) Mean channel-wise activation from the first spatial
BiSeNet [9] layer during the inference of the attacked image; (b)
representation of the heatmap w/ and w/o the attention mechanism.

B. Computing the Adversarial Trace

Following the above observations, we propose a practical

usage and update of channel weights σ, which are used to

track an adversarial object over time. As anticipated in the pa-

per introduction (see Figure 1), the proposed implementation is

conceived to be complemented with a defense method capable

of providing a starting mask M0
δ . When and how this starting

mask needs to be computed will be discussed in Section V,

where the complete defense framework is presented.

The adversarial trace is defined as a sequence of weights

that highlight the channels over-activated by adversarial at-

tacks. Formally, given a layer Ll, the adversarial trace at time

k, denoted by σk, is a vector of Cl elements in [0, 1] that

enables the computation of an accurate heatmap Hk at time

k > 0 as follows:

Hk =
Cl∑
c=1

(σk)τ · hl,k, (3)

where parameter τ is introduced to amplify the attention

pattern within the heatmap. Figure 2(b) shows the benefits

of using attention based on the adversarial trace. Once the

heatmap is obtained, a threshold parameter ξk (defined below)

can be used to devise the binary mask Mk
δ .

In this work, we proposed a per-frame update of the

adversarial trace, so that the next element for time k+1 can be

computed as a function of the mask and activations computed

at time k:

σk+1 =

N
(∑H,W

i,j=1

(
hl,k � M̄k

δ

)
c,i,j

|M̄k
δ|

−
∑H,W

i,j=1

(
hl,k �Mk

δ

)
c,i,j

|Mk
δ|

)
,

(4)

where Mk
δ is the predicted mask at time k, M̄k

δ denotes

a complementary mask to address all other tensor values not
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interested by Mk
δ , and N represents a normalization function

that scales the values to the [0, 1] range. In our experiments, we

implemented N as a ReLU function followed by a channel-

wise min-max normalization.

In particular, the first fractional term in Eq. (4) provides

attention to over-activated patterns within the area of the

adversarial object, while the second term provides negative

attention to activations outside the same.

The effectiveness of using information obtained from the

current frame to compute the next adversarial trace element

σk+1 was verified by means of experiments (see Section VI).

Summary of the approach. Figure 3 provides a schematic

representation that illustrates the use and update of the ad-

versarial trace for a frame at time k. Note that a noise filter

(e.g., a Gaussian filter) can be introduced into the pipeline for

computing the heatmap. As highlighted in [11], noise filters

help mitigate the effects of small spurious activations.

Fig. 3: Illustration of the operations to implement adversarial atten-
tion mechanism performed at time k. The resulting output is the next
element σk+1 of the adversarial trace.

Threshold definition. Differently from previous work, which

used a static threshold computed offline on a calibration

dataset [11], [22], this work adopts an adaptive threshold that

is dynamically computed frame by frame. This is necessary

due to the attack-specific channel weighting of the attention

mechanism, which makes not effective thresholds computed

a priori. In ACAT, the threshold is updated at each frame as

follows:

ξk+1 = max(H̄k) + ψ(H̄k). (5)

In the above equation, H̄k = Hk � D(M̄k
δ), where D(·)

is an operator that expands M̄k
δ by means of a unitary

kernel convolution. This expansion is designed to account for

uncertainty in the areas around the mask, coping with potential

spurious activations close to its border. After applying a

unitary convolution, non-integer values can be obtained: hence,

the operator D(·) eventually binarizes all values using a

threshold equal to 0.5.

To further reduce false positives, an extra safety margin

ψ(H̄k) is included in Eq. (5). It is computed as the difference

between the v-th percentile of the values in H̄k and the mean

value of the same. In our experiments, we used v = 70, which

proved to offer effective resilience to uncertainty.

V. ACAT FRAMEWORK

This section shows how to integrate adversarial-channel

attention within the continuous processing loop of vision

applications. Algorithm 1 reports the pseudocode of the oper-

ations to be performed at each frame (retrieved with function

capture frame()). To improve readability, the discrete-time

notation with the superscript k is omitted in the pseudocode,

as all variables are updated to be used at the next cycle.

Algorithm 1 Adversarial-Channel Attention Tracing

1: σ ← None

2: while True do
3: x← capture frame()

4: if σ is None then
5: (y,Mδ,h

l)← inference with SoA method(x, f )

6: if Mδ is not None then
7: #Attack notified
8: σ ← ACAT update(hl, Mδ) #Eq. (4)

9: ξ ← compute threshold(hl, Mδ) #Eq. (5)

10: y = f(x�Mδ) # Inference with masked input
11: end if
12: Continue #Wait for next frame
13: end if
14: hl = f [0→l](x)

15: H = noise filter
(∑Cl

c=1(σ)
τ · hl

)
#Eq. (3)

16: Mδ ← Λξ(H) #Apply threshold to get mask

17: if |M̄δ| < λM then
18: σ ← None #Stop adv. tracing
19: y = f [l→L](hl)
20: else
21: σ ← ACAT update(hl,Mδ) #Eq. (4)

22: ξ ← compute threshold(hl, Mδ) #Eq. (5)

23: y = f [l→L](hl �Mδ) #Inference with masked layer

24: end if
25: end while

For each frame, it checks if the adversarial trace σ exists. If

not, it means no adversarial attack was detected at the previous

frame. In this case, a state-of-the-art attack detection method,

e.g., [11], is executed (line 5) with a single inference pass.

If the latter detects an attack, the algorithm initializes the

adversarial trace σ, computes the threshold ξ, and leverages

the mask compute by the state-of-the-art method to defend

from the attack (lines 8-10). The processing of the current

frame can hence end.
Otherwise, when the adversarial trace σ is available from

the previous frame, the algorithm leverages it to compute the

defense mask following the results of Sec. IV-B (lines 14-

16). If the mask is meaningful (details provided next), it also

computes the next adversarial trace and threshold (lines 21-

22), still based on Sec. IV-B, and continues the inference
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process by applying the mask at the inner layer Ll to defend

from the attack (line 23).

a) Reset criterion: Knowing about the connection be-

tween the mask size and the induced adversarial effect by

the masked attack [11], we use the number of pixels detected

in the predicted complementary mask to decide whether to

reset adversarial tracing or not. This could mean that the

adversarial object is either too small or far away from the

camera. Specifically, we disable adversarial tracing when the

computed mask has less than λM pixels (line 17), where the

latter is a configurable parameter.

b) Timing performance: As discussed in Section II,

state-of-the-art approaches introduce a non-negligible delay

to defend from adversarial attacks: either they require an

extra inference pass or they must wait for the inference of

an external model specialized to detect an attack. Differently,

as it can clearly be seen from Algorithm 1, the proposed

ACAT method allows defending from an attack with just one
inference pass (completed in two stages at lines 14 and 23,

respectively) for the next frame. This holds until tracing is

active, i.e., the reset criterion is not reached. Once a new attack

will be detected the same will hold for the next frames, and so

on and so forth. Overall, ACAT allows significantly improving

the timing performance of the defense mechanism (quantitative

results provided in the next section) by halving inference times

in general, except for the very first frame in which the attack

manifests.

VI. EXPERIMENTAL EVALUATION

The experimental evaluation is focused on semantic seg-

mentation models designed for autonomous driving, which

have recently garnered attention due to the need to address

real-world adversarial attacks in outdoor scenarios [6], [32].

Please note however that defense mechanisms based on over-

activation also work for different computer vision tasks, where

the connection between over-activation and adversarial effect

persists [6], [30].

Next, we first provide details on the experimental settings.

Then, we discuss different tests and ablation studies conducted

to validate the design and benefits of the proposed defense

algorithm. All the experiments were implemented using Py-

Torch [33] and a platform with one NVIDIA-A100 GPU.

A. Experimental settings

Complete multi-frame benchmarks to evaluate the effective-

ness of defense methods against real-world adversarial attacks

are not available from previous work.

For this reason, we addressed two evaluation approaches:

(i) attack scenarios generated with the CARLA simulator [35],

used to test the attention mechanism of ACAT only, and

(ii) digitally attacked video generated with Cityscapes [36],

which instead allow testing the whole ACAT framework.

a) Attacks in CARLA-simulated scenarios: With the in-

tent of facing with realistic settings, we utilized the Carla-

Gear framework [8], which offers 9 photo-realistic scenarios

(50 test images each) collected in areas of Carla-town 10 [35],

integrating adversarial billboards specifically designed for each

model in use. Please note that the framework only provides

random viewpoints of the area next to the adversarial bill-

boards, which are not sequential videos. For this reason, this

setting allows evaluating the benefits of adopting adversarial-

channel attention only, i.e., improving the capabilities of state-

of-the-art defense mechanisms when used on a single frame,

while not enabling meaningful tests to evaluate ACAT as a

whole.

b) Digitally attacked video datasets: To address the lack

of a dedicated video dataset featuring attacked driving scenes,

we generated custom videos that include digital adversar-

ial attacks. Three extended sequences from Cityscapes [36]

videos2 were utilized with images sized at 2048x1024 pixels.

Within each video, a dynamic adversarial patch was digitally

introduced in the frames, which, at every frame, changes its

position and scaling factor, following a sinusoidal trend. The

patch position and scale were computed as follows:⎡
⎢⎣
xpos

ypos

s

⎤
⎥⎦ =

⎡
⎢⎣
cx +Ax sin (αx · k + ωx)

cy +Ay sin (αy · k + ωy)

1 +As sin (αs · k + ωs)

⎤
⎥⎦ , (6)

where k is the frame index, xpos and ypos are coordinates of

the position of the patch, cx, cy are the center coordinates of

the frame, and s is the scaling factor of the patch. In our

experiments we set (Ax, Ay, As, αx, αy, αs) = (500, 300, 0.3,
0.05, 0.05, 0.05). The ω values represent a phase used to

randomize tests among different initial positions. With these

settings, the patch can partially go beyond the image bound-

aries while holding a size that is sufficient for producing an

adversarial effect [6], [19]. The α values provide a smooth

trend of the patch among subsequent frames.

The attack mechanism used to generate the patch was

the Over-Activation-aware Expectation Over Transformation

(EOT) optimization [5], [11], where a parameter β ∈ [0, 1] is

used to regulate the over-activation level of the patch within the

internal layers while reducing the adversarial effect (the lower

the β the lower the over-activation, and so the adversarial

effect). This approach is particularly useful for conducting

exhaustive evaluations of the proposed defense, as the attacker

can deliberately attempt to minimize over-activation to execute

attacks that are challenging to detect.

c) Network models and defense methods: Following

related work on semantic segmentation [8], we considered

real-time high-performance DNN models: DDRNet-Slim23

version [34] and BiSeNetX39 [9]. We use the pre-trained

versions available from [8].

We compared our method ACAT with two lightweight

single-frame approaches designed to mask real-world attacks.

The first is LGS [29], which applies gradient-based filter-

ing of the image to mask adversarial pixels. The second is

ZMask [11], which, as for ACAT, is based on over-activation

but necessitates of two forward passes at any frame, since

2https://www.cityscapes-dataset.com, leftImg8bit demoVideo.zip
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8 Scene 9

No Attack 28.35 29.66 28.88 24.71 25.10 26.51 20.56 24.46 23.68

No Def -10.2 -4.32 -2.81 -6.4 -5.06 -9.5 -7.00 -2.93 -6.75
ACATGT -2.9 [1] +0.59 [1] -2.67 [1] -2.11 [2] -0.9 [1] -5.4 [1] -2.87 [1] -0.63 [1] -0.78 [1]
ACATZM -2.9 [2] -3.4 [1] -3.15 [12] -2.82 [2] -1.1 [7] -5.33 [1] -2.89 [21] -5.92[1] -5.12[1]
ZMask -5.32 -2.35 -2.81 -3.01 -1.7 -5.87 -4.84 -3.0 -5.89
LGS -8.63 -5.09 -4.09 -6.43 -4.04 -6.65 -6.01 -1.60 -5.83

No Attack 33.04 34.11 34.39 34.22 31.01 33.26 30.73 31.86 37.41

No Def +0.65 -1.74 -0.6 -6.53 -1.01 -2.31 -12.69 -3.03 -1.11
ACATGT +1.59 [1] -1.58 [1] +0.66 [3] -3.29 [1] +0.4 [1] -0.83 [1] -1.52 [1] -1.11 [1] -0.86 [1]
ACATZM +0.59 [2] -1.73 [3] -0.67 [15] -3.52 [6] +0.35 [5] -2.85 [1] -4.25 [33] -2.22 [16] -1.01 [5]
ZMask -2.27 -3.2 -1.32 -5.2 -0.97 -5.55 -3.58 -0.98 -1.01
LGS +0.45 -3.51 +1.01 -8.30 -0.87 -4.06 -11.97 -1.22 -1.25

TABLE I: Variation of the multi-class mIoU w/ and w/o defense mechanisms across the 9 driving scenarios of CarlaGear [8]. Results for
both BiseNet [9] (top) and DDRNet [34] (bottom) are reported. The values inside square brackets denote the number of times ACAT required
to be re-initialized (reset criterion). The results of ACAT are averaged across 5 random shuffling of each scene dataset.

addresses also deep network layers. For both, we utilized the

original settings provided by the respective authors.

For ACAT, we set τ = 2, and the kernel size to 5, 3
and 31, 11 for the Gaussian filter and dilatation operators

for Bisenet and DDRNet, respectively. The different sizes

are due to the different spatial dimensions of the features.

The layers analyzed by ACAT are in the shallower blocks of

the considered model, specifically the output of the second

block of DDRNet and the output of the first context layer of

BiSeNet. Ablation studies were also performed to understand

the selection process of these layers (see Sec. VI-E).

d) Metrics: Different metrics were used to assess the

performance of the addressed mechanisms. Given the unavail-

ability of annotations for the Cityscapes videos, we use the

binary Intersection-over-Union (IoU), referred to as Mask-IoU,

to measure the overlap between the predicted complementary

mask M̄k
δ (whose values equal to 1 denote the predicted

adversarial region) and the corresponding ground-truth mask

M̄k
GT. Intuitively, Mask-IoU quantifies the quality of the

predicted defense mask: the higher the better.

For the tests conducted on the Carla-Gear dataset, as

indicated in the benchmark, we measured the effectiveness

of adversarial attacks by addressing the original multi-class

MIoU [8], [36] of the task, since annotations are available.

B. Performance Evaluation on Carla

Table I highlights the advantages of our approach across

nine scenarios of the Carla-Gear dataset on BiSeNet (top part)

and DDRnet (bottom). Regarding ACAT, which is designed to

integrate with state-of-the-art defenses, we conducted analyses

under two settings: ACATZM and ACATGT. The former utilizes

ZMask [11], reflecting a realistic scenario built upon an

already available approach. In the second setting, ACATGT

assumes the knowledge of an ideal, ground-truth mask at first

frame in which the attack is detected. While this setting depicts

a less realistic scenario, it serves to highlight the intrinsic

performance of ACAT, independently from the defense method

with which it is integrated.

In the table, the first line for each scenario depicts the task

MIoU without an adversarial billboard, while subsequent lines

show the drop in MIoU with the adversarial billboard and/or

without the related defenses. The value between the brackets

for the ACAT results depicts the number of times that the reset

criterion takes effect, necessitating the extraction of a new

starting mask. As also mentioned in [8], there are instances

where certain attacks can be particularly challenging for a

specific model and scenario, leading to a poor reduction in

the MIoU (or even a small average improvement). To assist

the reader, in Table I we highlighted in gray the scenarios that

have resulted in a more pronounced adversarial effect.

As it can be noted from the table, ACAT consistently

outperforms the other methods, significantly reducing the

number of extra inference passes, reaching the reset conditions

only a few times. Note also that ACATZM generally improves

the performance of ZMask. However, when ZMask fails to

return an accurate mask, it may jeopardize the initialization

of ACAT, resulting in lower performance (e.g., scene 8 -

BiSeNet and scene 7 on DDRNet). This is not the case for

ACATGT, confirming that the lower performance is not due

to ACAT. Concerning LGS, as known from previous work, it

loses accuracy in real-world scenarios [11], [27].

Please note that, in these tests only, we did not update the

trace and threshold of ACAT (lines 21-22 in Algorithm 1).

As anticipated above, this is because the tested images do not

pertain to sequential video. The whole ACAT framework is

instead addressed by the following experiments.

It is however interesting to also observe the number of times

ACAT required a re-initialization (reset criterion) during these

tests, even if updates are disabled. As one may expect, we

found scenarios in which the mask provided by ZMask was

frequently required (e.g., note the numbers between square

brackets in Table I for Scenes 3 and 7), while surprisingly, in

other cases, it was not at all. This means that the attention

mechanism offered by ACAT is sometimes effective even

with sporadic updates (see also the other experiments below).

Conversely, in the former case, we found that the reset criterion

was prominently triggered because the mask provided by
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ZMask was not particularly accurate, as ACATGT almost never

requires to be re-initialized.

C. Performance Evaluation on Digital Attacks

In Figure 4, we studied the Mask-IoU for the digital attacked

video. To show that ACAT provides high robustness even when

the adversarial trace and thresholds are not updated at every

frame as mandated by Alg. 1, we measured the average Mask-

IoU under ACATZM on attacked video streams from Cityscapes,

varying the period with which the trace and thresholds are

updated. The period is expressed in number of frames and

is reported on the x-axis of the figure (e.g., value 1 on the

x-axis means that the update occurs at each frame). In the

analysis, we tested two digital adversarial patches, with β =
0.6 and β = 0.8, to better investigate on the robustness of

ACAT. We also evaluated ZMask, which achieves (0.66, 0.75)
and (0.70, 0.72) of Mask-IoU with (β = 0.6, β = 0.8) for

Bisenet and DDRNet, respectively. The results for LGS are

not reported since it does not provide a binary defense mask,

but rather a soft filtering of the input image, for which it is

not possible to compute the Mask-IoU.

The figure shows that ACAT surprisingly works well even

with sporadic updates of the adversarial trace and thresholds.

This was also due to the fact that the Cityscapes videos

are related to rather static scenarios. In fact, despite some

changes in the appearance of adversarial patches and their

background, the over-activated pattern of the patch in these

cases continuously insist on a similar set of channels to

induce the adversarial effect. An update of the parameters

is anyway required in more dynamic scenarios with more

frequent changes of the background and appearance of the

adversarial object. The figure also shows that sporadic updates

always provide better performance than ZMask.

DDRNet

BiseNet

Fig. 4: Mask-IoU performance by varying the update period (in
frames, x-axis of the figure) of the adversarial trace and thresholds.
The upper plot refers to the DDRNet architecture, while the second
one pertains to BiseNet. The tests evaluate the performance of
ACATZM for two distinct digital patches (β = 0.6 and β = 0.8).
The results are the average of five different initializations of the ω
parameters in Eq. (6).

D. Ablation Studies

To better understand the contribution of each operation

performed by ACAT to its overall performance, Table II

reports the Mask-IoU of ACATGT on the attacked videos

under different settings. With the aim of acquiring a deeper

understanding about the attention mechanism of ACAT, we

independently examined the two fractional terms defined in

Equation (4) to update the adversarial trace. The first term

provides positive attention within the attacked area, which

is the most important part of the attention mechanism. We

hence introduce a flag Att+ to indicate a setting of ACAT that

uses this term. The second term refines the previous operation

by introducing negative attention to the elements outside the

attacked area. Another flag Att− is also introduced to denote

if this second term is used by ACAT.

As shown in the table, it is clear that using both Att+ and

Att− leads to better results, hence motivating the construction

of Equation (4). In general, it is evident that the use of the at-

tention mechanism significantly improves the Mask-IoU when

compared to not using attention (both Att+ and Att− disabled,

first rows of the table). Its benefits are especially notable in

the results obtained with DDRNet, where adversarial over-

activations in the shallow layers proved to be very difficult to

detect without attention. These observations are also illustrated

with an example frame in Figure 5. The ablation studies also

tested ACAT with and without the update of the adversarial

trace and the threshold of Eq. (5) (flag Upd in Table II), and

with and without the noise filter (flag NF).

Bisenet DDRNet

Att+ Att− Upd NF δ0.6 δ0.8 δ0.6 δ0.8
11.9 16.2 0.00 0.01

� 89.0 88.7 7.2 0.6
� � 90.7 90.2 76.91 84.90
� � � 91.3 90.8 72.05 83.05
� � � 92.24 91.9 85.56 84.22
� � � � 92.23 92.18 86.12 86.42

TABLE II: Experimental results of ablation studies with respect to
the different components used to update the adversarial trace. The
results are in terms of Mask-IoU and related to the digitally-attacked
Cityscape videos using ACATGT as a defense mechanism. Two model-
specific patches were utilized, one with β = 0.6 and another with
β = 0.8.. In the table, Att+ and Att− denote two flags to enable the
two attention terms of Equation 4, respectively, while Upd and the
NF are other two flags to enable the update of the trace and threshold,
and the usage of the noise filter, respectively.

E. Layer-wise Ablation

Figure 6 reports the Mask-IoU by varying the layer of the

DDRNet model with which ACAT operates (parameter l in

Alg. 1). As observed, the more shallow the layer the better

the performance. In fact, if addressing deeper layers, the mask

based on the over-activation extends beyond the ground-truth

position (in the figure, only the yellow parts denote a complete

overlap of the ground-truth and the predicted mask). This is

attributed to the fact that the features of shallow layers are
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Fig. 5: (a) Comparison of the adversarial effect of a patch with
β = 0.6 (left), with ACATGT mechanism (right), and without the
ACATGT mechanism (middle). (b) Illustration of the heatmap among
different settings, from left to right: (i) only NF enabled, (ii) only
Att+ and NF enabled, (iii) Att+, Att−, NF, and Upd enabled.

less spatially compressed (i.e., they have a higher spatial size)

than those in deeper layers.

Note that, for fair comparisons, in layer l = 3, we used

the same kernel size as layer l = 2 (i.e., 3), which provided

better performance than kernel size 1 (i.e., no Gaussian filter).

While, for layer l = 5, we did not use the Gaussian filter

due to the high compression of the spatial dimension. These

results highlight how ACAT allows focusing on shallow layers

so that attacks can be masked within a single inference pass,

as opposed to previous work that analyzes deep layers and

hence requires another inference pass to mask attacks.

Layer2 - 128x256 Layer3 - 64x128 Layer5 - 32x64

86.12 / 86.42 72.05 / 61.32     52.47 / 49.73

Fig. 6: Mask-IoU (in black) for the digital adversarial patch with
β = 0.6 and 0.8 on attacked cityscapes video using the ACATGT

on different layers of DDRNet. The figures show the overlapping
between the predicted mask and the ground truth for β = 0.6, with
the highest color indicating the degree of overlap. The depth of the
DDRNet layer and the spatial dimension are denoted in white.

F. Timing Evaluation

To demonstrate the improvements provided by ACAT in

terms of running times, we measured the inference times when

testing the attacked Cityscapes videos. Figure 7 reports the

overall inference time required on average to process a frame

by the tested defense mechanisms, with the baseline labeled

by No Def, denoting the original model without defenses. Two

inference times are reported for ZMask: when an attack is not

detected and when an attack is detected, which are separated

by a slash in the figure. As expected, when ZMask detects an

attack, its inference time is approximately twice the one of the

baseline model. Conversely, when no adversarial attacks are

detected, ZMask is particularly efficient and hence represents

an excellent choice to work in conjunction with ACAT, which

activates only when an attack is first detected (see Alg. 1).

The figure also reports the results for another state-of-the-art

defense mechanism, named MaskNet [27], which incorporates

a secondary model. It is relatively more expensive due to

the necessity of always running an encoder-decoder model in

tandem with the original model.

Note that LGS exhibits comparable timing performance

with respect to ACAT, since it focuses on specific filters that

are directly applied to the input image. However, as shown by

the results in Table 1 and other studies in previous work [11],

[27], LGS tends not to perform well in detecting adversarial

attacks that can be carried out in real world, i.e., by means of

physical adversarial objects.

In summary, these results remark on how ACAT provides

a well-balanced trade-off between defense performance and

overall inference time.

Fig. 7: Overall inference time with and without defense mechanisms
for DDRNet and BiseNet.

VII. DISCUSSION AND CONCLUSION

This work established a novel understanding of the feature

over-activation induced by physical adversarial objects in

modern neural networks. Differently from previous work, this

work proposed an approach that allow identifying physical

adversarial attacks by analyzing the first layers of the network,

enabling the implementation of efficient defenses for multi-

frame vision applications that mostly require just an inference

pass to inhibit attacks. Based on these findings, we proposed

Adversarial-Channel Attention Tracing (ACAT), a framework

based on the concept of adversarial trace that focuses on

specific channels (within a given layer) that are primarily

responsible for propagating the adversarial effect. ACAT is

used to extend single-frame defense mechanisms from pre-

vious work, which instead may require two inference passes

to defend from attacks. Experimental results demonstrated that

ACAT allows both improving the defense capabilities of state-

of-the-art defense methods, even when used for a single frame,
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as well as providing a lower computational cost by detecting

and defending attacks in a single inference pass.
Despite the achieved results, we acknowledge possible lim-

itations of the approach, such as the reliance on a reference

defense mechanism to identify the presence of physical attacks

in the first frame. This implies that the robustness of the

approach is somewhat dependent on the effectiveness of the

reference method used. Another anticipated challenge, as men-

tioned in the experimental section, is the need for additional

benchmarks to evaluate the effectiveness of physical attacks

in multi-frame applications. Future work will address these

issues, also providing a more comprehensive integration of

the approach into complex AI-based vision systems.
We believe that, beyond the presentation of the ACAT

framework, our findings and analyses will also contribute to

gaining a deeper understanding of the nature of these physical

attacks and, consequently, the development of even more

effective defense strategies.
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