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Abstract—Graphics processing units (GPUs) are often em-
ployed to accelerate the inference of deep neural networks
(DNNs) in cyber-physical systems to implement advanced percep-
tion and control functionalities. Frameworks for GPU-accelerated
DNN inference typically aim at maximizing the processing
throughput rather than focusing on providing a predictable
timing behavior, which is crucial for time-sensitive cyber-physical
systems. This work proposes a framework for GPU-accelerated
inference of DNNs on GPU-based embedded platforms in multi-
tasking scenarios, which provides enhanced timing predictability
using a design-time optimization procedure of the DNN workload
and a specialized method to schedule the GPU acceleration
requests of the DNNs at runtime based on fixed-priority limited-
preemptive scheduling. Fine-grained control of the inference is
achieved by splitting the DNNs into smaller chunks, which are
then scheduled using a specialized real-time scheduling mecha-
nism. Experimental results on commercial embedded platforms
report significant improvements in terms of schedulability.

Index Terms—Deep neural networks, graphics processing
units, real-time systems, schedulability analysis, multitasking.

I. INTRODUCTION

Deep neural networks (DNNs) have become a prevalent
technology for enabling advanced perception and control func-
tions in cyber-physical systems (CPSs). In particular, convo-
lutional neural networks proved to be particularly effective at
augmenting detection capabilities in tasks such as object detec-
tion, classification, tracking, and image segmentation. Conse-
quently, DNNs can provide enhanced perception performance
in several domains, including advanced driving assistance sys-
tems, autonomous driving, industrial robotics, medical devices.
DNN models consist of numerous sequential layers of artificial
neurons, where each neuron connects to neurons in preceding
and subsequent layers through multiple weighted connections,
establishing a highly parallel computational structure. This
structure exhibits substantial data and instruction parallelism,
making DNN execution (or inference) well-suited for acceler-
ation on graphics processing units (GPUs). Given the high
performance and safety requirements in CPS applications,
DNN inference is often subject to stringent timing constraints,
typically expressed as deadlines by which inference must
terminate to ensure a safe operation. Furthermore, typical
cyber-physical applications consist of multiple tasks that re-
quest acceleration for different DNN models. A representative
example is autonomous vehicles, which rely on multiple DNNs
to handle different simultaneous tasks such as object detection,
semantic segmentation, object tracking, and DNN-enhanced
localization and mapping. Typical sensor setups include four to

eight cameras, along with lidars and radars [1]-[3]. Each sen-
sor stream is processed by one or more specialized DNNs to
extract relevant information. For instance, deployments based
on the Autoware framework may involve multiple DNNs per
sensor stream, leading to a substantial number of concurrent
DNN tasks [4], [S]. These tasks often have different priorities
and timing requirements, including different periods and dead-
lines [3], [4]. However, leveraging existing GPU acceleration
frameworks to run multiple DNNs concurrently (which is a
typical requirement in cyber-physical applications) results in
a timing behavior that existing scheduling models and worst-
case timing analysis techniques for real-time systems cannot
accurately capture.

Contributions. This paper investigates the problem of accel-
erating the inference of concurrent DNN workloads on GPU-
based heterogeneous Systems-on-a-Chip (SoCs) while ensur-
ing enhanced timing predictability, with reference to commer-
cial Nvidia GPU-based platforms. A specialized framework for
GPU-accelerated inference of DNNs on embedded platforms
is presented, combining a design-time optimization procedure
with a runtime scheduling and resource management system
based on fixed-priority limited-preemptive scheduling. Build-
ing upon Nvidia TensorRT [6] to enable high-performance
inference of DNNs on embedded GPUs, the framework works
around the uncertainties in the timing behavior of the GPU
scheduler and of the default concurrent inference pattern of
TensorRT by treating the TensorRT runtime system and the
GPU driver as a black box and assigning the GPU resource to
tasks requesting DNN acceleration based on careful resource
management decisions. The framework further leverages DNN
splitting, where each DNN to be accelerated is divided into
multiple sequential chunks, each composed of consecutive
layers of the original DNN, thus enabling finer control gran-
ularity in the GPU inference. The paper makes the following
contributions: (i) it provides a characterization of the Ten-
sorRT inference framework, focusing on its timing behavior
during concurrent inference on Nvidia Jetson GPU-based SoCs
(Sec. 1V); (ii) it presents a specialized framework enabling
real-time, concurrent accelerated inference of DNN workloads
that leverages TensorRT, incorporates predictable resource
management and supports DNN models split into multiple
chunks (Sec. V); (iii) it presents a schedulability analysis based
on response-time analysis to capture the worst-case timing
behavior of the system with periodic workloads (Sec. VI);
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(iv) it presents a profiling-based method to determine an
optimal DNN splitting configuration that guarantees schedula-
bility while minimizing splitting overhead, accompanied by a
heuristic strategy providing high schedulability with reduced
profiling efforts (Sec. VII); and (v) it reports an experimental
evaluation of the proposed framework and DNN splitting
methods in terms of analytical and observed schedulability
on Nvidia Jetson platforms, including a comparison with the
baseline TensorRT concurrent inference approach (Sec. VIII).

II. BACKGROUND

This section presents the reference platform architecture
and application model, and provides an overview of machine
learning frameworks for GPU-accelerated inference.

Platform architecture. GPU-based SoC architectures com-
bine scalar multi-core processors with an integrated GPU de-
vice. Typically, the CPU processor combines cores of different
capability, while the GPU contains a large number of process-
ing elements specialized for graphics and parallel computation.
In embedded GPU-based SoCs, the memory controller fabric is
shared between the CPU and GPU, both connected to a single
off-chip DRAM module. This configuration enables sharing
memory buffers between the CPU and GPU, eliminating the
data copy overheads typical of discrete GPU configurations,
in what is known as a zero-copy configuration. Both CPU and
GPU feature a dedicated set of cache memory layers to exploit
data locality. The resulting platform model is representative
of commercial SoC heterogeneous architectures, such as the
Nvidia Jetson family of devices [7]. For practical evaluations,
we considered three Jetson models: (i) the Jetson TX2 [8]
(GPU with 256 CUDA cores, six-core CPU, 8 GB of RAM);
(ii) the Jetson AGX Xavier [9] (GPU with 512 cores, eight-
core CPU, 32 GB of RAM); and (iii) the Jetson AGX Orin [7]
(GPU with 2048 cores, twelve-core CPU, 32 GB of RAM).

Application model. As the focus of this work is on multitask-
ing in cyber-physical applications involving concurrent GPU-
accelerated inference of DNNs, we model an application as a
task set 7 = {71,...,7,} of n sporadic tasks that execute
on the cores of a multiprocessor platform according to a
preemptive fixed-priority scheduling policy. The tasks in 7
utilize a GPU device integrated on the SoC to accelerate the
inference of DNN models on the GPU. Specifically, each job
of a given task 7; can perform a single inference request for
a specific DNN model DNN;, by means of a blocking call
to an underlying inference framework. Each task 7; releases
a potentially infinite sequence of jobs with a minimum inter-
arrival time 7; and is subject to a deadline D;, with D; < T;
(constrained deadlines). Each task is assigned a fixed priority
level m;, for instance, according to the Deadline Monotonic
(DM) priority assignment, where tasks with smaller deadlines
have higher priority. The priority of a task 7; is considered
higher than that of another task 7; if ¢ < j.

DNN inference with TensorRT. Numerous machine learning
frameworks are available to support training and inference of
DNN models. PyTorch [10], TensorFlow [11], and Caffe [12]
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are widely adopted open-source frameworks in both academic
research and industrial applications. Their popularity stems
from their ability to simplify the development and deploy-
ment of DNNs, thanks to high-level abstractions and user-
friendly APIs. All three frameworks support GPU-accelerated
inference; however, their focus is more on flexibility and ease
of use rather than on performance. Nvidia TensorRT [6] is
a specialized framework for model optimization and high
performance inference on Nvidia GPUs and embedded SoCs.
TensorRT applies optimizations such as layer fusion, profiling-
based kernel tuning, and precision calibration, also leverag-
ing specific knowledge of the internals of the target GPU
architecture, to obtain an optimized DNN inference engine
providing enhanced inference speed and resource efficiency.
While TensorRT does not support the DNN training phase, it
accepts standard modeling formats such as ONNX, enabling
interoperability with other frameworks, including PyTorch,
TensorFlow, and Caffe.

Input models to be accelerated using TensorRT can be either
converted from existing modeling frameworks or manually
prepared using the TensorRT API. The TensorRT engine
builder takes as input a trained DNN model definition and a
selected numerical precision (e.g., floating point or integer),
and generates an optimized TensorRT inference engine for
that precision. To minimize the engine execution time on the
specific platform on which the engine is built, the engine
builder collects timing and profiling data over multiple runs
and selects the fastest available compute kernel for each layer
in the DNN model. The resulting engine can be utilized for
inference using the TensorRT inference library, available for
C++ and Python. While the inference engine is optimized
for high-performance inference on the specific target platform
on which it is built, it remains compatible with any system
that supports TensorRT. Given an optimized TensorRT engine,
profiling of the DNN inference times from the point of
view of the tasks on the CPU side can be performed using
wall-clock timers, whereas profiling from the GPU side can
be performed using CUDA event monitoring or the built-in
TensorRT profiling tool.

TensorRT engines are obtained as a set of CUDA compute
kernels, each accelerating in parallel form one or more layers
and operations of the DNN model. As with general kernels in
Nvidia GPUs, each kernel composing an engine is executed
non-preemptively on the GPU resources it utilizes, meaning
that it cannot be suspended to yield the corresponding re-
sources to other kernels executing concurrently. Different ker-
nels composing TensorRT engines may request different GPU
resources in different amounts; as a result, when switching
from one kernel to the next in one engine, the type and amount
of resources requested by the same engine might change.
Examples of compute resources that are often requested by
such kernels include execution threads within a compute core
in a Streaming Multiprocessor (SM), floating point units in
each SM, or memory buffers of different types. Note that
the internal structure of each TensorRT engine (in terms of
type, size, and number of kernels) is not known a priori,
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as it depends on the results of the optimization performed
while building the engine, which in turn depends on multiple
factors, including the target GPU architecture and the current
occupancy of GPU resources at the time of optimization.

III. RELATED WORK

Existing works on GPU computing for embedded systems
focused on characterizing the timing behavior of GPU plat-
forms [13]-[15] and deriving suitable scheduling strategies to
enhance timing predictability [16]-[18].

Numerous works more specifically focused on improving
the timing behavior of DNN inference on GPU-based hetero-
geneous platforms. Zhou et al. [19] presented a scheduling
framework for multitasked systems in GPU-based heteroge-
neous platforms, which supports prioritization and scheduling
of multiple DNN instances to improve GPU resource utiliza-
tion. Gujarati et al. [20] proposed another scheduling frame-
work for GPU-based heterogeneous platforms with specialized
GPU resource utilization strategies which enhance the result-
ing timing predictability of the system. Multi-tenant DNN
inference on GPUs was investigated by Yu and Bray [21],
providing a specialized kernel-level scheduling strategy. Ling
et al. [22] presented a framework for real-time scheduling of
DNNs focusing on supporting DNNs with largely different
size and accuracy requirements. Lee et al. [23] presented an
optimization strategy for DNN inference performed by a single
periodic task, which dynamically deactivates neurons to speed
up the inference. Han et al. [24] described a preemption mech-
anism for real-time GPU kernels that enables preemption while
minimizing associated overhead. In the context of memory
management, Jain et al. [25] proposed a strategy to mitigate
memory contention on the GPU by partitioning computational
and memory resources, with added compatibility for DNN
inference. Kang et al. [26] also operated on memory aspects,
proposing a framework designed to overcome GPU memory
limitations when handling multiple DNNs by dynamically
swapping memory between active and inactive DNN models.
All of these methods, however, do not provide a dedicated
response-time analysis of the resulting timing behavior. Closer
to our work, Xiang et al. [3] focused on hybrid CPU-GPU
inference of DNN models in a multitasking environment, pro-
viding a timing analysis, but does not support TensorRT and
performs inference with multiple parallel streams, from which
TensorRT does not necessarily benefit (see Sec. IV). Later,
Kang et al. [27] extended this approach to provide enhanced
schedulability and flexibility in hybrid CPU-GPU inference of
DNN models. Both works schedule DNNs at the layer level,
effectively applying DNN splitting at the finest granularity. In
addition to causing overheads at every layer boundary, layer-
level splitting would inhibit key TensorRT optimizations such
as layer fusion, kernel auto-tuning, and global memory reuse,
degrading the overall inference performance. Furthermore,
the optimization goals in these works focus on allocating
the DNN layers among the available CPU and GPU nodes.
In contrast, this work proposes a coarser-grained splitting
scheme that minimizes the number of splits required to meet
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TABLE I. Overview of related work.

Multi-
tasking

TensorRT
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Response-time
analysis

Related work Ti:?:gsf:triz:t
Zhou et al. [19]
Lee et al. [23]
Ling et al. [22]
Han et al. [24]
Guyjarati et al. [20]
Jain et al. [25]
Xiang et al. [3]
Kang et al. [26]
Kang et al. [27]
Yu and Bray [21]
This Paper
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timing constraints, introducing splits only when necessary to
ensure schedulability, and preserving inference performance
as much as possible. Furthermore, all of the above works
operate at a low level, requiring explicit knowledge of the
internal computational structure of the DNN models (e.g.,
in terms of CUDA kernel configurations and memory access
patterns) for scheduling and resource management. Differently,
the proposed method operates at the DNN architecture level,
treating each TensorRT engine as a black-box component. It
requires no internal execution details, relying solely on chunk-
level profiling data. DNN splitting (or DNN partitioning)
has also been widely adopted in distributed computing to
determine how to divide DNN inference across multiple nodes
(e.g., between edge and cloud devices) [28]-[42]. However,
these works focus on throughput or energy efficiency maxi-
mization via static or dynamic resource allocation and do not
provide worst-case timing guarantees, therefore lacking real-
time schedulability analysis.

Table I summarizes the key features of related work on
real-time DNN inference compared to our framework. Our
framework is the first to manage inference of multiple DNN
tasks by leveraging the TensorRT high-performance inference
framework, while providing response-time analysis and ensur-
ing seamless integration of existing applications with existing
machine learning frameworks and model formats, without
requiring any modifications to the underlying software stack,
including TensorRT and GPU drivers.

IV. BASELINE APPROACH

This section presents a baseline approach for managing
concurrent inference of DNN models with TensorRT under the
application model described in Sec. II. This approach is then
characterized based on empirical observations, highlighting its
main limitations.

Baseline approach for concurrent inference. When Ten-
sorRT is considered for DNN inference, the application model
in Sec. II can be supported by assigning a dedicated CUDA
stream (i.e., a container for sequential operations to be ex-
ecuted on the GPU) to each task in the application, on
which the task independently performs engine inference, as
recommended in the TensorRT documentation [6]. To preserve
the correct priority order when managing concurrent inference
requests, the priority level of the CUDA stream dedicated to
each given task 7; should correspond to the priority level m;
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Fig. 1: Comparison of makespan obtained with concurrent and sequential inference on different Jetson platforms. Models
considered: (a) VGG19, AlexNet, ResNet18, and InceptionV4; (b) GoogleNet, MobileNetV2, VGG16, and DenseNet121.

in 7. With this setup, when multiple compute kernels from
concurrent TensorRT engines are ready for execution at the
same time, then those kernels will execute in parallel on the
GPU, provided that sufficient GPU resources are available.

Empirical characterization of the scheduling behavior.
Since the internal behavior of TensorRT, Nvidia GPUs and
their related drivers is only partially documented in publicly
available specifications, it is not possible to precisely validate
the scheduling policy governing acceleration of concurrent
TensorRT engines. Thus, we characterized the scheduling
behavior under the baseline configuration through empirical
analysis, using profiling and targeted analysis of execution
traces collected on various platforms of the Nvidia Jetson
family (namely, Jetson TX2 [8], Jetson AGX Xavier [9], and
Jetson AGX Orin [7]) while executing different pre-trained
DNN models compatible with TensorRT concurrently under
the baseline setup. According to our characterization, the
baseline scheduling behavior involves sequential execution of
kernels within each DNN engine, while kernels from different
engines may partially execute in parallel depending on the
availability of different types of GPU resources at any given
time, since two concurrent kernels can execute simultaneously
only when sufficient GPU resources are available to accom-
modate both at the same time. Kernels are executed non-
preemptively on the resources they are assigned, and a kernel
belonging to an engine assigned to a higher-priority stream
takes precedence over kernels from lower-priority engines,
provided that sufficient resources are available to execute it.
One crucial result of this analysis is that the amount of
parallel execution observed for GPU kernels that are released
by different concurrent TensorRT engines is generally very
low in the evaluated scenarios: in all the recorded execution
traces, we observed minimal overlap in the execution of
kernels from engines that were running concurrently, with the
Nvidia profiling tools reporting very low values for the kernel
concurrency metric (as low as 1%). To confirm this obser-
vation, we evaluated the makespan for the inference of four
TensorRT engines by either (i) requesting concurrent inference
of the engines on separate CUDA streams, and measuring the
maximum completion time for the concurrent requests; or (ii)
running each engine in isolation and then summing up the
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execution time of each engine, as in sequential inference!.

Figure 1(a) reports the resulting statistics for the two strategies,
in terms of average and maximum makespan across a total of
500 executions, when considering a set of four pre-trained
DNN models by Nvidia [43] (VGG19 [44], AlexNet [45],
ResNet18 [46], and InceptionV4 [47]). Interestingly, on both
the TX2 and the AGX Orin platforms, concurrent inference
resulted in slightly longer makespan than with sequential infer-
ence, whereas similar makespans were observed for concurrent
and sequential execution on the AGX Xavier. Similar trends
are observed in Figure 1(b), where a different set of pre-
trained DNN models [43] is considered (GoogLeNet [48],
MobileNetV2 [49], VGG16 [44], and DenseNet121 [50]).
Overall, these observations show that executing the kernels
concurrently, such as in the baseline approach, does not guar-
antee a gain in the achieved parallelism; in fact, it might even
cause a decrease in performance due to the underlying effects
of architectural resource contention. This limited observed
concurrency is possibly related to the following factors: (i)
to minimize the expected execution time for an engine, the
TensorRT engine builder tends to produce kernels that utilize
as many GPU resources as possible in order to speed up the
inference, resulting in high resource requirements for each
kernel?; and (ii) the computational resources available on
embedded GPUs are quite limited with respect to discrete
high-performance GPUs; thus, in practice, the execution of
a single TensorRT engine often tends to saturate at least one
type of GPU resource.

A. Analytical limitations

In addition to the above observations, the baseline schedul-
ing approach presents several limitations in terms of real-time
performance, related to scheduling and timing analysis aspects.

Limitation 1. Analytical challenges. The baseline approach
produces a highly complex and unpredictable timing behavior

In both cases, inference was carried out with the TensorRT C++ runtime
API, and wall-clock time was measured on the CPU using high-resolution
monotonic C++ timers in order to capture the total inference latency, including
actual GPU inference time and any additional synchronization overheads.

2The TensorRT documentation notes that resource usage can be bounded
by occupying GPU resources during engine optimization. However, since
the resource usage of each kernel is statically determined, this strategy may
increase kernel execution times and result in underutilized GPU resources.
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that is difficult to properly capture with a worst-case timing
analysis. Indeed, an accurate analysis would need to: (i)
model the internal structure of each TensorRT engine in
terms of types of kernels and corresponding GPU resource
requirements; (ii) keep track of the available GPU resources to
determine whether pending kernels from different engines can
execute in parallel at any given time; (iii) consider potentially
alternating intervals of parallel execution and interleaving of
concurrent engines; (iv) account for the blocking delays caused
on higher-priority engines by non-preemptive execution of
lower-priority kernels when not enough GPU resources are
available to execute a high-priority kernel; and (v) consider
multiple preemption points for each lower-priority engine,
as determined by the subdivision of the engines in multiple
kernels. To the best of our knowledge, even when assuming the
availability of complete specifications regarding the scheduling
system of Nvidia GPU devices and TensorRT engines, there is
no suitable analysis method that can be applied to derive pre-
cise and reliable schedulability guarantees under this baseline
approach.

Limitation 2. Measurement uncertainty. Concurrent execution
of kernels introduces significant expected variability in terms
of execution times: reliable estimations of execution times
would thus require extensive profiling to properly capture the
effects of resource contention inherent to concurrent execution.

Limitation 3. Limited priority levels. Only a limited number
of priority levels are available for CUDA streams in the GPUs
onboard the Jetson platforms (up to 2 priority levels on the
TX2, 6 on the AGX Xavier, and 6 on the more recent AGX
Orin). This limits the number of task priorities that can be
properly supported with the baseline approach, meaning that, if
more priority levels are required, engines utilized by tasks with
different priority might be forced to share the same priority
level on the GPU.

Overall, from a purely empirical perspective, our experi-
ments on the schedulability performance of concurrent infer-
ence (detailed later in Sec. VIII) report a large number of
deadline misses for the baseline approach, further highlighting
the need for a specialized approach for time-critical systems.

V. SCHEDULING FRAMEWORK

This section provides an overview of the architecture and
the main components of the proposed framework, which over-
comes the limitations of the baseline approach by guaranteeing
a predictable and analyzable timing behavior in concurrent
DNN inference on GPU-based SoCs.

The proposed framework integrates an optimization ap-
proach driven by schedulability analysis with a specialized
runtime mechanism for optimized DNN inference engines.
Specifically, the workflow of the framework is illustrated
in Figure 2. The optimization module takes as inputs the
scheduling parameters of the real-time tasks and the set of
trained DNN models utilized by the tasks, and produces a set
of optimized DNN models to be executed by a specialized
scheduling system. Accurate profiling of engine execution
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Fig. 2: Overview of the proposed framework.

times is integrated in the optimization module. Inference of
the optimized DNN models can then be requested by the tasks
in the cyber-physical application by leveraging a specialized
scheduling interface provided by the framework.

Given that both the TensorRT framework and the Nvidia
GPU driver stack are closed-source, it is not possible to
modify their internals to suit a desired behavior. As a result,
one crucial design choice of the proposed framework is to
adopt a black-box approach: the framework is built as an
additional layer on top of the standard TensorRT framework
distribution for Nvidia GPU SoCs, without any modification
to TensorRT or the GPU device drivers, with the main ob-
jective of overcoming the limitations of TensorRT in terms
of timing predictability. Specifically, the proposed framework
leverages the TensorRT engine builder in the design phase
and the TensorRT inference library (which internally utilizes
the GPU scheduler) in the runtime phase. From the point
of view of the system designer, integrating the proposed
framework simply requires applying the optimization tool to
the target task set and then invoking inference by means of
the framework rather than by leveraging TensorRT directly
as in the baseline approach. This guarantees a lightweight
and transparent approach that is portable across all platforms
compatible with TensorRT. In the following, we describe the
two main modules composing the proposed framework: the
scheduling system and the optimization module.

A. Scheduling system

Time-predictable execution of concurrent TensorRT engines
is obtained in the runtime phase by means of a specialized
scheduler, which builds on top of the TensorRT inference
library. Specifically, in the proposed framework, concurrent
execution of TensorRT engines at runtime is governed accord-
ing to the following rules:

Rule 1. At most one engine can be in execution (or pending

for execution) on the GPU at any time. To achieve precise

control over GPU scheduling, the framework treats the GPU
as a shared resource, allowing at most one pending TensorRT
engine inference request to be pending at a time across all
GPU streams. This effectively bypasses the default scheduling
policy for concurrent inference on different streams (which is
only partially documented) and enables a custom scheduling
policy to be enacted.

Rule 2. Concurrent engine inference requests are served
according to a priority-based policy. To select which engine
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is executing on the GPU at any given time, the framework
utilizes a fixed-priority scheduling policy, where each infer-
ence request is assigned the priority of the requesting task,
and requests are served in order of decreasing priority.

Rule 3. DNN engines are scheduled non-preemptively. The
TensorRT library does not provide mechanisms for preempting
or pausing the execution of an engine. Thus, TensorRT engines
are scheduled non-preemptively in the scheduling system: once
a task acquires the GPU shared resource (as per Rule 1), it
retains it until engine execution completes.

Overall, the above rules enforce a predictable scheduling
behavior of concurrent TensorRT engine inference requests
on the GPU, effectively corresponding to a non-preemptive
fixed-priority scheduling policy on a single-core CPU. Given
a worst-case execution time (WCET) C; for the TensorRT
engine of each task 7;, worst-case response times (WCRTSs)
for the inference of each engine can be derived with standard
response-time analysis techniques [51], [52] by considering the
engine inference requests towards the GPU as tasks executing
on a single-core processor. This analysis bounds the response
time for each task by accounting for the interference from
higher-priority workload and the blocking caused by the non-
preemptive execution of lower-priority tasks.

As shown in the results from Sec. IV, sequential inference
does not necessarily lead to a performance loss with respect
to concurrent inference. Therefore, although Rule 1 disallows
parallel execution of concurrent engines on the GPU, it is
not expected to significantly reduce effective parallelism, at
least in embedded GPUs with limited capabilities, such as
those in the Jetson platforms. Most importantly, this restric-
tion introduces favorable predictability properties that enable
timing analysis, thus addressing Limitation 1 of the baseline
approach. In addition, enforcing that at most one engine can
be in execution or pending on the GPU at any given time
facilitates obtaining reliable estimations of engine execution
times by profiling each engine in isolation, given that architec-
tural interference effects are mitigated with mutually exclusive
inference. This addresses Limitation 2. Finally, since priority
levels are managed explicitly by the scheduling system, this
approach overcomes the limitation on the number of priority
levels available for CUDA streams (Limitation 3).

B. Optimization phase

Although TensorRT provides optimized inference for state-
of-the-art DNN models, their execution times can still be
significant (e.g., in the order of milliseconds or tens of
milliseconds) relative to the tight timing requirements of
cyber-physical applications. Thus, non-preemptive execution
of lower-priority inference requests can cause substantial
blocking times on higher-priority tasks, which can jeopardize
the schedulability of the application. To achieve fine control
of DNN scheduling while reducing the blocking times due to
non-preemptive execution, the proposed framework introduces
a specialized optimization strategy for the DNN models in
the application, based on the concept of DNN splitting. This
technique divides each DNN model into multiple sequential
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chunks, each representing one or more successive layers,
and then deploys each chunk as a separate TensorRT engine
for inference in the scheduler system. Splitting DNNs into
smaller chunks allows to control and limit the blocking time
introduced by non-preemptive execution. However, splitting
the DNN model into multiple chunks can introduce inference
overhead, as multiple TensorRT engines must be executed
sequentially to produce the final output. Thus, the proposed
optimization techniques used to determine the splitting con-
figuration for each DNN model, detailed in Sec. VII, explore
the tradeoff between inference times and blocking by limiting
the degree of splitting while ensuring system schedulability.
These techniques leverage online profiling to derive reliable
worst-case execution times for the execution of each chunk
on the scheduling framework, extracted by considering that
each chunk executes in isolation on the GPU resources.

Extension of the scheduling system. The following rules
are provided to support DNN models composed of multiple
chunks (i.e., multiple TensorRT engines), enabling preemption
at the frontier of successive chunks.

Rule 4. Chunks of a split DNN are executed sequentially. The
scheduling system is extended to request the execution of the
engines composing a split DNN sequentially, transferring the
output of each engine to the next to reproduce the full model
inference. The execution of each individual engine composing
the DNN is performed in accordance with Rules 1-3.

Rule 5. The completion of a chunk within DNN inference
corresponds to a preemption point for inference on the GPU
resource. The shared GPU resource, accessed exclusively as
per Rule 1, is retained by a task after completing a DNN chunk
if both of the following conditions hold: (i) additional chunks
of the DNN remain to be executed, and (ii) no higher-priority
task is waiting to access the GPU. In all other cases, the task
releases the shared resource.

Given these rules, if a higher-priority task requires the
inference of one of its chunks, it must wait until the current
inference completes. Before executing the next chunk of the
currently executing task, the framework checks whether other
higher-priority tasks requested the acceleration of a chunk.
If there is such a request pending, then the framework starts
executing the chunks of the highest-priority pending task, thus
effectively implementing limited-preemptive scheduling.

Note that, since each DNN chunk is executed in isolation
on the GPU, a single CUDA stream is sufficient to support
TensorRT inference of the DNN chunks of all tasks in 7.

C. Implementation details

The runtime system is implemented as a C++ module that
uses the TensorRT C++ runtime. At system initialization, the
TensorRT engines produced by the optimization module, each
representing a DNN chunk, are loaded into main memory
and initialized, in order to eliminate runtime overhead from
deserializing large data segments. At runtime, DNN schedul-
ing follows Rules 1-5 and is coordinated through a shared
resource manager accessed by all DNN tasks. When a task

Authorized licensed use limited to: Scuola Superio Sant'/Anna di Pisa. Downloaded on January 19,2026 at 08:53:25 UTC from IEEE Xplore. Restrictions apply.



obtains exclusive access to the GPU to perform inference
of a DNN chunk, it executes the corresponding TensorRT
engine on a dedicated CUDA stream and synchronizes on the
stream to wait for inference completion. Each chunk is treated
as an independent TensorRT engine, and inference proceeds
sequentially across chunks in each DNN by forwarding the
output of one chunk as the input to the next. On Jetson
platforms, the CPU and GPU share the main memory, which
the runtime system leverages to implement zero-copy memory
management. This method maps each shared buffer required
for DNN inference to the same virtual memory region in both
the CPU and the GPU address spaces and pins the corre-
sponding pages to prevent swapping. It eliminates the need
to copy inputs and outputs between CPU and GPU buffers
before and after inference, avoiding the memory copies typical
of systems without shared CPU-GPU memory. Furthermore,
when executing DNN chunks sequentially, the output of one
chunk must be passed as input to the next. To avoid the
overhead of copying data between separate buffers, the runtime
system allocates a single pair of buffers per task, alternating
their roles as input and output across chunks. Specifically, the
input and output memory bindings of the TensorRT engine
of each chunk are assigned to one of the two buffers in
the pair, following this alternation strategy. This approach
eliminates intermediate memory copies, rendering the memory
management overhead of DNN splitting negligible.

VI. SCHEDULABILITY ANALYSIS

The proposed framework is explicitly designed to produce
a timing behavior that is amenable to real-time analysis. This
section presents a schedulability analysis to derive worst-
case response times for inference activities within the GPU
scheduling framework, that is, the worst-case waiting time that
each task may experience when requesting DNN inference.

Extended model. When concurrent DNN inference is man-
aged according to the proposed approach, we extend the ap-
plication model in Sec. II to consider that the inference of the
DNN model DNN; requested by each task is realized with the
sequential inference of ¢; DNN chunks {7 1,7 2,..., i, }»
each corresponding to the inference of a separate TensorRT
engine. By Rules 1-5, execution on the scheduling framework
corresponds to limited-preemptive fixed-priority scheduling on
a single-core processor considering fixed preemption points for
each inference request, corresponding to the termination in-
stant of each chunk. The chunks of each task 7; are scheduled
on the framework according to the priority level 7;. Each DNN
chunk 7; ; is characterized by a WCET C; ;. To accurately
account for additional overheads, such as inference setup and
CPU-GPU communication, the WCET of each chunk should
be extracted by considering the total latency as observed from
the perspective of the CPU (e.g., by leveraging wall-clock
profiling on the CPU). The overall WCET C; of 7; on the
scheduling framework is computed as C; = >_7", Ci ;.

Response-time analysis. Under the fixed preemption points
(FPP) model for limited-preemptive scheduling [52], [53],
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each task 7; is split into ¢; non preemptive chunks (or
subjobs), obtained by considering ¢; — 1 preemption points
in the corresponding program code. When considering split
DNN inference, these preemption points correspond to the
completion of one DNN chunk and the start of the next
chunk. The response-time analysis for single-core FPP limited-
preemptive fixed-priority scheduling by Buttazzo et al. [52]
can be directly applied to derive a WCRT for each inference
request of the system. The analysis is as follows. For each task
blocking factor for each task is B; = max,,|js; {C]** — 1}.
Let 7; represent the task under analysis. The length I; of the
relevant busy period (specifically, the level-i active period) for
7; is given by the smallest positive fixed point of the following
recurrent relation:

1" = Bi+C;
1 = B, L §O
i = b+ Erh\hgz‘ Th h

A response time of 7; must be computed for each job 7; ;. of
I;

7; in the busy interval, i.e., for 7; 1 ... 7; k,, where K; = | 7+ |.
The start time s; j, of 7; 1, is given by the smallest positive fixed
point of the following recurrent relation:
0 i
S = Bi+ Ci = C 450 i
()

M

s

Si,k = Bl + k'cz - Cl!ast + Z‘rh|h<i (\‘%J + 1) Ch.
2

The finishing time f; of 7;, in the busy period is
fix = Sik + C’f”’“. The response time of 7; is R; =

maxy=1,.. k; { ik — (k—1)T;}. The task set is schedulable
if R; < D; for all 7; in 7.

The proposed optimization approach also leverages the
concept of blocking tolerance, which, for a given task 7;, is
denoted by 5; and is defined as the maximum amount of non-
preemptive blocking that 7; can tolerate without missing any
of its deadlines [52]. This value is useful in the optimization
to determine how to split the DNN models to obtain a
schedulable task set, which corresponds to the problem of
selecting the preemption points in a set of limited-preepmtive
tasks to achieve schedulability. To compute (3;, the blocking
tolerance [3; 1, of 7; j is first computed as:

t
Qﬂ + 1)ch ,
where

I e = ((k — 1)T;, (k — V)T; + D; — C*] n
{thfl, Vhe N, j < Z} U {(k — 1)Ti +D; — Clldst} )
“

Birx = max <t — kC; + C}aSt — E
’ tell;
Th|h>1

Then, the blocking tolerance of 7; is given by pJ;
ming=1,. .k, {Bir}
VII. OPTIMIZATION ALGORITHMS

This section describes the splitting algorithms adopted in
the design-time optimization phase.
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Fig. 3: Structure of the optimization module.

Figure 3 presents an overview of the proposed multi-stage
optimization procedure. The process begins with a preliminary
stage (D that builds and profiles @) the TensorRT engines
for the non-split versions of the DNN models requested by
the tasks in 7. The resulting WCETs, obtained by profiling
the configuration on the target platform (), are then used in
the schedulability analysis described in Sec. VI @. If the
analysis deems that the initial configuration is schedulable,
then it is returned as the design result, and DNN splitting
is not needed. Otherwise, an iterative optimization procedure
is triggered, where DNN models are progressively split into
smaller chunks until an optimal configuration is found that
ensures system schedulability while minimizing the overheads
due to split inference. In each iteration, further splitting (5) is
applied to DNN models that hinder schedulability by causing
excessive blocking on higher-priority tasks; then, the corre-
sponding TensorRT engines for the candidate configurations
are profiled on the target platform, and schedulability analysis
is applied again to determine whether the configuration meets
the timing constraints. Among multiple valid configurations,
the algorithm favors the one with the lowest total execution
time, based on the profiled WCETs.

In the following, we provide a detailed specification of
the proposed optimization algorithm and of the related DNN
splitting scheme, followed by a heuristic algorithm which mit-
igates the computational complexity of the optimal approach.
Additionally, we provide implementation details related to the
optimization module of our framework, which supports both
PyTorch and Caffe models.

DNN splitting. Splitting a DNN involves identifying a set of
candidate split points, each representing locations within the
model where it can be divided into sequential chunks (i.e.,
subsets of layers), such that the output of the network can
be reconstructed with sequential inference of the intermediate
chunks. A splitting configuration is obtained by activating
a subset of the candidate split points. In the framework,
split points of each DNN are automatically identified during
the preparation of the optimization phase by exploring the
graph structure of the DNN model, where nodes represent
layer execution and edges define the execution dependencies.
This graph is extracted in PyTorch using the FX analysis
and transformation toolkit, which is natively integrated as the
torch. fx module, or by parsing the .prototxt model
definition file in the case of Caffe, which explicitly encodes the
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neural architecture. Given the graph representation of a DNN,
candidate split points are identified by locating the set of nodes
that must execute sequentially according to the graph topology,
that is, nodes with which no other node can run in parallel. A
candidate split point can then be placed immediately before or
after each such node. Note that, although multiple tasks may
share the same DNN model, splitting is applied independently
for each task. Furthermore, a more fine-grained splitting
scheme could be achieved by analyzing the full computational
graph of the DNN, considering split points not only along its
main sequential structure but also across parallel branches,
accounting for nodes that can execute in parallel with other
nodes. However, this approach requires managing the DNN
graph topology and the implied data dependencies at runtime,
rather than simply executing a linear sequence of chunks.
To implement and automate DNN splitting, given a trained
model and a splitting configuration, the general approach is
to define smaller DNN modules corresponding to each chunk
of the original model, and then map the appropriate weights
to the layers within each chunk. The specific strategy depends
on the modeling framework used to define the DNNs?. Each
resulting chunk can then be treated as an independent DNN
and individually optimized into a TensorRT engine and stored
as a serialized engine file.

Notation. Consider a task 7; and the corresponding DNN
model utilized by that task. A splitting configuration S; ,, for
the task 7; is represented as S;, = [3211,52,27...732,%],
where n’ is the number of split points identified by the DNN
splitting algorithm for the DNN utilized by 7;, and each s;",’q
represents the state of the g¢-th split point in the DNN in the
configuration Siﬁp.. The state of each split ppint s;'), 4 can be
either active (if s;‘q = 1) or inactive (if s;q = 0). Given
a splitting configuration S; ;,, we consider the corresponding
chunked DNN model L; , = [I} 1,1, . .., l;ﬁéﬂ}, where 77
is the number of active split points in .S; ,,. L;;, is constructed
from S; , as follows. The first chunk includes the initial layers
up to the first active split point in S; . Then, an additional
chunk is added for every active split point in S; , after the
first. The last chunk includes the remaining layers starting
from the last active split point in S; ;,. In the algorithms below,
we consider a function CHUNKS(.S; ;,) to extract the chunked
model L; ; for S; ,. Then, the PROFILE(l;q)‘ function extracts
the WCETs obtained by profiling a chunk [, .

Profiling. The framework profiles the WCETs of the Ten-
sorRT engines of each chunk using an instrumented version
of the runtime inference system to measure wall-clock latency
from the perspective of the CPU via high-resolution monotonic
C++ timers, thus complying with the model assumptions in

3 With PyTorch models, each chunk is defined as a separate DNN module
(nn.Module) based on the graph extracted using the FX analyzer, then
weights are loaded from the trained non-chunked model (typically stored in a
.pth file) based on the layer-to-weight mapping integrated in the .pth file
as a state dictionary (state_dict). With Caffe models, the original DNN
definition, stored in a . prototxt file, is split into multiple chunk definitions,
each referencing and loading relevant weights from the .caffemodel file,
which contains the weights of the original DNN.
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Algorithm 1 Optimal approach.

1: 71 « task obtained without DNN splitting

2: 81 + BLOCKINGTOLERANCE(T])

3: forallie {2,...,n} do > Decreasing priority
4: B minjepp(r) {85} > Minimal blocking tolerance
5. forall I} € CHUNKS([L,...,1]) do > Full split
6: L if B < PROFILE (I}, ,) then

7: | return not schedulable

8: S; +{[0,...,0]} > Set with non-split config. only
9: S« {} > List of valid solutions
10: while S; is not empty do

11: S, p < extract the first element in S;

12: L, < CHUNKS(S; ;)

13: Cip < {PROFILE (I} ) | I} , € Lip}

14: if B < maxei ec,, (:;‘W} then > Split more
15: . 8i + S; U ADDSPLITPOINTS (S; )

16: else > Valid solution
17: L Pip <2t ec., a > WCET of L,
18: Append S; ;, to Sf

19: r < argming, ,es+ {P;p} > Select the best solution
20: 7 < TASK(L; 1, C; 1) > Task with S; , splitting
21: | f; < BLOCKINGTOLERANCE(T;)
22: return [7q, 7o, ..., Ty

Sec. VI. As the same chunk may appear in multiple splitting
configurations explored in the optimization, the implemented
framework employs a profiling cache to avoid redundant profil-
ing. This significantly reduces the runtime of the optimization
by ensuring that each unique chunk is profiled at most once.

Optimal approach. Algorithm 1 describes the optimal DNN
splitting approach employed in the proposed framework. The
algorithm takes as input a task set 7 that has already been
verified as unschedulable during the preliminary stage of the
optimization. It then identifies a schedulable splitting config-
uration for the DNNs that minimizes the splitting overhead
added to the inference times of each DNN by considering
the overall WCETs of the chunked DNNs. The splitting
configuration determined through the optimization approach
specifies the chunks into which the DNN model DNN; of
each task 7; has to be split.

To avoid exhaustively exploring all the possible splitting
configurations for the tasks in 7, the algorithm leverages the
assumption that, by activating additional split points in a DNN
model, the sum of the WCETs of the chunks composing the
DNN does not decrease. Thus, the algorithm operates starting
from zero active split points and only activates additional split
points if the current splitting configuration hinders schedulabil-
ity. This assumption was tested with quantitative assessments
involving TensorRT engines based on different DNN models,
implemented in both split and non-split form, and is reason-
ably expected to hold in the majority of practical use cases
(see Sec. VIII for supporting results). However, even if the
assumption is found to not hold for a DNN model which is
part of the target application 7, we highlight that the algorithm
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still produces a schedulable splitting configuration, provided
that one exists, although that solution might be suboptimal
in terms of splitting overheads. Note that optimality in this
context is defined with respect to the set of candidate split
points. If this set includes all possible split points, as defined
by the sequential chunk inference model, and the assumption
holds, then the algorithm finds the absolute optimum.

In the procedure, the highest-priority task 7; is never split,
since it does not generate any blocking time (Line 1). The
optimization process then explores each task 7; in 7 in decreas-
ing priority order (Line 3) to determine an optimal splitting
configuration for 7; that guarantees that the blocking tolerance
of all tasks with higher priority than 7; is satisfied. For a given
task 7;, the algorithm first computes the minimal blocking
tolerance B that is admitted by the higher-priority tasks in
7, denoted by hp(7;) (Line 4). Then, the algorithm checks
whether activating all the split points of DNN; would result
in a configuration that satisfies the minimal blocking tolerance
(Lines 5-7). In fact, under the assumption that every added
split point reduces the maximum WCET among the chunks
of a DNN, the fully split configuration generates the shortest
chunks in terms of WCETSs. As a result, if the fully split con-
figuration does not guarantee schedulability, then the algorithm
returns a failure, since it is not possible for the algorithm to
determine a schedulable configuration (Line 7). Conversely,
if the fully split condition guarantees schedulability, then the
optimization proceeds by exploring each configuration S; ,
in the set S; of candidate splitting configurations (Line 10),
which initially only contains the non-split configuration of
DNN; (Line 8), with the objective of deriving a set S} of
configurations that satisfy the blocking tolerance (Line 9). In
each iteration, a configuration S;, is removed from the set
S; (Line 11), profiled (Line 13), and evaluated (Line 14).
The evaluation involves verifying whether the largest WCET
among those correspoding to the chunks in L; , exceeds the
minimal blocking tolerance B allowed by the higher-priority
tasks (Line 4). If the minimal blocking tolerance is exceeded
by that chunk, then a set of new candidate solutions is created
by activating an additional split point in .S; , among those
that are not already active, and these candidates are added
to S; (Line 15). In Line 15, the ADDSPLITPOINTS function
generates all the possible configurations obtained by activating
one more split point in addition to those that are already active
in S; . Conversely, if the minimal blocking tolerance is not
exceeded, then S; , represents a valid splitting configuration
for 7; and is thus appended to the set S (Line 18).

Once all the candidate solutions have been explored (i.e.,
S; is empty), the configuration that generates the minimum
overall WCET in the inference is selected from S} (Lines 19-
20). Then, the blocking tolerance /3; of 7; is calculated with
the method in Sec. VI before proceeding with the optimization
of the lower-priority tasks (Line 21). Finally, when all tasks
in 7 have been optimized, the algorithm returns the optimal
configurations selected for each task (Line 22). Note that
the blocking tolerance (3; for a task 7; only depends on the
scheduling parameters of 7; and of higher-priority tasks; thus,
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Algorithm 2 Greedy splitting heuristic.

1: 11 < task obtained without DNN splitting

2: 1 + BLOCKINGTOLERANCE(T])

3: forallie {2,...,n} do > Decreasing priority
4: B« minjepy(r,) {8} > Minimal blocking tolerance
5 for all [}, , € CHUNKS([L,...,1]) do > Full split
6 L if B < PROFILE (I}, ,) then

7 L return not schedulable

8 Sl<—[0,,0}

9 L; < CHUNKS(S;) > Start with no splits
10: Ci < {PrOFILE (I{) | I} € L;}

11: while B < maXiec, {cfl} do > Split more
12: S; < ADDSPLITPOINTS (S;)

13: for all S;, € S; do

14: L;p < CHUNKS(S; )

15: L Cip < {PROFILE (I ) | I} /€ Lip}

16: T ¢ argming,; s, maxgi ec;, {c;w}

17: (Sl, LZCZ) — (Si,m Li,T,Ci,T) > Best solution
18: 7; + TASK(L;,C;) > Task with S; splitting
19:  f; < BLOCKINGTOLERANCE(T;)
20: return [1y, 7o, ..., Ty)

it is not necessary to recompute the blocking tolerances of all
tasks at every iteration of the loop in Line 3.

In the worst case, the algorithm needs to explore all the
possible splitting configurations for each task 7; (except 7),
which are given by selecting all possible combinations of the

values of each state s;q in S; . This amounts to a total of

27 configurations for each task 7;. One way to limit the
complexity of the optimal approach and avoid combinatorial
explosion is to reduce the maximum number of splitting
configurations explored by the algorithm by selecting a subset
of split points with a heuristic policy and removing them from
the set of valid split points on which the algorithm can act.
This heuristic approach can significantly reduce the number
of configurations to test, but may also prevent the discovery
of schedulable or optimal configurations in some cases.

Greedy heuristic. We now describe a greedy heuristic ap-
proach for the splitting which avoids the potential combinato-
rial explosion of the optimal approach. The main difference is
that, for each task 7;, instead of considering a set of candidate
solutions, only one candidate configuration is selected for
7; and refined in each iteration of the internal loop of the
algorithm, while the other candidates are discarded. The first
part of the modified algorithm (Algorithm 2) is unchanged
(Lines 1-7). For each task 7;, the algorithm first evaluates the
non-split configuration (Line 9), which is profiled (Line 10)
to verify whether it satisfies the minimal blocking tolerance B
(Line 11). If the blocking tolerance is not satisfied, then the
algorithm iterates by activating additional split points in the
DNN until it is satisfied (Lines 11-17). At each iteration, a set
S; of candidate configurations is created from the current con-
figuration S;, by leveraging the ADDSPLITPOINTS function.
Each element of this candidate set is profiled (Lines 13-15);
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TABLE II: Number of split points (SPs) identified by the
framework and considered in the experiments.

AlexNet | InceptionV4 | ResNetl8 | VGGI19
Total SPs 10 23 11 21
Considered SPs 10 6 11 5

then, the best configuration among those in S; is selected as the
next value for S;, whereas the other candidates are discarded.
The best configuration is selected as the one that guarantees the
minimum amount of blocking time for higher-priority tasks,
i.e., the one whose maximum chunk WCET is the smallest
(Lines 16-17). Once a solution that satisfies the minimal
blocking tolerance B is found (Line 11), the configuration
for 7; is fixed to the current candidate S;, then its blocking
tolerance is computed (Lines 18-19). The algorithm returns
the splitting configurations selected for each task (Line 20).

With this approach, the worst-case number of tested config-
urations for each task 7; is bounded by (n§)2, at the cost of
selecting a potentially suboptimal configuration.

VIII. EXPERIMENTAL RESULTS

This section presents experimental results comparing the
schedulability of the proposed framework with the baseline
approach on different Jetson platforms, also reporting runtimes
of the design phases, memory usage, and latency overheads.

A. Experimental setup

The evaluation was performed on the three reference Jetson
platforms: TX2, AGX Xavier, and AGX orin, all config-
ured to operate in maximum performance mode. The of-
fline design toolset was implemented in mixed Python and
C++, while the runtime system was implemented in C++.
We considered a set of pre-trained Caffe DNN models by
Nvidia [43]: VGGI19 [44], AlexNet [45], ResNetl8 [46],
and InceptionV4 [47]. For the schedulability evaluation, we
considered a set of real-time tasks, each performing inference
using one of these models. The framework identified a large
number of split points for these models. To limit the runtime
of the optimal approach and enable a large-scale evaluation,
we statically disabled a subset of split points for InceptionV4
and VGG19, retaining only those located at the boundaries
between major architectural blocks (see Table II).

Table IIT presents the input size (in KB) for each DNN and
the output sizes (in KB) of the layers corresponding to the split
points considered in the experiments. These sizes were used to
configure the buffers used at runtime for inference. Overall, the
maximum buffer size for each considered DNN remains within
the order of tens of kilobytes, indicating no significant increase
in buffer size requirements with the proposed method. Table IV
reports the profiled WCETs of each chunk of the DNN models
in the fully split configuration, their sum, and the profiled
execution time of the non-split DNNs. These results show that
the sum of the WCETS of the fully split configuration is greater
than the WCET of the non-split configuration for every DNN
model, supporting the assumption in Sec. VIIL.
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TABLE III: Input size (KB) of each DNN and output size (KB) of each chunk in the fully split configuration (I;). The
maximum size for each DNN is in bold. Sizes are computed assuming floating point values for the inputs/outputs of the layers.

DNN model Input lo l1 l2 13 l4 l5 l6 l7 lg lg llO 111
Alexnet 603.855 1134.375 | 1134.375 | 273.375 729.0 729.0 169.0 | 2535 | 253.5 | 169.0 | 36.0 | 3.906 -
InceptionV4 | 1047.668 | 2775.125 | 3330.625 1837.5 1156.0 | 1156.0 | 384.0 | 3.906 - - - - -
ResNet18 588.0 3136.0 784.0 784.0 784.0 392.0 392.0 | 196.0 | 196.0 98.0 98.0 2.0 3.906
VGG19 588.0 12544.0 6272.0 3136.0 1568.0 | 392.0 | 3.906 - - - - - -

TABLE IV: Profiled execution times on the Nvidia Jetson AGX Orin of each chunk in the fully split configuration (lj), their
sum (Sum), and profiled execution times of each non-split DNN model (Non-split). Times are in milliseconds.

DNN model lo l1 l2 l3 l4 l5 l6 l7 lg lg l10 l1 1 Sum NOn-Split
Alexnet 0.182 | 0.135 | 0.085 | 0.216 | 0.288 | 0.077 | 0.137 | 0.192 | 0.161 | 0.037 | 3.292 - 4.802 4.469
InceptionV4 | 0.163 | 0.904 | 1.205 | 2.088 | 2.193 | 1.777 | 0.799 - - - - - 9.129 8.67
ResNet18 0.151 | 0.047 | 0.318 | 0.195 | 0.131 2.08 0.13 0.125 | 0.153 0.27 0.049 | 0.101 3.751 2.533
VGG19 0.168 | 1.203 | 0.714 | 1.122 | 0.976 | 7.243 - - - - - - 11.425 6.615

To evaluate real-time performance, we analyze schedulabil-
ity under various system configurations using both the baseline
approach and the proposed framework, considering optimal
and heuristic splitting strategies. Applications are generated
using a custom workload generation algorithm that creates
applications with a fixed number of tasks, each periodically
performing inference of a single DNN model, uniformly
selected from the models listed above and fixed for the
duration of the experiment. With this approach, the experi-
ments validate a variety of task sets with different periods
and different overall GPU workload. The WCET C; of the
inference request of a task 7; is set to the profiled execution
time of the corresponding DNN model in its non-split form.
We consider an utilization metric capturing the amount of
requested scheduling time on the framework by each task 7;,
computed as U; = C;/T;. The total utilization is computed as
U = Zﬂ cr U;. In the experiments, the total utilization U is
varied from 0.6 to 0.9 in increments of 0.1. For each utilization
point, we generate 50 task sets, where the utilization U; of each
task is generated with the UUniFast algorithm [54], such that
U= Zrler U;, with D; = T; and DM priority assignment.

We evaluate the following approaches. Optimal: proposed
framework with optimal splitting. Heuristic: proposed frame-
work with heuristic splitting. Baseline: baseline approach
without stream priority assignment, i.e., where the CUDA
streams of all tasks share the same stream priority. Baseline
SP: baseline approach with stream priority assignment. In
Baseline SP, each task was assigned a separate stream priority
in descending order of the task priority, until the maximum
number of available stream priorities was reached. The re-
maining lower-priority tasks were assigned the same stream
priority. For the proposed methods (Optimal and Heuristic),
we report the schedulability metric for each utilization point,
defined as the percentage of task sets deemed schedulable
by the response-time analysis following the optimization in
Sec. VII. Split configurations were profiled on the Jetson
platforms whenever required by Algorithms 1 and 2 using CPU
wall-clock profiling, using caching to avoid redundant profiling
within each optimization (see Sec. VII). In order to ensure
practical schedulability of the optimized task sets on the Jetson

platforms, the theoretical schedulability results were further
validated by running each optimized schedulable application
on the implemented runtime system for 10 hyperperiods and
ensuring that no deadline misses occurred. Since a schedulabil-
ity analysis is not available for the baseline methods (Baseline
and Baseline SP), we considered an application schedulable
if no deadline misses were observed when running the appli-
cation for 10 hyperperiods under the corresponding strategy
on the Jetson platforms, and non-schedulable otherwise.

B. Experimental results

Figure 4 reports the schedulability obtained when varying
the GPU workload U from 0.6 to 0.9 and when consid-
ering different combinations of number of tasks per task
set and computing platforms (as reported above each plot).
Figures 4(a) and 4(b) report the schedulability obtained with
applications composed of 3 and 4 DNN tasks, respectively,
on the Jetson TX2. As expected, schedulability decreases
with higher utilization for all methods. Both the optimal and
heuristic methods outperform the baseline scheduler by a
significant margin, even when multiple stream priorities are
considered. Furthermore, the heuristic achieves a schedula-
bility performance that is very close or equal to that of the
optimal approach, while avoiding the worst-case combinatorial
explosion that can occur with the optimal strategy. Figures 4(c)
and 4(d) report the schedulability for 6 and 8 tasks, respec-
tively, on the Jetson AGX Xavier. The overall trend is similar
to the previous results, with an even larger performance gap
between the baseline and the proposed approach, arguably due
to the increased complexity of the task sets to be scheduled.
Finally, Figures 4(e) and 4(f) report the schedulability for 8
and 12 DNN tasks, respectively, on the Jetson AGX Orin.
Thanks to the increased computational power of the computing
platform, all methods show improved schedulability. Notably,
the proposed methods achieve up to 96% schedulability even
with 12 tasks and U = 0.9, whereas, under the same configu-
ration, the baseline techniques reach only 10% schedulability.

Figure 5 reports the average design phase runtimes for both
the optimal and heuristic strategies, considering 8 tasks per
task set on the Jetson AGX Orin (same configuration as in
Figure 4(e)). These results show that average runtimes re-
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Fig. 5: Comparison of average design phase runtimes for the

optimal and the heuristic methods on the AGX Orin (8 tasks).

TABLE V: Average memory usage of the runtime scheduling
system (in GB and percentage) across different configurations.

Experiment Baseline Baseline SP Optimal Heuristic
GB % GB % GB % GB %
TX2, 3 tasks 222 2891223 29.1 |232 303|223 29.1
TX2, 4 tasks 3.08 402 | 3.02 395 | 293 382|306 399
Xavier, 6 tasks | 2.78 9.2 | 275 9.1 | 281 92 279 92
Xavier, 8 tasks | 433 143 | 430 142 | 436 144 | 433 143
Orin, 8 tasks 373 125|393 132 | 4.02 135|391 131
Orin, 12 tasks | 492 165|493 165 | 5.00 16.7 | 495 16.6

main within reasonable bounds. Notably, the heuristic strategy
reduces average runtimes by up to 38% compared to the
optimal approach. When profiling times are excluded (i.e.,
using pre-optimized TensorRT engines and pre-profiled chunk
runtimes), average optimization times drop to 12 and 4 s for
the optimal and heuristic strategies, respectively, across all
utilization levels.

Table V reports the average memory usage of each schedul-
ing system on the Jetson platforms, computed over the task
sets used in each experiment in Figure 4. Given that Jetson
platforms feature a unified CPU-GPU memory, reported values
reflect the total shared memory usage. Results show minimal
variation from the baseline (—1% to +2%), indicating neg-
ligible memory overhead. Memory usage remains moderate
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to the GPU with the proposed framework was measured
as 13pus, 9ps, and 8ps on the Jetson TX2, AGX Xavier,
and AGX Orin, respectively. This overhead was calculated
as the difference between CPU-observed wall-clock latency
(measured via high-resolution C++ timers) and the time taken
by the GPU to complete the inference (measured via CUDA
event-based timing). These overheads remain low, possibly due
to the fact that at most one chunk is dispatched to the GPU at
a time, which reduces contention and ensures stable synchro-
nization costs. These overheads are fully accounted for in the
WCETs obtained in the optimization phase, which also capture
all relevant delays, including CPU-GPU synchronization and
shared resource management.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented a framework for multitasking DNN
workloads on GPU-based SoCs, based on TensorRT. The
framework leverages DNN splitting to attain finer control of
GPU scheduling, whereas the runtime system works around
the limitations of concurrent TensorRT inference by request-
ing the inference of at most one chunk at a time to en-
force a priority-based policy and enable limited-preemptive
response-time analysis. Experimental results on Jetson plat-
forms showed large gains in schedulability over the baseline
approach based on concurrent inference on multiple CUDA
streams. Future work includes extending the timing analysis
to account for preprocessing and postprocessing overheads on
the CPU by leveraging self-suspending task models [55]-[57]
and investigating the application of the proposed strategy to
other DNN inference frameworks and in FPGA-based SoCs.
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