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Abstract—In recent years, interest in automatic train opera-
tions has significantly increased. To enable advanced functional-
ities, robust vision-based algorithms are essential for perceiving
and understanding the surrounding environment. However, the
railway sector suffers from a lack of publicly available real-
world annotated datasets, making it challenging to test and
validate new perception solutions in this domain. To address this
gap, we introduce SynDRA-BBox, a synthetic dataset designed
to support object detection and other vision-based tasks in
realistic railway scenarios. To the best of our knowledge, is
the first synthetic dataset specifically tailored for 2D and 3D
object detection in the railway domain, the dataset is publicly
available at https://syndra.retis.santannapisa.it. In the presented
evaluation, a state-of-the-art semi-supervised domain adaptation
method, originally developed for automotive perception, is
adapted to the railway context, enabling the transferability
of synthetic data to 3D object detection. Experimental results
demonstrate promising performance, highlighting the effective-
ness of synthetic datasets and domain adaptation techniques in
advancing perception capabilities for railway environments.

Index Terms—Synthetic Dataset, 3D object detection, Domain
Adaptation, Railway Environments

I. INTRODUCTION

In recent years, the railway industry has increasingly
invested in research efforts to achieve higher levels of au-
tomation. According to the IEC 62267 standard [1], the
Grade of Automation (GoA) defines the degree to which
train operations are automated, ranging from GoAO, where
all functions are manually performed by the driver, to GoA4,
which represents a fully autonomous operation. While most
railway systems in Europe currently operate up to GoAZ2,
moving to GoA3 or GoA4 requires the integration of robust
and accurate perception systems that comply with strict safety
and reliability requirements of railway standards. Vision-
based tasks such as semantic segmentation and 2D/3D object
detection are essential to build such perception capabili-
ties (Figure 1 illustrates a synthetic point cloud from the
SynDRA-BBox dataset, showcasing 3D bounding box anno-
tations for different object classes.). Unlike the automotive
domain, gathering labeled multi-sensor data in the railway
sector is challenging, due to safety and data protection
regulations, as well as the high cost and time demands
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associated with data acquisition and manual labeling. As a
result, the railway domain lacks publicly available labeled
datasets to train, validate, and benchmark new perception
algorithms in this field.
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Fig. 1: Synthetic point cloud sample from SynDRA-BBox.
Points are colored in grey-scale based on their Z-values,
while relevant object targets are colored according to their
semantic class colors and enclosed within their corresponding
3D bounding boxes.

This data scarcity significantly slows down the develop-
ment and advancement of research in railway automation.
To overcome these limitations and integrate well-performing
perception methods in a railway setting, simulations and do-
main adaptation techniques introduce promising solutions. In
the automotive field, simulators are widely used to generate
annotated datasets, including rare and dangerous corner case
scenarios [2], [3]. Moreover, domain adaptation methods have
proven effective in transferring models trained on synthetic
data to real-world applications [4]. These techniques can
similarly be used to support the railway sector, both by
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Fig. 2: Samples from SynDRA-BBox showing a semantically segmented image on the left, which includes the proper legend
for the classes, and an RGB image with relevant 2D bounding boxes on the right; both come from the same scene as the
point cloud in Fig. 1 and use the same semantic color mapping.

adapting models trained on synthetic data to real railway
environments and by transferring knowledge from automotive
datasets to railway-specific scenarios.

In contrast to the automotive and robotics sectors, where
tools like CARLA [2], AirSim [5], or NVIDIA Drive Sim [3]
are commonly used to generate synthetic data, the railway
domain has far fewer options [6]-[8]. Among the few recent
efforts, Iglesias et al. [9] present a CARLA-based approach
for generating synthetic railway data, however, since the work
is still under review, it cannot be used to test the proposed
methods.

Even though domain adaptation methods can help
bridge the gap between domains (both in sim-to-real and
automotive-to-railway scenarios) the following challenges
remain:

1) The sim-to-real domain shift often limits the direct
transferability of models trained on synthetic data to
real-world environments, since simulations usually in-
troduce perfect” data, when in the real-world data
noise is commonplace.

2) While automotive datasets typically focus on dense, ur-
ban settings, railway environments are often open-field,
sparse, and operate on different spatial and semantic
scales, further complicating adaptation.

Given the synthetic data and domain adaptation challenges,
the contribution of this paper is threefold:

1) We introduce SynDRA-BBox, an extension of the
synthetic dataset SynDRA [10], which includes cam-
era, depth and LiDAR data, along with multiple an-
notations, to support the evaluation of vision-based
algorithms in railway environments. To the best of
our knowledge, SynDRA-BBox is the first publicly
available synthetic dataset that supports both 2D and
3D object detection and semantic segmentation tasks
in this domain. Figure 2 presents an example RGB im-
age alongside its corresponding semantic segmentation,
both captured from a virtual environment generated

within the SynDRA-BBox framework.

2) We apply and adapt a state-of-the-art semi-supervised
domain adaptation approach for 3D point clouds
(SSDA3D) to evaluate both the transferability of mod-
els trained on SynDRA-BBox to real railway data and
the impact of incorporating automotive data (Waymo)
for cross-domain adaptation.

3) We provide an analytical evaluation of how synthetic
railway data, real-world automotive data, and their
combination influence domain adaptation performance
when transferring to a real-world railway dataset (OS-
DaR23). Moreover the original SSDA3D focused only
on the car class, but we report results also for pedestrian
detection since that is the most vulnerable traffic actor.

The rest of the paper is organized as follows: Section II
presents the related work in this field; Section III intro-
duces the SynDRA-BBox dataset; Section IV describes our
optimized SSDA3D domain adaptation method; Section V
presents the experiments carried out to evaluate the proposed
domain adaptation framework across various training setups;
and Section VI states the conclusions and future work.

II. RELATED WORKS

This section reviews existing open datasets for automotive
and railway domain, focusing on those containing labels in
the form of 3D bounding boxes. It then introduces domain
adaptation, in particular describes a specific method like
SSDA3D which enables the transfer of 3D object detection
models across different domains and environments.

A. Vision-based Datasets

The automotive field has seen the release of several public
large-scale datasets that support vision based tasks such
as 2D/3D object detection task using cameras and LiDAR
sensors. Among them, KITTI [11], SemanticKITTI [12],
nuScenes [13], and the Waymo Open Dataset [14] stand out
for their completeness, dense annotations, and rich sensor
configurations. In particular, Waymo provides high-resolution



camera and LiDAR data with accurate 3D bounding boxes
annotations for vehicles, pedestrian, and cyclists. Due to its
quality, scale, and widespread use as a benchmark for 3D
perception tasks and domain adaptation techniques, it is used
as real-world source domain in the comparison with the
proposed synthetic data.

By contrast, publicly available datasets are limited in
the railway domain, especially those offering annotated 3D
point clouds or 3D bounding boxes. For instace, datasets
such as RailGoerl24 [15] RailSem19 [16], RailDet [17], and
RailSet [18] provide valuable resources for 2D vision tasks,
but lack the 3D annotations required for object detection
algorithms.

Given the difficulty and cost of collecting real-world
railway data, synthetic datasets have emerged also in this
field as a promising alternative. For example, de Gordoa et
al. [7] extended the CARLA simulator [2] to generate syn-
thetic railway images under diverse operational conditions,
while D’Amico et al. [6] introduced TrainSim, a simulation
framework based on Unreal Engine 4 capable of producing
images and point clouds for different vision-based tasks, but
not providing 2D or 3D bounding box annotations. Other
simulation-driven datasets, such as RAWPED [8], RailEnV-
PASMVS [19], and SARD [20], target specific application
like 2D object detection, geometry reconstruction, or railway
signal classification, but do not provide annotated bounding
boxes for point cloud-based object detection. Finally, to the
best of our knowledge, OSDaR23 [21] is the most complete
public 3D object detection dataset for real-world railway
applications including multi-sensor dataset. It includes 45
sequences comprising synchronized data from nine RGB
cameras, one radar, and six LiDAR sensors, with annotations
such as 3D bounding boxes and rail polylines, although a
significant number of sequences are recorded while the train
is stationary, reducing temporal diversity.

B. Domain Adaptation for 3D Object Detection

Domain adaptation in 3D object detection refers to tech-
niques that enable models trained on one data distribution
(source domain) to generalize effectively on data having a
different but related distribution (target domain).

Among semi-supervised domain adaptation methods for
3D object detection, SSDA3D [4] stands out by effectively
leveraging both labeled and unlabeled target data alongside
fully labeled source data. It addresses the challenges posed
by large domain shifts between datasets, such as sensor
differences and scene variability, through a novel two-stage
training strategy.

The first stage, Inter-domain Point-CutMix, performs do-
main alignment by cutting and pasting spatially coherent
regions between source and target point clouds. This en-
courages learning of domain-invariant representations by
exposing the model to hybrid samples that contain mixed
domain characteristics, thus making the detector more robust
and reducing distribution discrepancies in 3D feature space.

The second stage, Intra-domain Point-MixUp, regularizes
training on unlabeled target data by mixing pairs of actual

target samples and pseudo-labels. This interpolation promotes
consistent model predictions on unseen samples and mitigates
the impact of pseudo-label noise. As a result, SSDA3D
surpasses the fully supervised oracle - i.e. the model trained
solely on the whole target dataset - using only a small
fraction of target labels, as proved in Waymo-to-nuScenes [4]
adaptation.

In summary, we chose OSDaR23 due to its comprehensive
coverage and its status as one of the few publicly available
railway datasets. We selected and optimized SSDA3D be-
cause of its demonstrated effectiveness in domain adaptation
scenarios. Furthermore, we introduced SynDRA-BBox to
address the lack of versatile, railway-focused datasets and
to advance research in this underexplored domain.

ITII. SYNDRA-BBOX

SynDRA [10] is a synthetic dataset for railway applications
based on Unreal Engine 5, designed to support seman-
tic image segmentation under different light and weather
conditions. The proposed SynDRA-BBox dataset extends
SynDRA by introducing annotations specifically designed for
2D and 3D object detection in railway environments. The rest
of this section describes the main features of the dataset.

A. Virtual Environments

SynDRA-BBox comprises seven distinct level crossing
scenarios. For each scenario, we collected multiple image
sequences, each focusing on a specific relevant object type
(e.g., vehicle, pedestrian, or natural obstacle) crossing or oc-
cupying the rails for detection, while other static or dynamic
elements are present in the scene. Additionally, we created a
bonus scenario in a large railway station environment, where
only pedestrians cross the tracks. Figure 3 depicts one of
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Fig. 3: Example scenarios from SynDRA-BBox. The left
image shows an open-field scene near a level crossing with
moving objects such as vehicles and pedestrians. The right
image presents a sample from the bonus scenario, depicting
a detailed railway station environment.

the seven virtual environments alongside the bonus railway
station scenario included in SynDRA-BBox.

In each sequence, the train starts approximately 350 meters
from the level crossing. This setup enables the simulation of
a range of realistic hazardous situations, with one primary
obstacle type highlighted per sequence, allowing for focused
and selective evaluation of the 3D perception system under
test. The obstacles include:

o Vehicles: three sequences featuring a truck, a car, and a

bus crossing the railway at different times and distances
from the approaching train.



e Pedestrians: one sequence with two pedestrians crossing
the tracks in opposite directions (left-to-right and right-
to-left), and another sequence with two pedestrians
walking parallel to the tracks, one moving in the same
direction as the train, the other in the opposite.

e Natural obstacles: three sequences containing a fallen
tree with leaves, bare branches, and rocks obstructing
either the main or adjacent track.

This per-sequence obstacle configuration was designed to
replicate realistic, safety-critical scenarios commonly en-
countered in rail transport. It ensures a diverse and controlled
dataset structure, facilitating systematic and reproducible
evaluation of perception models under varied but representa-
tive conditions.

B. Sensor Configuration

SynDRA-BBox provides high-resolution RGB images and
synthetic LiDAR point clouds, along with detailed annota-
tions for both semantic segmentation and bounding boxes in
both the image and point cloud domains.

To support diverse research needs, each scene is rendered
with two different camera field-of-view (FoV) settings, 30°
and 90° for narrow and wide perspectives, while maintaining
the same image resolution of 2464 x 1600. Similarly, both
TELE-15 ! and 64-beam Velodyne HDL-64E 2 point clouds
are provided to allow evaluation across different LiDAR
configurations.

C. 2D/3D Box Annotation Pipeline

The annotation pipeline for SynDRA-BBox extends the
original SynDRA dataset by providing accurate 2D and 3D
bounding boxes for key object classes in railway scenarios.
While the generation of semantic segmentation labels and the
name convention of sensory data has been fully described
in the original SynDRA paper, SynDRA-BBox follows the
same labeling policy for point cloud segmentation, ensuring
consistency in class definitions and annotation format. The
class taxonomy is further refined for object detection tasks:
generic vehicle classes are split into car, bus, and truck, and
new obstacle categories such as fallen_tree and fallen_rock
are introduced to represent natural hazards commonly found
in rail environments.

D. 3D bounding boxes

3D bounding boxes are directly obtained from the UES’s
internal functions and are assigned to all objects belonging
to detection-relevant classes (e.g., cars, trucks, pedestrians),
independently of the number of LiDAR returns they generate.
Although this choice may introduce cases where annotated
objects are sparse or not visible at all in the point cloud, it
enables a realistic evaluation of the selected LiDAR config-
uration in terms of both coverage and detection reliability.

The SynDRA-BBox dataset is publicly available for re-
search purposes. It can be accessed and downloaded from the

Thttps://www.livoxtech.com/tele-15
Zhttps://www.mapix.com/wp-content/uploads/2018/07/63-9194_Rev-
J_HDL-64E_S3_Spec-Sheet-Web.pdf

official project website®, where further information on 2D/3D
annotations and other sensor configurations can be found.
In addition to the original SynDRA dataset, the website
includes all SynDRA-BBox acquisition sequences, RGB and
depth images, LiDAR point clouds, and corresponding 2D/3D
annotations in JSON format. A comprehensive documenta-
tion is also provided to assist the user with dataset usage,
along with scripts for parsing and visualization purposes.
Researchers are encouraged to cite this work when using
SynDRA-BBox in their experiments.

IV. OPTIMIZING SSDA3D FOR RAILWAY SCENES

As discussed in the previous sections, this work is based
on SSDA3D. The core of this domain adaptation pipeline lies
in the CutMix and the PointMixUp modules, as well as its
ability to outperform oracle models. Note that SSDA3D was
originally designed to handle data distribution shifts between
real-world automotive datasets (e.g., Waymo to nuScenes),
while here we address two other types of shifts: (a) road-
to-rail, meaning real automotive to real railway data, and (b)
sim-to-real, meaning synthetic to real railway data. To reduce
the impact of such shifts during the training of a SSDA3D-
based pipeline, several adjustments were made.

First, we focus on long-range detection, as it’s critical for
long train braking distances. Therefore, we use the TELE-
15 point clouds from SynDRA-BBox and filter OSDaR23 to
retain only the points of the TELE-15 sensor in the middle,
removing data from other LiDARs to ensure alignment.

Second, in the original SSDA3D the CutMix operation is
done by taking some region of a point cloud from the target
dataset and pasting it into a point cloud from the source
dataset. Perhaps the cut-paste order between the source and
target datasets does not matter much, as both are from the
common automotive sector, meaning the background points
resemble a road-like environment regardless of which dataset
takes the role of source or target. However, in our work
the opposite was done: a region from the source was pasted
into the target, since Waymo as the source domain lacks the
same structural and spatial layout observed in the OSDaR23
railway setting. In this way, after CutMix the resulting point
clouds still retains the characteristic railway surroundings
shape as the main desired region of interest.

Third, we are dealing with very different FOVs between
the source Waymo (360°) and target OSDaR23 (15°). The
narrow field of view of the TELE-15 sensor leads to point
clouds with a sparse and elongated frustum, resulting in a
detection range that has a rectangular shape in BEV with
large empty space. In the original CutMix, the cropped
source points are pasted into the target at the exact same
location with equal coordinates, which may lead to unrealistic
placements due to differing occupied areas between source
and target point clouds. Our modified approach mitigates this
by computing a horizontal translation vector from the source
crop center to the nearest target point. Before pasting, the
source points are shifted by this vector, aligning the source
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crop with the target’s corresponding location. This process
ensures the source cut region is embedded realistically within
the target point cloud.

Fourth, the original CutMix strategy is pure random and
does not guarantee that the cut region contains at least
one object label. This is acceptable for large datasets, but
problematic for small ones like OSDaR23, where underrep-
resented classes (e.g., cars) make every example valuable.
For this reason, a check step was introduced in the proposed
CutMix pipeline: before cutting any region from the source
cloud, we verify whether the region contains at least one
ground-truth box. Figure 4 illustrates the effect of our custom
CutMix operation.

(b) CutMix hybrid point cloud

Fig. 4: Waymo (orange) and OSDaR23 (green) point clouds
before (a) and after (b) the CutMix operation. In (b) only a
small cut region from the source Waymo frame was pasted
into the target OSDaR23 frame. Boxes in blue are pedestrian
labels. Best viewed zoomed in.

Fifth, although SSDA3D was originally designed to op-
erate with a single source dataset, this work investigated
the use of multiple sources, combining large-scale real-
world automotive data with synthetic railway data to im-
prove generalization when training on the OSDaR23 target
domain, which is a rather small dataset that contains a
limited number of annotated point clouds with very low
variability. While training SSDA3D on a single large source
dataset such as Waymo already outperforms a detector
like CenterPoint [22] trained on the target domain alone,
combining datasets offers additional benefits. The Waymo
dataset contains large amounts of diverse, annotated labels
for objects, while SynDRA-BBox brings structural similarity
to the target railway domain. A naive implementation would
apply CutMix with a 0.5 probability of selecting a region

from either source dataset. However, this approach can be
problematic when one dataset is significantly smaller than the
other. Repeated sampling from the smaller dataset may lead
to redundancy and under-utilization of the larger dataset. To
address this problem, a size-aware CutMix sampling strategy
is proposed, where the probability of selecting a dataset
during CutMix is proportional to its size. This allows the
model to benefit from the volume of the larger real dataset
while still incorporating samples from the smaller domain-
specific synthetic source.

V. EXPERIMENTS

This section presents the experimental setup, including
dataset configurations, evaluation metrics, implementation
details, and performance comparisons.

A. Datasets

The target domain is OSDaR23, a real-world public rail-
way dataset, while the synthetic source is SynDRA-BBox,
which offers critical railway scenarios. We also use the
Waymo Open Dataset (WOD), an automotive dataset. The
motivation for adding a cross-domain dataset is its volume
and diversity, helping mitigate the scarcity of real labeled
railway data

Since these datasets have different object categories, only
the common object classes are considered: Person / Pedes-
trian and Car /| Vehicle, selected for availability and rele-
vance. Figure I shows statistics about the employed datasets.
SynDRA-BBox was split into three subsets: 70% for training,
20% for validation, and 10% for testing, whereas OSDaR23
and WOD were split using their predefined divisions. Frame
split for SynDRA-BBox was done in 10-frame batches: every
6th frame to test, every 3rd and 9th to validation, the rest to
training.

During training, we use 100% of each training set. CutMix
is applied with a 30% probability, and MixUp with 50%.
Additionally, SynDRA-BBox provides annotations even for
objects that generate a single LiDAR point return. However,
to ensure consistency with real-world datasets and focus on
reliably detectable instances, we retain only objects with at
least five points.

Dataset 4 Frames Label Count .
Train Val Test Car Pedestrian
OSDaR23 778 189 160 | 12.669 73.421
SynDRA-BBox | 4.838 1367 672 | 14.359 12.107
Waymo 158k 40k 30k | 6.024k 2.772k

TABLE I: Overview of dataset statistics: frame counts for
training, validation, and test splits; plus Car / Pedestrian label
counts across datasets.

B. Evaluation Metrics

Model performance was evaluated using 3D Average Pre-
cision (AP) and Average Precision in Bird’s-Eye-View (AP
BEV), which measure the accuracy of predicted 3D bounding
boxes relative to ground-truth annotations. Metrics were
computed at various IoU thresholds: 0.7 and 0.5 for cars,



Car Person
Method| Stage 0.7 [ 0.5 0.5 [ 0.25
AP BEV AP 3D Closed Gap AP BEV AP 3D Closed Gap [AP BEV AP 3D ClosedGap AP BEV AP 3D Closed Gap

S-Only | N/A 0.0 0.0 0/0 0.0 0.0 0/0 0.0 0.0 0.0/0.0 0.73 0.64 0/0
W-Only| N/A 0.0 0.0 0/0 0.0 0.0 0/0 2047 0.0 0/0 35.38  0.002 0/0
Oracle | N/A | 85.77 20.73 100/100  85.77 48.26 100 / 100 4213 20.21 100 / 100 5341 51.60 100 / 100
S—O [CutMix| 83.75 6.61 97.64/31.89 83.75 5727 97.64/118.7 | 41.07 24.89 97.48/123.16 54.86 52.80 102.75/102.35

MixUp| 85.49 1.72 99.67/7.72 8549 6626 99.67/137.3 | 40.53 29.58 96.2/ 14636 54.66 54.66 102.37 / 102.37
W—O [CutMix| 84.72 821 98.78/39.6 8472 70.73 98.78/146.6 | 48.77 32.45 130.66 / 160.56 59.34 59.18 132.89 / 114.69

MixUp| 88.21 1.6 102.84/7.71 88.21 69.76 102.84 / 144.55| 46.81 3290 121.60 / 162.79 63.85 63.71 157.90 / 123.47
SW—O|CutMix| 84.29 10.31 98.27 / 49.73 8429 59.86 98.27 /124.03 | 48.72 33.23 115.64 /16442 6146 61.07 115.07 / 118.35

MixUp| 85.10 0.68 99.22/3.3 8510 59.56 99.22/123.41| 45.08 35.67 107.00 / 176.50 71.08 70.35 133.08 / 136.34

TABLE II: Domain adaptation performance for all the experiments using SynDRA-BBox / Waymo / a combination of both
as source and OSDaR23 as the target. We report AP BEV, AP 3D and their corresponding Closed Gap on the Car and
Person classes for all methods. All reported results are expressed as percentages (%). Bold values indicate the highest results

in each column.

and 0.5 and 0.25 for persons. For each threshold, the AP is
reported using the AP40 metric defined in KITTIL.
Additionally, following [23], the Closed Gap metric was
used to quantify how much of the performance gap between
the source-only and oracle models is closed through adapta-
tion:
APmodel - APsouTcefonly
APoracle - Aljsource—only

Closed Gap = x 100% (1)

C. Baseline and Comparison

The baseline model is CenterPoint [22], as in the original
SSDA3D. The experiments include the following training
setups:

o S-only, W-only: CenterPoint trained only on source
data, i.e. SynDRA-BBox or Waymo, and evaluated on
OSDaR23, to quantify the domain gap.

o Oracle: CenterPoint trained and evaluated on OSDaR23
with full supervision, upper-bound performance.

e S—O0O: CenterPoint is trained using our modified
SSDA3D and only uses a synthetic-to-real domain adap-
tation, with SynDRA-BBox as the source and OSDaR23
as the target.

o« W—O: Similar to the previous setting, but using a cross-
industry domain adaptation with Waymo as the source
instead.

e SW—O0: CenterPoint is trained with both domain adap-
tation techniques where SynDRA-BBox and WOD are
the sources, and OSDaR23 is the target.

D. Implementation

All models were implemented using the OpenPCDet
framework [24]. Source-only and oracle models were trained
for 20 epochs. For the adaptation setups, 20 epochs were
used for stage one, followed by 20 additional epochs for
stage two. The detection range was set to [0.0, -54.0, -3.0,
216.0, 54.0, 6.8] meters. Additionally, Waymo and OSDaR23
provide an intensity channel as the fourth feature in each
point, whereas, SynDRA-BBox does not currently include an
intensity channel. To handle this inconsistency, when using
only WOD and/or OSDaR23, we used all four point features
(XYZ + intensity); when using SynDRA-BBox alone or
together with OSDaR23, we only used the XYZ coordinates;

for SW—O experiment, we used four channels, assigning
a constant intensity value of 1 to SynDRA-BBox points to
increase robustness. All intensity values were normalized.
Moreover, since Waymo and OSDaR23 provide point clouds
already aligned to the ground in the vehicle frame, while
SynDRA-BBox provides points in the sensor frame with the
origin located a few meters above, we adjusted the point
clouds in SynDRA-BBox to align with the ground level of
the other two datasets.

E. Results

1) Quantitative: The experimental results in Table II
reveal compelling insights about cross-domain knowledge
transfer in railway object detection. Surprisingly, adapta-
tion from Waymo (automotive domain) to OSDaR23 (rail-
way domain) outperforms SynDRA-BBox (synthetic rail-
way) adaptation across most metrics, achieving a 146.6%
Closed Gap for cars in AP 3D at 0.5 IoU. This suggests
that real-world automotive data contains transferable features
more beneficial for railway detection than synthetic domain-
specific data, potentially due to Waymo’s rich diversity in
real-world lighting conditions, textures, and occlusion pat-
terns. The superiority of Waymo-based adaptation persists
even for pedestrian detection, where it achieves 160.56%
Closed Gap compared to SynDRA-BBox 123.16% in AP
3D at 0.5 IoU, indicating that human appearance patterns in
automotive contexts generalize better to railway environments
than synthetically generated pedestrians. To assess domain
differences, we analyzed the height and range statistics of
both full point clouds and pedestrian-specific points. For all
points, SynDRA-BBox exhibits higher mean height (7.03m=+
7.52) and range (136.89m =+ 118.25) compared to OSDaR23
(3.58m =+ 3.61, 68.36m % 60.77), indicating that SynDRA-
BBox scenes are typically more open, while OSDaR23 is
collected in more confined environments such as stations
or vegetated areas. For pedestrian points, SynDRA-BBox
again shows greater average range (110.62m =+ 76.92) but
lower average height (0.67m £ 0.43), whereas OSDaR23 has
closer (49.86m + 28.10) and slightly higher (0.77m + 0.46)
pedestrian returns. This reflects both the open-field nature of
SynDRA scenes and limitations in pedestrian modeling. The
combination of open spatial layouts, noise-free sensor simu-



lation, and less detailed pedestrian geometry in SynDRA-
BBox likely reduces the realism of point cloud patterns,
contributing to the reduced adaptation performance when
compared to real-world datasets like OSDaR23 or Waymo.

By contrast, the combined SynDRA-BBox+Waymo ap-
proach (SW—Q0) demonstrates synergistic benefits, partic-
ularly for decent pedestrian detection at 0.25 ToU (136.34%
Closed Gap in AP 3D). This hybrid strategy likely succeeds
by merging SynDRA-BBox domain-specific railway layout
patterns with Waymo robust real-world object features. No-
tably, SW—O with MixUp augmentation surpasses Oracle
performance in multiple categories (e.g., 71.08 AP BEV
vs Oracle’s 53.41 for Person-0.25), suggesting that strate-
gic domain combination can overcome limitations of both
synthetic data and single-source adaptation. These findings
highlight the value of hybrid domain adaptation frameworks
in railway applications, particularly when combining real-
world automotive data with synthetic domain-specific content
to address the data scarcity challenges inherent in railway
environments.

The results in Table III highlight two important findings
for domain adaptation in railway pedestrian detection. First,
while domain adaptation using only Waymo (Tuned W—O)
provides solid performance, incorporating SynDRA-BBox as
an additional synthetic source (SW—O) leads to further
improvements, especially when the adaptation framework
is properly tuned. Notably, the “Tuned SW—QO” approach
outperforms all other methods, achieving the highest AP 3D
scores at both 0.5 (35.67) and 0.25 (70.35) IoU thresholds
after the MixUp stage. This demonstrates the value of lever-
aging synthetic railway data in combination with real-world
data to better bridge the domain gap and enhance detection
performance.

Method Stage 0.5 AP 3D | 0.25 AP 3D
e w0 | G
aveswoo | Gt |09
e swo | S0 G

TABLE III: Comparison of domain adaptation performance
on the Person class using our tuned SSDA3D vs. naive
SSDA3D without CutMix adjustments. All reported results
are expressed as percentages (%). Best results (bold) and
worst results (italic) are highlighted.

Moreover, the comparison between "Naive SW—0O” and
“Tuned SW—O” underscores the necessity of adapting and
customizing the SSDA3D framework for the specific char-
acteristics of the railway scenario. The tuned version con-
sistently surpasses the naive, out-of-the-box application of
SSDA3D, confirming that careful method tuning and domain-
specific adjustments are critical for maximizing the benefits
of multi-source domain adaptation in challenging real-world
tasks.

2) Qualitative: The qualitative results provide visual evi-
dence of the benefits of advanced domain adaptation strate-

gies for pedestrian detection in railway environments. In
Figure 5a, the Oracle model, despite full supervision, misses
a pedestrian on the right platform, while the SSDA3D-
adapted model (using both SynDRA-BBox and Waymo in
Figure 5b) detects it even at long range. This demonstrates
that domain adaptation can enable the model to generalize
better in difficult or underrepresented scenarios, sometimes
even surpassing the supervised Oracle. Furthermore, the
added value of combining synthetic and real-world data for
adaptation is illustrated in Figure S5c. When only Waymo
is used as a source, the model detects just one person
on the right track. By contrast, the inclusion of SynDRA-
BBox alongside Waymo allows the model to detect three out
of four pedestrians in the same scene, Figure 5d. These ex-
amples underline the importance of multi-source adaptation:
integrating synthetic railway data with diverse real-world data
leads to richer feature representations and improved detection
robustness in complex or cluttered railway scenes.

Therefore, the qualitative findings strongly support and
emphasize that tailored domain adaptation strategies signifi-
cantly enhance pedestrian detection performance in challeng-
ing real-world railway applications.

(b) SW—0
i~ oy

(c) W—=0

(d) SW—=0O

Fig. 5: Oracle vs. SSDA3D with both SynDRA-BBox and
Waymo as sources and OSDaR23 as target. Ground truth
boxes shown in green, predicted boxes in red.

VI. CONCLUSION

A key challenge in advancing vision-based algorithms for
railway environments is the lack of public datasets supporting
tasks like 2D/3D object detection and semantic segmentation.
To address this, we introduced SynDRA-BBox, an extension
of SynDRA, offering multimodal data (camera, depth, Li-
DAR) with rich annotations. To our knowledge, SynDRA-
BBox is the first publicly available synthetic dataset, acces-
sible at https://syndra.retis.santannapisa.it, designed specifi-
cally for both detection and segmentation in railway scenar-
ios, providing a foundation for future research in image and
point cloud domains.



Building on this, we tuned and optimized SSDA3D for
3D object detection adaptation in rail settings, evaluating it
across synthetic-to-real (SynDRA-BBox to OSDaR23) and
cross-domain (Waymo to OSDaR23) setups. Our results show
that while synthetic data alone improves performance, cross-
industry adaptation using Waymo outperforms synthetic-only
setups, achieving up to 146.6% Closed Gap for cars and
160.56% for pedestrians, thanks to the diversity and richness
of real-world features. Importantly, adding a dataset like
SynDRA-BBox on top of Waymo further increases accuracy,
particularly for challenging pedestrian cases (e.g., 176.50%
Closed Gap at 0.5 IoU), highlighting the added benefit of
multi-source adaptation. Qualitative analyses reinforce these
findings: using both synthetic and automotive data, the model
detects distant or underrepresented pedestrians that even the
fully supervised Oracle misses, highlighting how tailored
adaptation strategies can surpass baseline supervised models
in complex railway scenes.

At last, we outline several future directions: developing
adaptation strategies tailored to railway-specific structure and
constraints beyond current methods like SSDA3D; extending
SynDRA-BBox with diverse weather and lighting conditions
(e.g., fog, rain, nighttime) to better reflect real operational
environments; improving 3D pedestrian models and collision
geometry, as Waymo’s stronger performance suggests the
importance of shape fidelity; and incorporating realistic noise
(e.g., Gaussian, dropout) into synthetic LiDAR to better
simulate real-world sensor behavior and reduce the sim-to-
real gap.
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