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Abstract— The existence of real-world adversarial examples
(RWAEs) (commonly in the form of patches) poses a serious
threat for the use of deep learning models in safety-critical
computer vision tasks such as visual perception in autonomous
driving. This article presents an extensive evaluation of the
robustness of semantic segmentation (SS) models when attacked
with different types of adversarial patches, including digital,
simulated, and physical ones. A novel loss function is proposed to
improve the capabilities of attackers in inducing a misclassifica-
tion of pixels. Also, a novel attack strategy is presented to improve
the expectation over transformation (EOT) method for placing a
patch in the scene. Finally, a state-of-the-art method for detecting
adversarial patch is first extended to cope with SS models,
then improved to obtain real-time performance, and eventually
evaluated in real-world scenarios. Experimental results reveal
that even though the adversarial effect is visible with both digital
and real-world attacks, its impact is often spatially confined to
areas of the image around the patch. This opens to further
questions about the spatial robustness of real-time SS models.

Index Terms— Adversarial defenses, autonomous driving, real-
world adversarial attacks, semantic segmentation (SS).

I. INTRODUCTION

DEEP neural networks have reached super-human perfor-
mance in many computer vision tasks. However, their

results are typically threatened by a large set of inputs known
as adversarial examples [1], [2]. The existence of adversarial
examples is an empirical proof of the poor robustness of deep
learning models, showing that imperceptible perturbations can
easily corrupt the expected model behavior.

When dealing with cyber-physical systems such as
autonomous cars and robots, several practical constraints
should be taken into account when evaluating the relevance of
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digital perturbations injected in the image preprocessing sys-
tem pipeline to the end of attacking deep learning algorithms.
These constraints have raised several questions concerning the
real criticality of adversarial perturbations in these application
domains [3]. For this reason, in such domains, particular atten-
tion has been devoted to real-world attacks, which represent
a more serious threat due to their capability of introducing
adversarial effects by means of physically realizable objects.

In this field of study, most of the previous literature on
adversarial robustness focused on image classification and
object detection tasks, whereas fewer works have addressed
semantic segmentation (SS). However, SS models play a key
role in the visual perception pipeline used in autonomous
driving, and thus evaluating their robustness is crucial. To this
end, physically realizable adversarial attacks should be seri-
ously considered in the design of robust vision models for
autonomous driving: urban areas are typically filled with
advertisement billboards, or road signs, each of which could
become a potential attackable surface.

When dealing with these application domains, a proper
evaluation of the system robustness should address several
important factors, such as: 1) the concrete effectiveness of
physically realizable adversarial objects for different targets
and scenarios; 2) the transferability of the attack scheme
from/to virtual (simulated) realistic environments; and 3) the
design of efficient defenses with limited computational cost,
which are crucial in self-driving applications that are notori-
ously subject to strict timing constraints.

This article faces all these challenges and extends a pre-
liminary evaluation carried out in [6] with the following
contributions. First, the work provides a flexible attack pipeline
that enables the use of multiple patches and two different
optimization paradigms to craft adversarial objects based on
targeted or untargeted attack settings.

Second, based on the limitations of the standard pixelwise
cross-entropy (CE) loss function for attacking regions of the
image that are geometrically far from the patch, this work
provides a proper definition and evaluation of a new loss
function formulation, which was only briefly suggested in [6].

Finally, a novel fast adversarial patch detection method is
proposed and evaluated in both the digital and real-world
scenarios to understand the detectability of these physical
attacks and the corresponding timing costs for SS tasks.
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Fig. 1. Examples of effective patch-based attacks to scenes from
(a) Cityscapes [4], (b) CARLA simulator [5], and (c) real-world environment.
On the left-hand side, the figure shows three input images having adversarial
patches, which are applied digitally, virtually, and physically. On the right–
hand side, it reports the corresponding SS predictions obtained with DDRNet,
BiSeNet, and ICNet, respectively.

Real-world datasets such as Cityscapes and custom realistic
scenarios are hence considered for evaluation. Furthermore,
to enable a scalable testing, similar as possible to real-world
scenarios, we used the CARLA simulator [5], which provides
fully controllable environments where billboards can be used
as attackable surfaces. The geometric information derived
from CARLA is used to perform a novel attack, named
scene-specific attack, which improves the expectation over
transformation (EOT) formulation [7]. Fig. 1 shows a few
examples of successful attacks on these scenarios.

In summary, this work extends and refines the preliminary
analysis in [6] by unifying the following list of contributions.

1) It proposes a general attack pipeline that enables mul-
tipatch attacks with both the targeted and untargeted
schemes against SS models. This formulation also
enables scene-specific attacks using geometric informa-
tion available from the CARLA simulator.

2) It proposes a novel loss function formulation that
improves the capabilities of attackers with respect to the
use of the standard CE loss.

3) It extends a state-of-the-art adversarial patch detection
method to cope with real-time constraints in SS tasks.

4) It presents an extensive evaluation of real-world attacks
and defenses for a set of real-time SS models using:
1) realistic images from the Cityscapes dataset; 2) syn-
thetic images from CARLA; and 3) real-world scenarios
integrating physical adversarial objects.

The remainder of this article is organized as follows:
Section II introduces the related work, Section III presents
the proposed methods and algorithms, Section IV discusses
the experimental results, and Section V concludes this article.

II. RELATED WORK

The literature related to the topics addressed in this work is
vast. Therefore, it has been categorized into: 1) real-time SS
models; 2) adversarial studies on SS; 3) real-world adversarial
attacks; and 4) defenses against adversarial patches.

A. Real-Time SS Models

Early works on SS architectures, such as the fully convolu-
tional network (FCN) [8] and the UNet [9], were extended with
methods that exploit spatial and context information of images:
dilated convolutions, pyramid pooling modules, transformers,
very deep layers, etc. [10], [11], [12], [13].

Although such models show high accuracy, they require
powerful hardware platforms and imply large execution
times when processing high-resolution images [14], mak-
ing them not suited for real-time vision applications such
as autonomous driving. To overcome this issue, several
works [14], [15], [16], [17], [18] have recently pro-
posed lightweight models that show acceptable accuracy on
high-resolution images while taking into account real-time
requirements. Among the vast number of available models,
we restricted our attention to three popular real-time models:
ICNet, DDRNet, and BiSeNet (see Section IV for the experi-
mental settings and the supplementary materials for additional
details).

The reason for selecting these models is to evaluate the
robustness of several distinct approaches. As it is well-known
in the literature, the majority of real-time SS models leverage
two or more parallel paths for extracting context and spatial
information [15], [19]. However, the internal operations they
adopt are different and some of them can be more prone
to adversarial attacks. ICNet is one of the first real-time SS
models that merges multiple paths with cascade features fusion
units [14]. Although nowadays several models reach faster
performance, ICNet is considered an important milestone that
is still taken as a reference in recent studies (e.g., [20], [21]).
BiSeNet and DDRNet are more recent models with better real-
time performance. Both are based on splitting the extraction of
context and spatial information between two parallel branches,
but BiSeNet exploits self-attention modules, while DDRNet
involves multiple residual points between the branches.

B. Adversarial Studies on SS

Previous works [20], [22], [23], [24], [25], [26], [27],
[28] proved that both the targeted and untargeted pixel-based
perturbations easily fool SS models by extending well-known
adversarial strategies (e.g., [1], [29]) from image classification.
Consequently, Nakka and Salzmann [27] presented an inter-
esting study on the robustness of SS models on autonomous
driving datasets by showing that it is possible to perturb a
precise area of pixels to change SS prediction corresponding
to specific objects placed in the whole image.

Although the robustness of these convolutional architectures
appears fragile at a first glance, the above works do not take
two important aspects into consideration. First, they evaluated
the adversarial effect against non-real-time networks only.
From our point of view, this leads to unrealistic assessments,
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since real-time architectures usually do not rely on the rich
sequence of modules used by the evaluated networks, which
could be practically prone to adversarial attacks [27]. Second,
and most importantly, they did not consider real-world adver-
sarial objects, which might represent a real threat for driving
scenarios.

Differently from the strategies adopted by previous works,
we believe that evaluating the robustness of a model for
autonomous driving requires: 1) a precise selection of the
tested models and 2) considering real-world adversarial exam-
ples (RWAEs). In fact, digital adversarial perturbations are not
reproducible in the real-world, since they can be used to attack
an autonomous driving perception pipeline only when the
attacker has control on the digital representation of the image.
If this is assumed, more effective system-level attacks may be
used, hence reducing the relevance of adversarial attacks to SS
models. Therefore, this work considers RWAEs as malicious
objects that, once placed into a physical environment, are
capable of externally injecting their adversarial effect.

C. Real-World Adversarial Attacks

Consistently with the latter observation, multiple works
studied RWAEs for DNNs. Kurakin et al. [30] introduced
a strategy for crafting physical-world adversarial pictures
against image classification models, without the ability to
manipulate the digital representation of inputs. Their work
opened to a new class of adversarial examples called RWAEs.
Athalye et al. [7] improved the robustness of RWAEs by
proposing the EOT algorithm, which accounts for transforma-
tions that are typical of real-world scenarios (acquisition noise,
changes in the point of view, etc.) during the optimization
process. This allows crafting objects that retain the adversarial
property when capturing images from different points of
views.

Consequently, the EOT formulation opened to the develop-
ment of adversarial patches [31], which are robust, localized,
image-agnostic features that fool neural networks when placed
in the input scene. Adversarial patches have been largely
involved in the literature as a versatile tool to understand
the practical robustness of DNNs. In fact, their real-world
utilization involves printed objects that inject the adversarial
effect directly from the external environment, rather than
perturbing the digital pixel representation in the input image,
as for common adversarial perturbations.

Although extensive prior work presented patch-based phys-
ical attacks for image classification [31], [32], [33], object
detection [34], [35], [36], [37], optical flow [38], LiDAR object
detection [39], and depth estimation [40], only a few focused
on autonomous driving tasks. One reason might be that testing
the adversarial robustness in autonomous driving context is
more challenging, as it requires a certain control on the driving
environments. Other works [35], [37] have shown autonomous
driving simulators, and CARLA [5] in particular, to be a viable
solution in alleviating this issue by crafting and evaluating
adversarial situations in virtual 3-D environments.

Note that all the works mentioned above investigated the
effect of adversarial objects on tasks different from SS. The

first study addressing the evaluation of the robustness of
real-time SS models against real-world adversarial attacks was
proposed in [6], where both the Cityscapes dataset [4] and
CARLA were used to investigate the effect of adversarial
patches in the real world. However, no experiments were
reported to evaluate the robustness of SS models against
multipatch scenarios and targeted attacks. Also, no defense
strategies were proposed to mitigate adversarial vulnerability
at runtime. This present article fills these gaps by presenting
novel attack objectives, additional experiments in multipatch
scenarios, and a real-time adversarial detection mechanism.

D. Defense Mechanisms Against Adversarial Patches

The literature presents a wide set of defense mecha-
nisms against adversarial attacks. While the methods used
to detect generic adversarial examples are vast major-
ity [3], [41], [42], [43], other works addressed the problem
of detecting patches.

Some works [44], [45], [46], [47] exploit gradient-masking
or adversarial training strategies to increase the robustness of
the model against adversarial patches. Although such mecha-
nisms help reduce the adversarial effect induced by patches,
they do not provide any strategy to detect attacked images that
are still dangerous for the tested models. As such, this class
of defense methods is not considered for comparison.

Methods that detect images attacked with adversar-
ial patches are based on masking and occlusion strate-
gies [48], [49], [50], [51], [52] and run-time statistical
analysis [53], [54]. Although both these approaches achieve
high detection performance, most of them introduce significant
latency during the model inference and hence are not suitable
for real-time applications. Furthermore, note that most of the
works mentioned in this section are designed to operate on
image classification and object detection models, and only
some of them can be adapted to SS architectures.

To the best of our knowledge, the only method that can
be directly extended to cope with SS and is capable of
providing real-time performance in detecting images affected
by adversarial patches is HyperNeuron (HN) [53]. HN is based
on detecting the overactivation of internal neurons, which is a
symptom of the presence of an adversarial patch.

In this present article, we propose an extension of the HN
algorithm that further improves the detection performance in
the SS domain. First, a feature compression step is introduced
to reduce the number of features to be processed at run time.
This is of crucial importance when dealing with SS models,
where the features’ space may have high dimensions. Second,
the selection of overactivated features is simplified using a
threshold computed off-line rather than expensive operations
performed at run-time. Based on these ideas, Section III
presents a novel method that achieves similar performance
to HN, but with significantly lower latency, making it more
suitable for real-time applications.

E. This Work

This work provides a comprehensive study of the robustness
of real-time SS models applied to autonomous driving scenar-
ios. This is accomplished by defining and evaluating several
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real-world adversarial patch attacks, a novel loss function
formulation, and a real-time patch detection mechanism.

Such an extensive evaluation is missing in the literature
and represents a promising milestone to better understand the
practical robustness of SS models in real-world autonomous
driving scenarios.

III. PATCH-BASED ATTACK PIPELINE

This section presents the adopted notation, the attack
pipeline used to generate real-time adversarial attack to SS
models, the proposed loss function formulation, and the fast
patch detection algorithm (FPDA).

A. Preliminaries

We consider input images with height H , width W , and
C channels, denoted as x ∈ [0, 1]

H×W×C . An SS model
discriminating between Nc classes is thus represented by a
function f : x 7→ [0, 1]

(H ·W )×Nc , which gives the predicted
class-probability scores associated with each image pixel i .
More specifically, the predicted probability score for pixel i
corresponding to class j is denoted by f j

i (x) ∈ [0, 1].
The predicted SS of each pixel i , denoted by SSi (x), is then

computed by extracting the class with the highest probability
score of the pixel, i.e., SSi (x) = argmax j∈{1,...,Nc}

f j
i (x).

The complete SS prediction SS(x) is then the collection
{SSi (x), i = 1, . . . , H × W }.

The ground truth for the SS of x is defined as y ∈ NH×W ,
and it assigns the correct class (in {1, . . . , Nc}) to each pixel.

An adversarial patch of height H̃ and width W̃ is denoted
by δ ∈ [0, 1]

H̃×W̃×C , where H̃ < H and W̃ < W .
In a multipatch setting, we consider a set of patches 1 =

{δk : k = 1, . . . , Np}, where Np is the number of patches used
for the attack.

B. General Attack Pipeline

All the patch-based attacks considered in this article are
generated with the pipeline illustrated in Fig. 2.

Inspired by the universal (i.e., image-agnostic) attacks [55]
and the EOT-based attacks [7], the objective is to find an
optimal patch set 1∗ by optimizing a certain loss function
L for all the patched images in expectation, according to the
distribution of transformations used to apply the patch set 1

on the image set X.
In particular, we define the following.
1) A set of appearance-changing transformations 0a : each

element of 0a is a composition of illumination changes
(brightness and contrast) and noise addition (uniform
or Gaussian). This set of transformations is randomly
sampled and the selected transformation is directly
applied to the patches 1. The typical parameters of these
transformations are randomized during the optimization
to make the patches robust to illumination changes and
acquisition noise.

2) A patch placement function η that defines which portion
of the original image x is occupied by the patches. The
function η can have different definitions depending on

the chosen attack. Section III-D provides details of the
patch placement function.

3) A patch application function g(x, 1, 0a, η) that
replaces the area(s) of the image x specified by η with
transformed versions of the patches in 1 obtained by
a transformation randomly selected from 0a , hence
returning the patched image x̃ .

4) A loss function L, which is the objective function to be
optimized. L consists of a weighted sum of multiple loss
subfunctions. The adversarial effect is obtained through
the optimization of the adversarial loss Ladv (detailed in
Section III-E). To ensure that the patch transfers well
to the real world, two additional losses are considered
to account for the physical realizability of the patch:
smoothness loss LS and nonprintability score LN . Refer
to the supplementary material for details.

The optimization problem can therefore be written as

1∗
= argmin

1

Ex∈X,ζa∈0a,η L
(

f
(
x̃
)
, y
)

(1)

whereas its practical iterative implementation at step t is

δk,t+1 = clip[0,1]

(
δk,t + ϵ ·

∑
x∈X

∇δk,tL
(

f
(
x̃
)
, y
))

(2)

where x̃ = g(x, 1, 0a, η), k = {1, . . . , Np}, and ϵ represents
the step size.

Sections III-C–III-E detail the optimization objectives, the
patch placement functions considered for the EOT-based and
scene-specific attacks, and the loss functions used.

C. Untargeted and Targeted Attacks

The attacker’s objective is encoded in the performed opti-
mization to craft adversarial patches. The attacker might want
to maximize the prediction error of the network, regardless
of the output classes (untargeted attack), or force the network
prediction toward a specific output (targeted attack).

The objective of an untargeted attack is then to maximize
the loss function Ladv( f (x̃), y), defined later in Section III-E,
where y is the ground-truth label. Hence, in (2), L( f (x̃), y) =

−Ladv( f (x̃), y) (the additional losses for physical realizability
of patches are neglected for simplicity).

Conversely, to perform a targeted attack, the attacker has to
first specify the desired prediction of the network. There are
many ways to define a target for this problem (for instance,
providing the label of a completely different scene), but
we focus to a case that is more interesting for real-world
applications: forcing the network to make a specific class
“disappear” from its prediction. This can be done by uniformly
changing the pixels belonging to class cattacked into the ones
of another class ctarget, or by applying the nearest neighbor
algorithm [27], as illustrated in Fig. 3. The nearest neighbor
algorithm associates to each pixel belonging to cattacked the
class of the closest pixel of a different class.

We define our target label as yt = τ(y, cattacked, ctarget),
where cattacked might indicate either a specific class or the
nearest neighbor approach (specified as a pseudoclass NN).
The targeted attack is then performed by considering, in (2),
L( f (x̃), y) = Ladv( f (x̃), yt ).
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Fig. 2. Scheme of the proposed approach for crafting both the EOT-based and the scene-specific patches.

Fig. 3. Illustration of how the original label (left) can be modified to attack
the class pedestrian: by changing pedestrian with road class (middle), or using
the nearest neighbor approach (right).

D. EOT-Based and Scene-Specific Attack

The patch placement within the image might follow two
different approaches: 1) randomizing the patch position, scale,
and rotation at each iteration (i.e., using the EOT method) and
2) using accurate projective transformations.

While the first is a general-purpose method for real-world
adversarial patch generation (hereby referred to as “EOT-based
attack”), the latter, named scene-specific attack, exploits the
geometrical information provided by the CARLA simulator
to compute camera extrinsic and intrinsic matrices and the
pose of the attackable surface (a billboard). This enables the
computation of precise camera-to-billboard 3-D rototranslation
(see supplementary materials) to warp the patch according to
the point of view of the camera in each image of the dataset.

Formally, the function η in (2) is a composition of random-
ized translation, rotation, and scaling for the EOT-based attack,
or a precise projective transformation for the scene-specific
attack. This novel method presents two main advantages:
it generates stronger attacks (since the placement is more
accurate) and it does not require randomization of the patch
placement (saving time during optimization).

To apply this method, a digital representation of the tar-
get scene is required to extract geometrical data. Although
CARLA can import cities via OpenStreetMaps,1 some amount
of manual effort is required to model 3-D meshes and include
objects in the virtual world. Such objects must be carefully
designed to ensure that patches will transfer well to the real
world. The transfer issues between CARLA and the real world

1https://www.openstreetmap.org/

will be investigated in a future work. Section IV provides a
comparison of this method against the EOT-based attack.

E. Proposed Loss Function

The pixelwise CE loss, denoted by LCE, has been shown
to work well for untargeted digital attacks by adding a per-
turbation r to pixels values [22], [27]. In this case, the loss
is Ladv( f (x + r), y) = (1/|N |) ·

∑
i∈N LCE( fi (x + r), yi ),

where fi (x + r) ∈ [0, 1]
Nc is the output of the model for

each pixel (i.e., a probability distribution over Nc classes),
and N = {1, . . . , H × W } is the entire set of pixels in x̃ .

This formulation can be changed to generate stronger
attacks against SS models. If Ñ k = {1, . . . , H̃ k × W̃ k} ⊆ N
denotes the pixels belonging to a patch δk only, the totality
of the pixels belonging to the patches can be defined as
Ñ = ∪

Np

k=1Ñ k .
The previous pixelwise CE loss computed on the subset of

pixels N \ Ñ can be split into two terms

Lx̃
M =

∑
i∈N \Ñ

SSi(x̃)=yi

LCE
(

fi
(
x̃
)
, yi
)
, Lx̃

M =

∑
i∈N \Ñ

SSi(x̃ )̸=yi

LCE
(

fi
(
x̃
)
, yi
)

(3)

where Lx̃
M

accounts for the cumulative CE for the misclassified
pixels, while Lx̃

M is the same but for the other pixels. Note that
both Lx̃

M and Lx̃
M

do not include pixels of the patch (i ∈ N \Ñ )
to focus the attack on image areas away from the patch.

These loss terms allow us to balance the contributions given
by correctly and incorrectly classified pixels. This is accom-
plished by defining the gradient of the overall adversarial loss
as follows:

∇δkLadv
(

f
(
x̃
)
, y
)

= γ ·
∇δkLx̃

M∣∣∣∣∣∣∇δkLx̃
M

∣∣∣∣∣∣
2

+ (1 − γ ) ·
∇δkLx̃

M∣∣∣∣∣∣∇δkLx̃
M

)∣∣∣∣∣∣
2

(4)

where γ ∈ [0, 1] is a balancing factor that determines whether
the optimization should focus on decreasing the number of
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correctly classified pixels or improving the adversarial strength
for the currently misclassified pixels, and k = {1, . . . , Np}.
In other words, γ balances between the importance of LM

and LM at each iteration t of the optimization problem in (2)
depending on the number of pixels not yet misclassified.

To provide an automatic tuning of γ at each iteration,
an adaptive value of γ = (|ϒ |/|N \ Ñ |) is proposed, where
ϒ = {i ∈ N \ Ñ |SSi (x̃) = yi }.

The idea is to initially focus on boosting the number of
misclassified pixels. As this number increases, the focus of the
loss function gradually shifts toward improving the adversarial
strength of the patch on the misclassified pixels.

Note that this adaptive formulation requires knowing the
ground-truth labels and the patch masks in x̃ .

Section IV provides an extensive analysis of the proposed
loss function by comparing multiple values of γ with the
standard pixelwise CE measured both on N \Ñ and N (which
is used by [27]), suggesting that our formulation is indeed
more general and effective for this kind of attacks.

F. Fast Patch Detection Algorithm

This section describes the FPDA designed to recognize SS
predictions affected by adversarial patches. Inspired by the HN
method [53], the basic idea of the proposed approach relies on
identifying and counting the presence of overactivated internal
features, commonly caused by adversarial attacks to induce
erroneous predictions in deep learning models.

Before introducing the FPDA algorithm, some additional
notation is required. As other deep learning models, the SS
models are composed of a sequence of layers (ℓ0, ℓ1, . . . , ℓL),
from the input layer to the output layer, respectively.

Given an SS model f evaluated on an input image x ,
vℓ

cℓ,iℓ, jℓ(x) represents the activation value of a neuron at layer
ℓ, having position (cℓ, iℓ, jℓ) ∈ {1, . . . , Cℓ} × {1, . . . , Hℓ} ×

{1, . . . , Wℓ}, where Cℓ, Hℓ, and Wℓ denote the number of chan-
nels, height, and width of the features at layer ℓ, respectively.

The pseudocode of FPDA is reported in Algorithm 1.
The function getActivation( f, x, ℓ) (line 1) returns all
the neuron activations at the layer ℓ, denoted by Aℓ =

{vℓ
cℓ,iℓ, jℓ(x), ∀cℓ, iℓ, jℓ}. Since the number of neurons at layer

ℓ might be large for SS models, making the next algorithmic
steps computationally expensive and therefore not suited for
real-time applications, a feature compression is performed at
line 2, returning Cℓ = {maxcℓ∈Cℓ

|vℓ
cℓ,iℓ, jℓ(x)|, ∀iℓ, jℓ}. This

operation preserves the properties of the overactivated neurons
by using the max operator.

Then, Cℓ is normalized (line 3) using the mean µℓ and
standard deviation σℓ, which are computed offline from a
dataset of clean images (i.e., no patched inputs). Here, Ĉℓ

denotes the normalized features.
To filter out all the common activations resulting from clean

inputs, a subset of Ĉℓ is selected (line 4), including only those
neurons with an activation larger than a selection-threshold θν

and thus deemed as unsafe. The threshold θν is determined
offline as the ν-percentile value computed on the normalized
features Ĉℓ of the previously defined clean dataset.

Finally, a score value is obtained (line 5) as the sum of these
overactivated features. Such a score is then compared (line 6)

Algorithm 1 Fast Patch Detection Algorithm
Input: f , x , ℓ, µℓ, σℓ, θν , ϱ

Output: Detection flag

Aℓ = getActivation( f, x, ℓ)

Cℓ = { maxcℓ∈Cℓ
|vℓ

cℓ,iℓ, jℓ(x)| , vℓ
cℓ,iℓ, jℓ(x) ∈ Aℓ}

Ĉℓ = (Cℓ − µℓ)/σℓ

Sℓ = Ĉℓ.where(Ĉℓ > θν)

score =
∑
Sℓ

if score > ϱ then
Return True

end
Return False

with a decision-threshold ϱ to decide whether the prediction
f (x) is safe or not (i.e., whether x is genuine or includes an
adversarial patch). Threshold ϱ is tuned offline on a second
dataset, composed of both clean and patched images.

The performance of the proposed algorithm depends on ν, ϱ,
and the two datasets used to extract µℓ, σℓ, θν , and ϱ. These
parameters and the related tuning strategies are discussed in
detail in Section IV.

It is useful to highlight the main differences between
the proposed method and HN. Although both achieve sim-
ilar detection performance, our approach has a significantly
smaller computation time, thanks to the feature compression
step described above. Furthermore, while the feature selection
step of HN is performed at run-time on the layer activations,
our approach exploits an off-line computation of a threshold
θν , computed on a given clean dataset, to reduce the run time
detection latency.

Section IV presents exhaustive experiments aimed at assess-
ing the detectability of patched images and the real-time
performance of the algorithm. A comparison with the original
HN formulation is also provided. Finally, a comprehensive
analysis against defense-aware attacks is shown to illustrate
the strengths and weaknesses of FPDA.

IV. EXPERIMENTAL EVALUATION

This section presents the set of experiments carried out to
evaluate the performance of the proposed attack and defense
approaches. The code is available at https://github.com/retis-
ai/SemSegAdvPatch.

First, the experimental setup is described, including the
networks, the datasets, the hyperparameters, the performance
metrics, and the hardware involved. Then, the results of the
untargeted (single- and double-patch) and targeted attacks are
presented on Cityscapes; the effects of untargeted single- and
double-patch attacks are reported for the CARLA-generated
images; finally, the detection results of FPDA are showed.

A. Experimental Setup

All the experiments were performed using PyTorch [56]
and a set of eight NVIDIA-A100 GPUs, while the CARLA
simulator was run on a system powered by an Intel Core i7
with 12-GB RAM and a GeForce GTX 1080 Ti GPU.
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The optimizer of choice was Adam [57], with the learning
rate empirically set to 0.5. The effect of the adversarial patches
on the SS models was evaluated using the mean intersection-
over-union (mIoU) and mean accuracy (mAcc) [58] on the
subset of the image pixels not belonging to the patch.

1) Datasets: Several datasets were used for the exper-
iments. The Cityscapes dataset [4] is one of the most
common datasets of driving images for SS. It is composed
of 2975 and 500 high-resolution images (1024 × 2048) for
training and validation, respectively. This dataset was used to
perform single- and multipatch attacks, both with untargeted
and targeted formulation. These patches were optimized on
250 images randomly sampled from the training set, while the
entire validation set was used to evaluate the effectiveness of
the resulting universal patches.

Other datasets were created using the CARLA simulator by
modifying the built-in Town01 map to insert some billboards
that served as attackable surfaces. In particular, two different
versions of three scenes (denoted by “scene1,” “scene2,” and
“scene3”) were considered: one for single-patch attacks (i.e.,
one billboard close to the road) and one for double-patch
attacks (i.e., two billboards). To mimic the setting used in
Cityscapes, RGB images of size 1024 × 2048, along with their
corresponding SS tags, were collected by placing a camera
on-board the ego vehicle.

For each CARLA scene (three single-patch and three mul-
tipatch), a dataset of 150 images was collected (with no patch
attached) for patch optimization. These datasets contain infor-
mation about the position and orientation of both the camera
and the billboard, to allow computing the rototranslations and
projection matrices for different points of view in the scene.
Details can be found in the supplementary material.

Once optimized, the resulting patch is imported in CARLA
and applied on the target billboard. Additional 100 images per
scene were collected and used for the performance evaluation
of the attack. Note that since these datasets already include
a patch, the metrics are evaluated on the entire image, and
therefore produce lower mIoU and mAcc values in the random
case with respect to the Cityscapes dataset.

To obtain an acceptable performance of the selected net-
works on such CARLA datasets, it was necessary to fine-tune
them. To this purpose, a training dataset and a validation
dataset (denoted by “val”) were also collected. Additional
details on the fine-tuning process are in the supplementary
material.

Finally, an additional custom dataset of real-world images
was collected to optimize the real-world patch that was even-
tually printed. This dataset is detailed in Section IV-G.

2) Models: Three real-time SS models suited for
autonomous driving applications were used to evaluate
the adversarial attacks investigated in this article, namely,
DDRNet [15], BiSeNet [16], and ICNet [14]. These models
were tested in two settings: one with Cityscapes, using the
pretrained weights provided by the authors, and one on
CARLA, where the models were refined with our fine-tuning
procedure (further details are reported in the supplementary
material). Table I summarizes the performance of these
models.

TABLE I
MIOU AND MACC OF THE TESTED MODELS ON CITYSCAPES (PRE-

TRAINED) AND OUR CARLA DATASET (FINE-TUNED)

B. Effects of Untargeted Attacks on Cityscapes

In this section, the untargeted attack is evaluated on the
Cityscapes dataset using both single- and double-patch attacks.
Three patch sizes were used to test the effect of small, medium,
and large patches. In particular, the sizes considered for the
single-patch attack are 150 × 300, 200 × 400, and 300 ×

600 pixels, while, for the double-patch attacks, we used 106 ×

212, 141 × 282, and 212 × 424 pixels. This setting allowed to
make a fair comparison between the double- and single-patch
formulations, since the overall area covered in each type of
attack is roughly the same.

Transformation 0a includes only Gaussian noise with stan-
dard deviation 5% of the image range, whereas the patch
placement function η includes random scaling (80%-120%
of the initial patch size) and random translation defined as
follows: if (cx , cy) is the center of the image, the position of
the patch is randomized within the range (cx ± r̃ · W̃/2 , cy ±

r̃ · H̃/2), where r̃ ∈ [0, 1] is random variable with a uniform
distribution. The translation range was kept limited, rather than
considering the full image space, to ensure better optimization
stability and faster convergence. The same transformation
settings were used for the double-patch attack, with the only
difference that the center (cx , cy) corresponding to each of the
two patches is the center of the left and right halves of the
image. The patches were optimized over 200 epochs.

As shown in Table II, the double-patch formulation
achieves, in general, higher attack performance with respect
to the single-patch version. In particular, for DDRNet and
ICNet, the double-patch attack gets a lower mIoU in all the
tested sizes. Different considerations arise for BiSeNet, where
patches with small and medium sizes achieve better results on
the single-patch attack. These results suggest that for some
models, the per-patch size could be more relevant than the
number of patches involved. Further results are provided in
the supplementary material.

Fig. 4 shows the adversarial effect produced by the pro-
posed attacks, illustrated for the single- (300 × 600) and
double-patch formulation (212 × 424).

C. Effects of Targeted Attacks on Cityscapes

While the objective of an untargeted attack is to induce the
maximum error in the network’s prediction regardless of the
classes that are predicted, a targeted attack must follow a much
more constrained optimization process.

In particular, by pushing the network’s prediction toward
the target label yt , we are asking the patch not only to change
the prediction on the pixels originally belonging to the class
cattacked to the class ctarget (which is already more complex
than an untargeted attack) but also to keep all the other pixels
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Fig. 4. Images of the Cityscapes validation set and their SSs obtained from DDRNet with (a) no patch, (b) random patch (300 × 600), (c) adversarial patch,
(d) double random patches (212 × 424), and (e) double adversarial patches.

TABLE II
ADVERSARIAL PATCH RESULTS IN MIOU AND MACC (CALCULATED OUT

OF PATCHES AREAS) EXTRACTED FROM THE VALIDATION SET OF
CITYSCAPES. EACH CELL REPORTS THE MIOU OBTAINED FROM

A RANDOM PATCH (NO OPTIMIZATION) AND THE EOT OPTI-
MIZATION. THE WHITE ROWS REFER TO SINGLE-PATCH

ATTACKS, WHILE THE GRAY ROWS REFER TO DOUBLE
PATCHES HAVING THE SAME AREAS OF THE SINGLE

CONFIGURATION

untouched. This resulted to be a very difficult task, especially
when considering image-agnostic attacks: the patch should
generalize the targeted attack for an entire set of images that
might differ largely on the distribution of the attacked class
(e.g., pedestrians have different location and appearances in
different images).

Previous work [27] on targeted localized adversarial per-
turbations for SS models only deals with image-specific (i.e.,
non-image-agnostic) attacks: this means that the perturbations
are tested on the same single image they are optimized on.

We provide a similar analysis to understand whether there
are classes that can be easily attacked with a real-world attack,
further validating our loss function formulation when attacking
particular classes of interest for the real-world case.

Table III reports the effects of some image-specific patch
attacks of interest for the real-world case. We decided to
perform a double-patch attack with a total area of 600 × 300,
since it is the strongest attack we tested. In fact, we empirically
found that it is very difficult to carry out these targeted attacks
with a single patch. The table shows the IoU of the attacked
class at the beginning and at the end of the optimization
process. IoU values are averaged on 100 different attacks.
Different networks show different strengths and weaknesses:
in particular, DDRNet and BiSeNet are easily attackable with
a road → sidewalk attack, while ICNet is not. Conversely,
ICNet suffers the sidewalk → NN attack, while BiSeNet does
not. This table also gives us an indication of whether it might
be possible to perform universal attacks. In fact, if an average
image-specific attack is not completely successful (i.e., IoU ≈

0 on the attacked class), there is no hope that the attack will
extend to an entire set of images.

TABLE III
EFFECTIVENESS OF (A) SOME IMAGE-SPECIFIC ATTACKS AND (B)

SELECTED UNIVERSAL TARGETED ATTACKS FOR DIFFERENT NET-
WORKS. EACH CELL REPORTS THE IOU OF THE ATTACKED CLASS

AT THE START AND AT THE END OF THE OPTIMIZATION
AMONG 100 SAMPLES OF THE CITYSCAPES VALIDATION

SET

We empirically assessed this argument by performing
universal targeted attacks for the attacks defined above.
Table III(b) presents the IoU of the attacked class for each
attack and each network. Note that these values are only
indicative of the performance of the attack: in fact, since
we are evaluating image-agnostic attacks, we are applying
the same patch to each image of the validation set, which
surely differ for the distribution of the pixels belonging to
each class. These experiments lead to the conclusion that
each network shows robustness for different classes. The only
universal targeted attack with good performance is road →

sidewalk. The others tested attacks resulted less effective.
Fig. 5 illustrates some of the attacks performed during the
evaluation.

D. Effects of Untargeted Attacks on CARLA

The scene-specific attack is evaluated against the EOT-based
attack using single- and double-patch attacks in CARLA.

As explained in Section III-D, additional information on
the relative pose of the camera and the billboards are extracted
from CARLA together with the corresponding images and then
used to apply accurate patch warping transformations during
the optimization process, to account for different points of
view of the same urban scene.

Based on preliminary experiments on the effect of the
number of pixels and on the real-world dimension of the patch
(described in the supplementary material), we decided to use
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Fig. 5. Effect of targeted patches. (a) Image-specific road → sidewalk attack
on DDRNet. (b) Image-specific sidewalk → NN attack on ICNet. (c) Universal
road → sidewalk attack on DDRNet. First column is the original image, while
middle and right columns are the predictions with random and adversarial
patches, respectively.

patches of 150 × 300 pixels (corresponding to a real-world
dimension of 3.75 × 7.5 m). For all the following experiments,
0a includes contrast and brightness changes (both randomized
within ±10% of the image range) and Gaussian noise (with
standard deviation equal to 10% of the image range).

Since this article investigates the effect of real-world adver-
sarial patches, the mIoU and mAcc scores are evaluated on an
additional dataset for each tested network: this time, the patch
is not digitally projected, but rather is imported in CARLA
and applied to a virtual billboard as a decal object. Hence,
the resulting dataset includes images of the billboards with
an adversarial patch already applied and rendered with the
same level of graphic detail. This allows simulating RWAEs
in CARLA.

The third column of Table I reports the performance of
the tested networks on the considered scenes (with no patch),
while Table IV reports the corresponding adversarial effect in
terms of mIoU and mAcc scores for both single- and double-
patch attacks. Note that for each setting reported in Table IV,
the scene-specific attack achieves better results than the EOT
formulation from previous work. To better point out the higher
effectiveness of the scene-specific attack formulation, which is
not properly captured by the standard SS metrics, we provide
further results in the supplementary material.

For single-patch attacks, the performance of the two
approaches is comparable and their adversarial effect is
marginal. While for the Cityscapes dataset we considered
double-patch and single-patch attacks with the same total patch
area; in this case, double-patch attacks use total areas two
times larger than those for single-patch attacks (i.e., we used
two patches with the same size 3.75 × 7.5 m). This choice
was due to the poor performance of single-patch attacks.
In the double-patch case, the performance of the attack largely
improves, as well as the difference between the performance
of the scene-specific and the EOT-based attacks.

It is worth observing that the performance of the tested
networks on CARLA scenes is worse than the one related to
Cityscapes: this is partly due to the differences in evaluating

the performance for Cityscapes and for the CARLA-generated
datasets. For Cityscapes, the area corresponding to the patch
is not considered during the evaluation: this helps ignore parts
of the image that are wrongly predicted as occluded by the
patch. Conversely, for CARLA images, we decided to take
into account also the patch area, since it is already present in
the 3-D virtual scene of CARLA. Fig. 6 shows the effect of
some representative attacks on CARLA images.

E. Evaluating the Proposed Loss Function and Parameters

The proposed loss function formulation presented in
Section III-E was evaluated against the standard CE loss for
several values of γ and for the different attacks.

Fig. 7 shows the evolution of the mIoU score during the
optimization process for the untargeted EOT-based attack on
Cityscapes and the scene-specific attack on CARLA. In both
the cases, for each tested value of γ , our loss formulation out-
performs the standard CE, both in terms of attack performance
and convergence rate.

Fig. 8 shows the optimization process of the image-specific
targeted attack pedestrian→NN (the values are averaged on
100 different attacks). The plot at the top shows the IoU of
the attacked class against the original labels, while the one at
the bottom shows the IoU of the class road against the target
labels. As it is shown in the latter plot, the IoU of the class
that is not under attack grows because the target label includes
pixels of the class road (or other classes) that replaced the
attacked class, and the prediction is forced to mimic the target
label. Note that in the targeted case, the tested γ values are
the ones that perform best, i.e., those <0.5. This is opposed to
the untargeted case, since the attack is formulated to minimize
the loss, and not to maximize it. Also in the targeted case, our
loss formulation outperforms the standard CE loss.

F. Detecting Robust Adversarial Patches

This section provides a set of experiments aimed at inves-
tigating the detection and timing performance of the FPDA.

1) Tuning the Thresholds: The Cityscapes dataset is used
to set the algorithm’s parameters µℓ, σℓ, ν-percentile. In par-
ticular, a set of features Cℓ extracted from 1000 images of the
original training set are used to compute µℓ and σℓ. Then,
after normalization, the corresponding features Ĉℓ are used
to compute the ν-percentile (where ν is set to 0.999 for
both HN and FPDA) and so θν . A second dataset (composed
of other 1000 clean images from the training set, plus the
corresponding adversarial images) is used to compute the
decision threshold ϱ.

The detection algorithm requires specifying a given layer
ℓ. The choice of the layer has been the subject of many
preliminary experiments. The real-time SS models consid-
ered in this article fuse information extracted from different
parallel branches. The layer ℓ is chosen as the first layer
that joins all the model’s branches. In fact, it is reasonable
to detect anomalies in the first fusion point: it might be
possible to create adversarial patches capable of bypassing
the detection mechanism placed within some branches of the
model by exploiting the vulnerabilities of others. Moreover,
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TABLE IV
ADVERSARIAL PATCH RESULTS ON THE THREE SCENE CARLA DATASETS. THE TABLE REPORTS THE MIOU AND MACC OBTAINED WITH RANDOM,

EOT-BASED, AND SCENE-SPECIFIC PATCHES. FOR EACH NETWORK, THE FIRST ROW INDICATES RESULTS FOR SINGLE-PATCH ATTACKS,
WHEREAS THE SECOND ROW REPORTS RESULTS FOR DOUBLE-PATCH ATTACKS

Fig. 6. SSs obtained with BiSeNet on CARLA scene-1 with (a) no patch, (b) single random patch, (c) single scene-specific patch, (d) double random patches,
and (e) double scene-specific patches.

Fig. 7. Comparison of adversarial patch optimizations (200 × 400) on ICNet and Cityscapes using different loss functions: two versions of the standard
pixelwise CE and our formulation with multiple values of γ . LCE on N is the original version used by [27], while LCE on N \ Ñ is an improved version
based on the rationale presented in Section III-E.

we empirically found it to be the point with the best detection
performance.

2) On the Validity of the Method: Fig. 9 reports the distribu-
tion of clean and patched images extracted from the validation
set of Cityscapes as a function of the score computed by the
proposed method with the BiSeNet model. The same kind of
patches analyzed in Section IV-B are used (150 × 300, 200 ×

400, and 300 × 600).
As shown in Fig. 9, the distribution of the clean images is

much closer to zero than all the other adversarial distributions.
In particular, the larger the adversarial patch (and consequently
more effective), the higher the score computed by Algorithm 1.
The area of score values colored in gray highlights the set
inside which any selected threshold ϱ is able to detect all the
adversarial images without introducing false negatives (i.e.,
no clean image is detected as unsafe).

3) Timing Analysis: As already mentioned in Section III-F,
the proposed method allows processing large-sized layer acti-

vations without affecting the timing performance of the model.
Fig. 10 shows plots of the additional inference time averaged
over 8000 iterations: the y-axis reports the relative execution
time fraction introduced by Algorithm 1 with respect to
the nominal inference time required by the model. As it
can be noted from the figure, the proposed method adds a
small latency, whereas HN presents larger additional execution
times: from 20% with the ICNet model to 50% with BiSeNet.

While it is fair to remark that HN is not conceived for SS
models (where the number of features to take into account
is usually larger than common image classification models),
the proposed approach solves this issue by processing a large
number of features in negligible additional time.

4) Defense-Aware Attack: Although the adversarial patches
tested in Section IV-F2 are easily detectable, it is important to
assess the goodness of the FPDA against ad hoc attacks that
exploit the knowledge of the applied defense. To this purpose,
an extension of the attack formulation proposed in this article
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Fig. 8. Summary of the optimization process for an image-specific pedestrian
→ NN attack. The IoU values at each epoch are averaged over 100 different
attacks. Top image shows the IoU of the class pedestrian, whereas bottom
image shows the IoU of the class road. For each value of γ tested, our loss
formulation outperforms the standard CE loss.

Fig. 9. Distribution of the clean and patched images as a function of the
features overactivation score computed by Algorithm 1 with BiSeNet. The
gray area highlights the set of ϱ thresholds that achieve a perfect detection
accuracy with the tested images.

was conceived to craft untargeted adversarial patches with the
intention of also deceiving the FPDA.

Since the FPDA is based on the detection of overactivated
features, we crafted patches that are adversarial (i.e., capable
of misclassifying a large number of pixels predicted in SS
outcomes), while, at the same time, are able to keep the
activated features within the range of the original distribution
(i.e., minimizing the overactivations). This is accomplished
by solving the iterative optimization method discussed in
Section III but using a loss function L( f (x̃), y) that includes
both the adversarial loss function Ladv( f (x̃), y) (in short Lx̃

adv)
and an additional activation loss Lx̃

Ĉℓ
. The former is the loss

function introduced in Section III, while the latter is a new
loss function that returns a cost proportional to the squared
overactivation of the normalized features Ĉℓ (computed by
performing the first operations of Algorithm 1 on x̃), i.e.,
Lx̃
Ĉℓ

= ||Ĉℓ||
2
2.

Fig. 10. Additional inference time computed as the ratio between the
execution time of the detection algorithm and the original model inference
time.

Therefore, the gradient of L( f (x̃), y) used during the opti-
mization method was redefined as

∇δkL
(

f
(
x̃
)
, y
)

= β ·
∇δkLx̃

adv∣∣∣∣∣∣∇δkLx̃
adv

∣∣∣∣∣∣
2

− (1 − β) ·
∇δkLx̃

Ĉℓ∣∣∣∣∣∣∇δkLx̃
Ĉℓ

)∣∣∣∣∣∣
2

(5)

where β is a parameter introduced to balance the importance
of Ladv and LĈℓ

, and k = {1, . . . , Np}. In particular, when
β = 1.0, the resulting patch will be optimized to minimize
the activated features. Conversely, moving β to lower val-
ues reduces the previous effect and increases the adversarial
strength.

The following experiments investigate the relationship
between detectability and adversarial effect. To this end,
several adversarial patches (300 × 600 and 200 ×

400 pixels) are crafted using several values of β ∈

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. In particu-
lar, given an adversarial patch crafted with a certain β, the
detectability is evaluated by performing an ROC analysis with
1000 images of the Cityscapes train set and the corresponding
attacked ones. Thus, such a subset is used to study the
true positive rate (TPR) and false positive rate (FPR) as a
function of the decision threshold ϱ. On the other side, the
adversarial effect is evaluated using the mIoU computed on
the Cityscapes validation set. Lower values indicate a more
effective adversarial attack.

Fig. 11(a) shows a comparison between the detection accu-
racy, specified through the AUC values (extracted from each
ROC curve) and the adversarial effect obtained with each
tested version of β. Clearly, for low values of β (when
the optimization is mainly focused on keeping the activated
features small), the detectability of all the tested methods is
very poor. However, these patches have a low adversarial effect
since the obtained mIoUs are close to the ones computed with
random patches. Increasing the value of β, the adversarial
effect of the patches increases but, at the same time, also their
detectability grows. These results remark that there exists an
intrinsic relationship between the adversarial effect and the
overactivation of features, such that highly effective patches
are more prone to be detected by the proposed strategy, as also
observed by previous works [53].
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Fig. 11. (a) Comparison between the detectability and adversarial effect of multiple patches crafted changing the β parameter. (b) ROC curves corresponding
to all the previous tested adversarial patches and their TFPs/FPRs corresponding to a unique threshold selected with β = 0.8. These results were obtained
with the ICNet model.

Fig. 11(b) illustrates another important result, showing all
the ROC curves computed for the 300 × 600 patches [their
AUC score is the one shown in Fig. 11(a)]. By looking at
these curves, it is possible to figure out the TPR and FPR
with respect to a fixed threshold ϱ. The threshold ϱ is set as
the optimal value (cutoff point) of the ROC analysis performed
with β = 0.8, where the AUC achieves 1.0, meaning that safe
and unsafe samples can be perfectly classified for that β value.

As highlighted by the plot’s legend, only the most dangerous
patches are detected correctly (those with β ≥ 0.8). Also, and
most importantly, all the ROC points have an FPR equal to
0.0, meaning that clean images are always classified as safe.

The above experiments were also performed on the BiSeNet
and DDRNet models, showing similar results (see the supple-
mentary material).

G. Adversarial Patches in the Real World

This section evaluates the effectiveness of the proposed
attack pipeline and the detection algorithm in the real world.

1) Effect of a Real-World Patch: To prove the effectiveness
of the attack pipeline proposed in Section III, we used a
custom dataset to craft an adversarial real-world patch using
the EOT-based formulation and fixing γ = 1.0 for the
proposed loss function optimization in (2). The dataset is
composed of 1000 images that were collected by mounting an
action camera on the dashboard of a real car, using a setup
similar to the one of the Cityscapes dataset, and then driving
the car through the streets of our city. The patch was optimized
for 200 epochs on the original pretrained version of ICNet
(since it showed good performance also on our personal real-
world dataset). Fig. 12(a) shows a sequence of frames recorded
while moving in the direction of the adversarial patch, printed
as a 1 × 2-m poster.

The results of further analyses are provided in the supple-
mentary material, remarking how the optimized patch alters a
significant area of the predicted SS, while the random patch
does not with portions of the image far from its position that

are not affected. Furthermore, the attack performance increases
as we move close to the patch.

It is worth remarking that testing adversarial patches for
autonomous driving in the real world poses a series of dif-
ficulties that heavily limited the tests. First, it is not easy to
find a urban corner that shows good performance and is not
crowded with moving vehicles (which might be dangerous).
Second, the patch must be printed in the highest resolution
possible on a large rigid surface, which might get expensive.

2) Detectability of a Real-World Patch: Fig. 12(b) reports
the overactivation score corresponding to each frame shown
in Fig. 12(a). The red dashed line represents the threshold ϱ,
used to distinguish safe and unsafe predictions. To provide a
clear visualization of the spatial effect caused by the printed
adversarial patch [second row in Fig. 12(a)], we also report
the SS obtained from the same images where the adversarial
patch was masked with white pixels [third row in Fig. 12(a)]
and their corresponding scores [light blue in Fig. 12(b)].

Since the mIoU does not properly encode the adversarial
effectiveness on individual images, we show a different metric
that we call adversarial effect, computed as 1 − (1/|N \

Ñ |)
∑

i∈N \Ñ (yi == SSi (x)). The adversarial effect measures
the average pixel dissimilarity between the predicted SS and
a ground truth y. Given the absence of proper ground-truth
labels y, we use the SS predicted from the white-masked
images. As done in Section IV-B, when evaluating the effect
of patches on Cityscapes, we did not consider those pixels
corresponding to the masked areas (which approximate the
patch placement in the real world).

In this real-world experiment, the tuning of ϱ was performed
on the same 1000 images of the Cityscapes dataset with an
adversarial patch having β = 0.8 and 300 × 600 [the same
patch used to compute the threshold in Fig. 11(b)]. However,
it is worth noting that transferring patches in a real-world
environment reduces the activation level of the perturbed
features (as well as their adversarial effect). To this purpose,
the threshold ϱ should be decreased. This can be obtained by
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Fig. 12. Real-world evaluation on ICNet of the attack method and the defense algorithm. (a) First row contains the original images with the printed adversarial
patch, while the second row contains their obtained SSs. The third row instead shows the outcomes obtained by masking the patch areas of the previous inputs
with white pixels. (b) Overactivation score of the corresponding frames for the SS predictions in rows 2 and 3, and which of them are detected using a proper
selection threshold. Also, the adversarial effect is shown for each frame, which is extracted by comparing the original attacked images with the corresponding
white-masked version.

considering an FPR equal to 0.01 as a reasonable compromise
(i.e., 1% of clean images in the calibration set are wrongly
classified as unsafe). This helps shift the threshold to a lower
value, more likely to be closer to the overactivation score
implied by patches transferred in the real world.

As can be noted from Fig. 12(b), frames 22 and 24 are
above the threshold ϱ (red line) meaning that the detection
mechanism works also in a real-world scenario. Moreover,
their masked counterparts achieve a lower score, clearly below
threshold ϱ, which stems to reason that high overactivations
are mainly caused by the presence of the printed adversar-
ial patch. Conversely, earlier frames are classified as safe,
meaning that the internal features do not have a considerable
number of overactivated values. In fact, in these latter frames
the patch has a lower adversarial effect, which is under 0.15,
meaning that less than 15% of out of patch pixels are classified
differently from the masked versions. Therefore, the corre-
sponding safe classifications could be acceptable. However,
also some notable adversarial effects could overcome the
defense mechanism, as, for instance, for frame 18, which
has several areas affected by the patch effect. Improving the
performance of the detection mechanism, while also providing
deeper analysis on its transferability on real-world critical
situations, is left as future work.

V. CONCLUSION

This article presented an extensive study of the real-world
adversarial robustness of real-time SS models for autonomous
driving scenarios. Preliminary results achieved in [6] have

been extended in this work by generalizing the attack pipeline
for EOT and scene-specific attack to both targeted and
untargeted settings and double-patch configurations. All the
proposed formulations leveraged a novel loss function that
improves the state-of-the-art methods for optimizing adver-
sarial patches. Finally, a novel real-time detection algorithm
(FPDA) was presented and evaluated, proving its capability
of quickly detecting dangerous adversarial patches on realistic
driving scenarios.

The extensive experimentation performed in this article
showed how real-time SS models present a certain robustness
to real-world adversarial attacks for driving scenarios. More-
over, it showed that the proposed detection algorithm is able
to drastically reduce the threat associated with those attacks.

Since many variables of a realistic driving environment
are not controllable (e.g., weather, external objects), future
work aims at studying the transferability of robust assessments
derived from virtual scenarios (e.g., CARLA simulator) to
real-world environments. Furthermore, the proposed detection
mechanism highlights a strong relationship between the area
attacked from an adversarial patch and the overactivation
of internal features. This suggests the need for a deeper
investigation on the spatial robustness of SS models.
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