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 A B S T R A C T

The growing demand for Ethernet-based Industrial Internet of Things (IIoT) is changing the shape of modern 
industrial systems and emphasizing the need for high-speed, reliable, scalable, and safe communication among 
industrial devices. Ethernet-based networks provide the basis for seamless device integration, real-time data 
exchange, and increased operational efficiency, making them the key to Industry 5.0 applications. As industrial 
automation becomes increasingly complex, the importance of functional safety grows exponentially. The 
openSAFETY protocol is a fieldbus-independent, scalable, and robust protocol for implementing functional 
safety. Our contribution is twofold. First, we analyze time synchronization in the openSAFETY to fully 
understand the interrelated timing parameters and give some practical guidelines to tune the safety application. 
We have proposed the parameter tuning approach, which is better in terms of performance and ensures 
continuous, safe operations. Second, we analyze the protocol’s performance via UDP over Ethernet under 
normal and degraded network conditions. We found the protocol resilient to network impairments under 
certain levels during the experiments. Under normal working conditions, the cycle time was successfully 
achieved in the microsecond range, even at full payload capacity.
1. Introduction

The Industrial IoT (IIoT) has revolutionized manufacturing and in-
dustrial processes by enabling connected devices, sensors, and systems 
to work together seamlessly, leading to increased efficiency, predictive 
maintenance, and optimized operations. However, as the complexity 
of these systems increases, the stakes for ensuring their reliable and 
safe operation increase. Functional safety is a cornerstone of Industry 
5.0, which ensures the reliable operation of connected devices in 
environments where failures can lead to dangerous consequences [1].

Functional safety addresses risks from hardware failures, software 
failures, and system and communication failures through safe commu-
nication design, redundancy, and real-time error detection. In cyber–
physical systems, where physical processes are tightly integrated with 
computation and communication, it is essential to have a synchronized 
and predictable behavior of machines exchanging safety-critical data. 
Ethernet-based IoT protocols are becoming a popular solution for indus-
trial networking challenges because they offer significant advantages 
over traditional fieldbus standards. According to the HMS network 
survey report [2], in 2024, almost 71% of the industrial market is 
captured by devices using the Ethernet compared to the field bus, which 

I This paper is based on our understanding of the openSAFETY Protocol specification and implementation received from B&R automation, including the certified 
openSAFETY stack version 1.5.3 and specification version 1.5.2.
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is 22%. This shows the rapid increase in the demand for Ethernet-based 
solutions to achieve functional safety.

One possible way to achieve functional safety is to use ‘‘white 
channel communication’’ [3], in which every device used in the com-
munication has a defined, predictable behavior. However, this comes 
at a cost because integrating the device increases the overall cost, 
and migrating to new technologies becomes slower. Another possible 
way is to use ‘‘black channel communication’’, which does not impose 
any restrictions on using the safety-integrated devices. However, main-
taining the reliability and quality of the safety-critical data becomes 
challenging. Black channel communication sees the communication 
medium as a black box, and once the communication packet is sent 
to the network, it is unknown how much time it will take to be 
processed inside any device, which route it will take to reach the 
destination, or the integrity of the data if it has been corrupted. To 
address this challenge, the openSAFETY working group was established 
with Ethernet-Powerlink Group (EPSG) [4] to develop an open bus 
standard protocol for functional safety. They named this protocol as 
openSAFETY protocol. The openSAFETY protocol is the open bus stan-
dard that offers safe communication regardless of vendor and network. 
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It seamlessly integrates with Ethernet/IP and other industrial protocols, 
reducing deployment costs and improving interoperability. The open-
SAFETY protocol achieves SIL 3 according to IEC 61508 [5] and can 
work on black channel communication. OpenSAFETY relies on a time 
synchronization mechanism to exchange safety-critical data. Success-
fully configuring a safety application for this data exchange requires a 
clear understanding and thorough analysis of the time synchronization 
mechanism used in the openSAFETY protocol.

So far, very limited work has been done on openSAFETY. Some 
authors [6,7] have performed the performance analysis of openSAFETY 
over MQTT via Wireless. Later, Hadžiaganović et al. [8] integrated the 
openSAFETY in OMNET++. Soury et al. [9], have discussed a case 
study of using the openSAFETY for the lift communication system. 
However, precise indications on how to set and tune protocol pa-
rameters, including those that are application dependent, are missing; 
we believe these indications are really important as they can directly 
affect the robustness, efficiency, and continuous openSAFETY opera-
tions. When parameters are correctly set and tuned, the communication 
between safety nodes will occur according to predictable timelines. 
An accurate tuning of synchronization parameters can prevent wasting 
resources from the overhead of redundant pre-processing of time syn-
chronization messages, reducing the time to reach and maintain a time 
synchronization, and reducing the possibility of time synchronization 
failures during system operations. Well-tuned parameters guarantee a 
safe exchange of messages among openSAFETY nodes, even though the 
used communication network is not trustworthy in terms of real-time 
and safety requirements.

Our contribution is twofold. First, we analyze time synchronization 
in the openSAFETY protocol. Understanding the time synchroniza-
tion mechanism is important for identifying the relationships between 
timing parameters and providing practical guidelines for effectively 
configuring safety applications. The key contribution of our work is the 
development of a structured approach for configuring safety applica-
tions. To the best of our knowledge, no established method currently 
provides clear and practical guidelines for the configuration of safety 
nodes to achieve accurate time synchronization. This paper provides 
justifications and discusses the impact of tuning the application pa-
rameters with experiments. Then, it evaluates the protocol’s perfor-
mance under normal and degraded network conditions. To assess the 
protocol’s performance, two test cases have been designed:

• Test Case 1: Key performance metrics, such as latency, jitter, 
interframe delay variation, and bandwidth (when using UDP over 
Ethernet) are evaluated as a function of the payload size and 
transmission frequency of safety-critical data.

• Test Case 2: Network impairments are introduced to observe the 
protocol’s behavior under non-ideal conditions. This test helped 
us understanding its resilience and performance when facing 
network disruptions.

2. Related work

Ethernet for Control Automation Technology (EtherCAT [10]) is a 
fieldbus system released by Beckhoff Automation. This protocol is based 
on the Master and slave-based communication model and uses the 
physical layer and standard frame defined in IEEE 802.3 standard [11]. 
The EtherCAT master sends a frame that passes through all of the slaves 
in the network that are connected and exchanges the data. The last con-
nected slave detects the open port and returns the frame to the Master. 
Fail Safe over EtherCAT (FSoE) uses EtherCAT to achieve functional 
safety and is developed according to IEC 61508. Each FSoE device 
has its watchdog timer. If the FSoE-master does not receive a response 
from the slave till the watchdog timer times out expires, it triggers the 
safety conditions and puts the respective FSoE slave in the safe state. 
Although FSoE is still being used in the industry, FSoE is specifically 
designed for EtherCAT, which makes it difficult to integrate with other 
2 
safety protocols used in different Fieldbus systems. EtherCAT relies 
on distributed clocks for time synchronization, with each connected 
EtherCAT slave equipped with a Distributed Clock (DC) chip. These 
distributed clocks provide nanosecond-level synchronization accuracy 
across all EtherCAT devices in the network. However, implementing 
distributed clocks requires specialized hardware support, which is a 
significant challenge and increases overall cost.

PROFInet protocol is the advanced form of Profibus [12] that allows 
communication between many FieldBus protocols that use the indus-
trial Ethernet in compliance with international safety standards like IEC 
61508 and ISO 13849 [13]. In PROFInet, real-time data transmission 
is based on cyclic data exchange. PROFIsafe is a safety protocol that 
is based on the PROFInet Protocol. To ensure a safe reaction time, 
the F-Devices (Safety Devices) use a watchdog timer that is restarted 
every time a new PROFIsafe message is received. Time synchronization 
in PROFInet IO is based on the precision transparent clock protocol 
(PTP) [14]. PROFIsafe is tightly coupled with PROFInet and PROFIbus 
systems, which limits its adoption in industries using other communica-
tion protocols [15]. CANopen Safety is a safety-critical communication 
protocol based on the CANopen framework [16], designed to meet the 
stringent requirements of functional safety applications [17] developed 
in compliance with IEC 61508 and other relevant safety standards. The 
basic concept of CANopen Safety is to transmit the safety-critical data 
in two independent messages. The first message contains the actual 
data, and in the second message, all data bits are inverted, with at 
least two bits inverted in the message identifier field. The safety-critical 
data is exchanged using SRDO (Safety Relevant Data Object) During 
the transmission, the timeout is monitored using two timeouts: SRVT 
(Safety-Relevant Validation Time) and Safeguard Cycle Time. SRVT is 
the maximum time allowed between the first and second message of an 
SRDO, and Safeguard Cycle Time is the time between multiple SRDOs, 
defining the maximum timeout between the occurrence of two consec-
utive SRDOs [18]. CAN openSAFETY relies on the CANopen protocol, 
which limits its adoption in industrial systems using other commu-
nication protocols. The openSAFETY protocol offers advantages over 
PROFIsafe, Fail Safe over EtherCAT, and CANopen Safety, especially in 
terms of flexibility, interoperability, and scalability. Unlike ProfiSAFE 
and Fail Safe over EtherCAT, which are closely tied to their specific par-
ent fieldbus protocols, openSAFETY is independent of the underlying 
communication protocol, allowing compatibility with various industrial 
Ethernet and fieldbus systems. This independence enables integration 
across different networks, simplifies system architecture, and increases 
adaptability for various industrial applications.

The paper is structured to provide a detailed evaluation of network 
performance verification for the openSAFETY protocol, beginning with 
Section 3. This section presents the fundamental structure of open-
SAFETY communication models and frames, followed by an in-depth 
analysis of time synchronization. In this section, key definitions neces-
sary for analyzing time synchronization are introduced. The robustness 
of time synchronization is subsequently explored. The time validation 
process is then examined, emphasizing its significance in maintaining 
the operational status of safety nodes and ensuring data reception. 
Section 4 discusses parameter tuning for time synchronization, where 
configuration parameters are tuned as part of the contribution. Sec-
tion 5 evaluates the impact of tuning the application parameters on 
the safety application. Section 6 provides a performance analysis of 
the openSAFETY protocol. The evaluation is carried out under varying 
conditions. Test Case 1 focuses on the impact of different transmis-
sion frequencies and payload sizes, whereas Test Case 2 investigates 
network performance under impairments. Each test case is followed 
by a results section, which assesses key performance metrics such as 
propagation delay, latency, jitter, and interframe delay variation.
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3. Network performance verification

The safety configuration manager (SCM) is the node responsible 
for managing all the safety nodes in a safety domain. Whenever a 
safety node is added or removed or becomes nonoperational, the safety 
configuration manager takes care of it. The main purpose of the SCM 
is to send periodic lifeguarding signals to the safety nodes in a safety 
domain. Standard openSAFETY has three types of frames, each used for 
different purposes:

1. Safety Network Management (SNMT).
2. Safety Service Data Object (SSDO).
3. Safety Process Data Object (SPDO).

The lifeguard signals are SNMT frames of the openSAFETY protocol. 
After becoming operational, each Safety Node must receive a lifeguard 
signal from the Safety Configuration Manager (SCM) within a specified 
duration, configured in the Safety Object Dictionary (SOD). The Safety 
Object Dictionary is a data structure that holds all parameters of a 
safety node, such as the unique identification number, lifeguarding, 
communication configurations, the consecutive time base, and more. 
Each node can have its own Safety Object Dictionary or be downloaded 
from the SCM to the safety nodes during initialization using SSDO 
frames. Safety-critical data is exchanged between safety nodes using 
SPDO frames. openSAFETY uses the producer and consumer commu-
nication model to exchange safety-critical data. The producer node 
broadcasts the data in the safety domain, and the consumer nodes with 
the producer node’s SADR (Safety Address, a configurable parameter) 
can receive the data. This paper focuses on one of the most important 
aspects of the protocol, which is network performance verification, 
primarily involving SPDO frames. Therefore, it is assumed that the 
Safety Nodes (i.e., producer and consumer nodes) are operational and 
are receiving SNMT frames (i.e., lifeguarding signals) from the SCM. 
To cope with application requirements such as data freshness and 
data repetition, network performance verification needs to be done to 
determine the network’s efficiency in meeting the requirements of the 
application. Network performance verification is carried out through 
two consecutive steps:

1. Time Synchronization;
2. Time Validation.

3.1. Time synchronization

Time synchronization is a process in which a consumer node up-
dates itself about the relative time at the producer node. The consumer 
node is supposed to be the consumer of the safety-critical data sent by 
the producer node. Both the consumer and producer nodes can have 
different clock times (i.e., there may be a clock offset between any 
two nodes). However, to carry out successful time synchronization, 
the consecutive time-base (a configurable parameter) of both nodes 
(consumer and producer) should be the same. Time synchronization is 
done using the SPDO frames. There are three types of SPDO frames:

1. TReq: SPDO with a time request;
2. TRes: SPDO with a time response;
3. Data Only: SPDO with data-only.

An SPDO sent from the consumer node to the producer node for the 
time synchronization request is called the SPDO with time request 
or TReq. A consumer node sends one or more time synchronization 
requests (TReq) to its producer node to achieve time synchronization. 
Whenever a producer node receives a time request (TReq), it has to 
react immediately and send one or more time responses (TRes) back to 
the consumer node. The CT field of the openSAFETY frame contains 
information about the time instant at which the TReq or TRes is 
dispatched from the respective node.
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After receiving the time response, the consumer node determines 
the TReq that was being answered. This information is stored in the 
TR field of the openSAFETY frame. Once the consumer node receives 
the TRes, it determines the round trip delay starting when the TReq is 
sent from the consumer node. Then, this delay will be checked against 
the constraints (see Definition  8 and 12). If the delay of the received 
TRes satisfies the constraints, then the time synchronization is said to be 
successful; otherwise, it is unsuccessful time synchronization. However, 
during normal operations, when time synchronization is done, the data 
is exchanged using SPDO data-only frames.

The openSAFETY protocol has a robustness feature, which allows 
sending multiple TReq and TRes consecutively, so if there is any loss 
in the transmission medium, the producer should receive at least one 
TReq. This analysis initially presents the time synchronization steps, 
assuming no lost messages exist (e.g., the protocol does not use the 
robustness feature). Then, the protocol stack feature (i.e., robustness 
feature) to cope with lost messages is described. To understand the time 
synchronization and time validation, the paper first examines some 
configurable parameters of both consumer and producer nodes. All 
configurable timing parameters in this paper use the consecutive time 
base (see Definition  1) as the base time unit.

Definition 1.  The Consecutive time base is a configurable parameter 
of the consumer and producer nodes. The consecutive time base refers 
to the basic time unit (the Tick) used for time synchronization and 
time validation. The openSAFETY stack supports four different time 
bases (i.e., 1 μ s, 10 μ s, 100 μ s, 1 ms). The application designer can 
choose one of them depending on the application requirements and the 
efficiency (Scheduling and execution delays) of the safety nodes. This 
value should be equal for all of the safety nodes.

Definition 2.  openSAFETY Transmit Process Data Object (TxSPDO) is 
the Tx or transmitter of the Safety Node (SN) responsible for sending 
the SPDO frame. openSAFETY Receive Process Data Object (RxSPDO)
is the Rx or receiver of the Safety Node(SN) responsible for receiving 
the SPDO for time synchronization. 

Definition 3.  Refresh Prescale Consumer is the configurable param-
eter of the consumer node, which represents the delay between two 
consecutive SPDOs sent by the TxSPDO of the consumer node. It is 
denoted by 𝛥𝑡𝑐 . 

Definition 4.  Refresh Prescale Producer is the configurable param-
eter of the producer node, which represents the delay between two 
consecutive SPDOs sent by the TxSPDO of the producer node. It is 
denoted by 𝛥𝑡𝑝. However, if new data is available at the producer node, 
SPDO can be sent to the consumer node without waiting for the refresh 
prescale timeout to expire. 

In the openSAEFTY stack, TxSPDO and RxSPDO are the dedicated 
data structures responsible for sending and receiving the SPDO frames. 
For a Safety Node (SN), the RxSPDO is required if the time synchro-
nization is needed to be done for that SN (i.e., if node is only producer 
node, then the node does not need to have a RxSPDO). However, at 
least one TxSPDO is mandatory for each SN; either it is the producer of 
the data (i.e., to send the SPDO data frames or sending the SPDO time 
response frames) or it is the consumer of the data (i.e., to send the time 
synchronization request to the producer node). 

Definition 5.  BestCaseTReqDelay(C) is a configurable parameter of 
the consumer node, representing the best estimation of the minimum 
time (from the consumer point of view) required for (a) transferring 
data (a time request (TReq)) from the consumer node to producer 
node and (b) to be processed and acknowledged by the producer 
node. This metric takes into account the optimal network performance 
conditions (i.e., network without any loss in transmission medium and 
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best transferring time) and the highest efficiency levels (minimum 
scheduling and execution delays) of the producer node. In this analysis, 
this parameter is denoted as 𝛽𝐶 and formally defined in the equation 
below: 
𝛽𝐶 = min

({

𝑑𝑐1, 𝑑𝑐2, 𝑑𝑐3,…
})

, (1)

where 𝑑𝑐𝑖 represents the transmission delay of SPDO from the consumer 
node to the producer node in the 𝑖th observation of the experiment. 

Definition 6.  BestCaseTResDelay(P) represents the best estimation 
of the minimum time (from the producer point of view) required for 
transferring data (a time response(TRes)) from the producer node to the 
consumer node and its processing by the consumer node. This metric 
takes into account the optimal network performance conditions and the 
highest efficiency levels (minimum scheduling and execution delays) of 
the consumer node. In this analysis, this parameter is denoted as 𝛽𝑃  and 
formally defined in the equation below: 
𝛽𝑃 = min

({

𝑑𝑝1, 𝑑𝑝2, 𝑑𝑝3,…
})

, (2)

where 𝑑𝑝𝑖 represents the transmission delay of SPDO from the producer 
node to the consumer node in the 𝑖th observation of the experiment. 

Definition 7.  BestCase minimum communication network round 
trip. This is the sum of BestCaseTReqDelay(C) and BestCaseTResDe-
lay(P). In this analysis, we denote this parameter as 𝛽𝐶𝑃 . 

Definition 8.  Minimum TSync Propagation Delay is a configurable 
parameter of the consumer node, representing the minimum allowed 
time for a time response to be received by the consumer node as a 
reply to the sent time request. This delay is calculated from the moment 
the consumer node sends the time request and accounts for optimal 
network performance conditions and the highest efficiency levels of 
both the consumer and producer nodes. It establishes a time delay 
threshold below which the consumer node will not accept the response. 
In this analysis, this parameter is denoted as TSyncmin. 

Definition 9.  Reaction Time (RT) is the maximum time for a single 
communication relationship (unidirectional) between the producer of 
the SPDO and the consumer of the corresponding SPDO. The time inter-
vals required for preparing the SPDO and processing the SPDO are not 
included in this reaction time (i.e., Scheduling and execution delays). 
Therefore, it generally represents the maximum time for transferring 
the data frame from the sender node to the receiving node without 
considering the safety margin. 

Definition 10.  Safety Control Time (SCT): Safety Control Time (SCT) 
is an application-configurable parameter of the consumer node and 
represents the maximum allowed delay between the reception of two 
consecutive valid SPDOs at the consumer node, but only if the prior 
valid SPDO delay is equal to the reaction time. A failure should be 
raised if an SPDO is not received before the SCT delay. This parameter 
is also considered as the safety margin. 

Definition 11.  Safe Reaction Time (SRT) is the conservative value 
of the reaction time, including a safety margin equal to SCT. Therefore: 

SRT = RT+SCT. (3)

Definition 12.  MaxTSyncPropagationDelay is the configurable pa-
rameter of the consumer node representing the maximum time allowed 
for a time response sent from a producer node to be received by the 
consumer node. This value includes the reaction time related to the 
TRes, and it is the estimation of the delay (from the consumer’s point 
of view) which can be experienced in the reception of an SPDO because 
of the worst network conditions. For each TReq sent by the consumer 
node, this delay is computed as the time interval starting from the time 
instant when the TReq is sent.
4 
Fig. 1. Scenario where BestCaseTReqDelay(C) is the perfect estimation of the 
actual delay to send TReq and SPDO is received consuming the complete 
Reaction time (Successful Time Synchronization).

Fig. 2. Scenario where BestCaseTReqDelay(C) is the minimum best case 
estimation, and actual delay in sending TReq is more than that. In this case, 
the Reaction Time value includes this delay (Successful Time Synchronization).

Definition 13.  Safe MaxTSync Propagation Delay is the conservative 
value of the MaxTSyncPropagationDelay, including a margin equal to 
SCT. This delay is calculated from the moment the consumer node 
sends the time request and accounts for worst network performance 
conditions and the lowest efficiency levels of both the consumer and 
producer nodes. It establishes a time delay threshold above which it is 
assumed that the consumer node will not have received the valid time 
response. This parameter is denoted as SafeTSyncmax and is defined as:

SafeTSyncmax = SCT + MaxTSyncPropagationDelay. (4)

 We illustrate various scenarios of time synchronization in the context 
of estimating and handling delays for transmitting TReq and receiving 
TRes. In Fig.  1, the BestCaseTReqDelay(C) is perfectly estimated, and 
the TRes is received after fully consuming the reaction time, resulting 
in successful time synchronization. Fig.  2 shows a case where the 
BestCaseTReqDelay(C) represents a minimum best-case estimation, but 
the actual delay exceeds this value; in this case, the reaction time 
includes the extra delay, leading to successful synchronization. Fig. 
3 depicts a situation where the BestCaseTReqDelay(C) is incorrectly 
estimated, causing the reaction time to fail in representing the max-
imum transfer time, resulting in unsuccessful time synchronization. 
Lastly, Fig.  4 presents a scenario where the BestCaseTReqDelay(C) is 
accurately estimated, and the TRes fully consumes the reaction time 
but is still received before the SRT timeout expires, achieving successful 
time synchronization.

Time synchronization is said to be successful if the Time Response 
(TRes) is received within the Minimum TSync Propagation Delay and 
Safe MaxTSync Propagation Delay window. If time synchronization is 
successful, then the consumer node memorizes the relative time of the 
producer node TRefProducer which is saved in the CT field of TRes and 
the TRefConsumer is defined below: 
TRef = t+ BestCaseTReqDelay(C), (5)
Consumer
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Fig. 3. Scenario where BestCaseTReqDelay(C) has been wrongly estimated. 
In this case, the reaction time value does not represent the maximum time for 
transferring the SPDO (Unsuccessful Time Synchronization).

Fig. 4. Scenario where BestCaseTReqDelay(C) is the perfect estimation of the 
actual delay and TRes completely consumed the Reaction time but received 
before SRT timeout expires (Successful Time Synchronization).

where t is the time at which the time request (which has been an-
swered) is sent. There is no need to inform the producer node about 
the successful time synchronization of the Consumer. There could be 
at most three cases if the time synchronization is unsuccessful.

1. Time Response Received Before the Minimum TSync Propaga-
tion Delay timeout expires.

2. Time Response Received After the Safe MaxTSync Propagation 
Delay elapses.

3. Time Response is not received due to loss in the transmission 
medium.

If the Time response is received before the Minimum TSync Propagation 
delay, then the Consumer will fall into FAIL SAFE STATE. It indicates 
that the BestCaseTReqDelay(C) has not been set correctly. If the Time 
response is received after the Safe MaxTSync Propagation Delay, then 
the consumer node will ignore the Time Response. There is no need to 
inform the producer node about the unsuccessful time synchronization 
of the Consumer.

3.2. Robustness in time synchronization

To increase the robustness of the protocol with respect to the loss 
of messages, the time request and time response are carried out as 
sequence of consecutive TReq and TRes. To study this feature, we will 
study some configurable parameters. 

Definition 14.  Number of Consecutive Time Requests (m) refers 
to the count of sequential time requests that a consumer node is 
5 
configured to send to a producer node. This set is named a block of 
time requests. This configuration parameter allows the consumer node 
to send multiple time requests, interleaved by a time delay (refresh 
prescale Consumer, see Definition  3). 

Definition 15.  Number of Consecutive Time Responses (n) refers 
to the count of sequential time responses that a producer node is 
configured to send to a consumer node after the reception of the first-
time request. The set of time responses is named a block of time 
responses. This configuration allows the producer node to send multiple 
time responses, interleaved by a time delay (refresh prescale producer, 
see Definition  4), whenever there is a need to send TRes back to the 
consumer node. 

A consumer node can be configured to send multiple blocks of 
time requests to achieve the desired reliability of the communication. 
These blocks of time requests are interleaved by a time delay Td (see 
Definition  16). In each block of time request, the count of distinct time 
request numbers is stored as a TR counter within the TReq. 

Definition 16.  The consumer node sets the Time Delay after (a) 
having sent (m) time request(s) and (b) having waited for the Safe 
MaxTSync Propagation Delay from the last time request without receiv-
ing a valid time response. After this time delay, the consumer node is 
allowed to send (m) time request(s) for synchronization. Meanwhile, 
any time response received while Td has not elapsed will be ignored. 
This time delay is used when at least one time synchronization step is 
unsuccessful. It is denoted by Td. 

Definition 17.  During the time synchronization phase, Time Request 
Cycle is the maximum timeout from the start event of the synchro-
nization phase, during which a consumer node has to receive a valid 
time response. Otherwise, a time synchronization failure must be raised 
when it expires. The management of this timeout includes the following 
stages:

1. Initiation: The time request cycle starts when the consumer 
node sends the first-time request to the producer node.

2. Safe MaxTSync Propagation Delay Waiting: After sending 
(m) time requests, the consumer node waits for Safe MaxTSync 
Propagation Delay from the last sent TReq.

3. Time Delay (Td): After sending the (m) TReqs, If no valid time 
response is received within the Safe maximum Tsync propaga-
tion delay of the Last TReq, the consumer node waits for time 
delay Td before sending another set of (m) time requests.

4. Residual Refresh Prescale Timeout: If the consumer node 
intends to send another TReq from a new block of m TReq(s), 
the consumer node will wait for the residual refresh prescale 
timeout after waiting for Td timeout. It is the remaining time in 
the refresh prescale to complete its duration after the Td timeout 
finishes. In this analysis, we have denoted it as 𝛼.

5. Repetition: The consumer node continues sending time requests 
and waiting for responses until a successful time synchronization 
is achieved or the Time Request Cycle timeout expires.

The time request cycle timeout is reset each time a successful time 
synchronization step is achieved. We have denoted this as TRC. 

Consider the example in Fig.  5 in which a consumer node tries to 
establish the time synchronization with the Producer with (m=2, n=2, 
𝛥𝑡𝑝 = 𝛥𝑡𝑐 = 2, 𝛽𝑐 = 3, TSyncmin = 4, SafeTSyncmax = 7, Td=4) while 
the total blocks of time requests are two. From the first block of TReq, 
the first TReq is lost in a nonsafe communication medium, and second 
TReq is received successfully at the producer node. The Producer node 
starts to send time responses back to the consumer node in which the 
first TRes is lost and second TRes is received at the consumer node 
while the consumer node ignores this time response because this time 
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Fig. 5. Time Request Cycle timeout.

response is sent as a time response to the received time request (TR=2) 
from the first block of time request which has the SafeTSyncmax = 7
and this timeout has already been passed. However, after passing the 
Td timeout, the consumer node cannot start another block of time 
synchronization because the refresh prescale timeout is not expired, 
which is taking the two time units in this example; therefore 𝛼 = 1
can be seen in Fig.  5. However, in this example, time synchronization 
cannot be achieved due to poor network conditions, and the time 
request cycle timeout elapses. Even though Time Synchronization is 
successful, in order to cope with clock drifts in producer and consumer 
Nodes and to keep the time synchronization error under a bounded 
value, a new synchronization phase is required after a certain time 
delay.

Definition 18.  A Consumer Node sets Time Delay Synchronization
when a successful time synchronization is reached after resetting the 
time request cycle. This parameter represents the maximum time delay 
between one successful time synchronization phase and the initiation 
of the next attempt to perform another time synchronization phase. It 
ensures that there is a controlled gap between successive time synchro-
nization phases. When this timeout expires, a new time synchronization 
phase is started. It is denoted by ts. 

Definition 19.  Time To Synchronize (TTS) is defined as the total time 
taken by a consumer node to achieve successful time synchronization 
with a producer node. It begins at the moment the consumer node sends 
its first time synchronization request and ends when the consumer 
successfully synchronizes with the producer. The TTS may span one or 
more time request cycles, depending on parameter configuration and 
network conditions. 

3.3. Time validation

The time validation phase starts after the successful time synchro-
nization phase. The producer node does not need to be informed that 
the time validation phase has begun. The validation phase allows the 
consumer node to verify if the received SPDO meets the constraints 
on the propagation delay (Definition  20 21). After successful time 
synchronization, the consumer node is able to verify the quality of 
the received data. Whenever a successful time synchronization phase 
occurs, the consumer node resets the Time request cycle timeout (TRC) 
and sets the Time Delay Synchronization (ts) time out. To understand 
the time validation phase, we will first examine some parameters of a 
consumer node.
6 
Definition 20.  Minimum SPDO Propagation Delay is a config-
urable parameter of the consumer node, representing the minimum 
propagation delay for receiving a valid SPDO after successful time 
synchronization. This metric accounts for optimal network performance 
conditions and the highest efficiency levels of the consumer node. If the 
SPDO Propagation delay of the current received SPDO is less than the 
Minimum SPDO Propagation Delay, the consumer node will notify this 
anomaly and enter into a FAIL-SAFE state. We denote this parameter 
as SPDOmin. 

Definition 21.  Maximum allowed SPDO Propagation Delay: Repre-
sents the maximum allowable delay for receiving a valid SPDO after 
successful time synchronization. This metric accounts for the worst 
network performance conditions and the lowest efficiency level of the 
consumer node. If the consumer Node does not receive the SPDO after 
the Maximum allowed SPDO Propagation Delay timeout expires, the 
consumer node will ignore the SPDO. This parameter is equivalent to 
the Safe Reaction time. Maximum allowed SPDO Propagation Delay 
(SPDOmax) can be computed  using the following formula: 

SPDOmax = SafeTSyncmax − BestCaseTReqDelay(C). (6)

TSPDOProducer is the timestamp of the producer node when the SPDO is 
dispatched. This value is included in the received SPDO. This timestamp 
serves as a reference for estimating the minimum SPDO propagation 
delay. While TSPDOConsumer is the time stamp of the consumer node at 
which SPDO is received. 

Definition 22.  SPDO Propagation Delay is the delay experienced 
in the reception of an SPDO at the consumer node with respect to 
the dispatch time of TSPDO contained in the received SPDO. We have 
denoted this as PD in our analysis. This delay is calculated using the 
following equation: 

PD =
(

TSPDOConsumer − TRefConsumer
)

−
(

TSPDOProducer − TRefProducer
)

.
(7)

Equation (7) stores the offset between the clocks of the Consumer and 
Producer Nodes at the time instant of successful time synchronization. 
However, since this offset typically changes over time due to the 
clock quality of both nodes, the protocol stack periodically forces new 
synchronization phases (see Definition  18). Without successful time 
synchronization, the Consumer Node cannot verify whether the SPDO 
propagation delay is correctly bounded. 

Definition 23.  Residual Safety Control Time (𝐒𝐂𝐓𝑅) is the residual 
delay between the reception of two consecutive valid SPDOs at the 
consumer node after successful time synchronization. Each time a valid 
SPDO is received, the SCT𝑅 timeout is set. The next valid SPDO must be 
received before the SCT𝑅 timeout expires. If the SCT𝑅 timeout expires 
without the reception of a valid SPDO, the consumer node will enter 
into the FAIL-SAFE state. The value of SCT𝑅 timeout is set according 
to the following equation: 

SCT𝑅 = SRT − PD. (8)

According to Definition  11, we have: 
SRT = SCT +Maximum TSync Propagation delay

− BestCaseTReqDelay(C),
(9)

However, during the operational phase of the protocol, the actual 
propagation delay, "SPDO Propagation Delay (see Definition  22)’’, can 
be less or greater than (Maximum TSync Propagation Delay - BestCase-
TReqDelay(C)). The difference between (Maximum TSync Propagation 
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Fig. 6. Residual SCT timeout.

Delay - BestCaseTReqDelay(C)) and the actual propagation delay must 
be taken into account for setting the SCT𝑅, available for monitoring the 
reception of valid SPDO within an SCT time window. To this end, let 
us write the above equation of SRT as follows: 
SRT = SCT+

(

Maximum TSync Propagation Delay
− BestCaseTReqDelay(C)

)

−PD + PD.
(10)

Therefore, if we define the residual SCT as follows: 
SCT𝑅 = SCT+

(

Maximum TSync Propagation Delay
− BestCaseTReqDelay(C)

)

−PD,
(11)

then we can write the above formula according to Definition  11 as 
follows: 
SRT = SCT𝑅 + PD, (12)

which gives SCT𝑅 = SRT − PD, as in Definition 23. Whenever the ts
timeout expires, the consumer node sends another time synchronization 
request to the producer node and continues receiving the SPDO, check-
ing its topicality by monitoring the SCT𝑅 timeout. This can be seen 
in Fig.  7. In other words, it restarts the time synchronization phase, sets 
the Time Request Cycle timeout again, and keeps receiving the SPDOs. 
If it receives the TRes, it updates the TRefProducer and the TRefConsumer, 
and sets the ts timeout again this can be seen in Fig.  7. If the SCT𝑅
elapses, the consumer node will fall into the FAIL-SAFE state as shown 
in Fig.  6.

4. Parameters tuning for time synchronization

This section outlines some advantages of systematically tuning the 
openSAFETY parameters and application-related ones. Tuning such 
parameters according to the proposed approach reduces computation 
costs and ensures continuous, safe, and reliable operations in real-time 
environments. In the following subsections, we will explore the issues 
that arise from non-systematic parameter configurations and demon-
strate how our approach addresses these challenges. The considerations 
discussed in these subsections do not impose any limitations on the 
application of the protocol stack.

4.1. Setting the no. of time requests (m) and time responses (n) in one 
block of time request cycle

Initially, when a consumer node starts the time synchronization, 
it enters a state in which it sends the first Time Request (TReq), and 
then it changes the state, waiting for the time response to be received, 
and continues to send the remaining TReq(s). When a producer node 
receives the first TReq, it sends a block of n TRes to the consumer node 
and any further TReq(s) will be ignored. The consumer node has to 
process the first received TRes and ignore the remaining TRes(s). Each 
7 
received TRes requires protocol-level checks (e.g., to verify whether the 
received SPDO is valid for time synchronization, timestamp validation, 
etc.). If the transmission medium is highly reliable and there is less 
chance of loss of messages, then setting a high value of n for TRes 
should not be a good choice, as the consumer node has to pass protocol 
level checks for each received TRes. On the other hand, the producer 
node will also be busy sending the n TRes to the consumer node, 
which can cause a delay in serving another TReq (can be from another 
RxSPDO). On the other hand, the robustness feature of repetition of 
TReq and TRes is essential if there is a high loss in the transmission 
medium, and setting the low value of m and n can increase the risk of 
synchronization failure.

The proposed method determines the best configuration of m and
n based on the probability of loss of messages on the transmission 
medium. It models the probability of message loss and the desired 
probability of successful synchronization to estimate the number of m
and n that systematically balance the redundancy and efficiency. To 
model this, we consider BER as the probability that a single bit will 
be received in error. Forward error correction (FEC) mechanisms can 
be applied to the physical layer to address bit errors. However, these 
techniques cannot correct all possible bit errors within a frame [19]. 
For this reason, we refer to the residual BER as the 𝑃𝑒 after redundancy 
has been applied for error correction. In this context, the transmission 
of each bit in a frame can be treated as an independent Bernoulli trial, 
where each trial (bit) can either succeed (be transmitted correctly) with 
probability 1−𝑃𝑒 or fail (not transmitted correctly) with probability 𝑃𝑒
which represents the probability that a single bit is received in error or 
lost due to noise or other impairments in the transmission medium. This 
analysis assumes that the bit error rate (BER) remains uniform across 
all bits in a frame. For successful time synchronization, all 𝐿TReq bits in 
the frame must be received correctly without any loss. The probability 
of successfully transmitting a frame of 𝐿TReq bits, denoted as 𝑃𝑠(TReq), 
is given by: 
𝑃𝑠(TReq) = (1 − 𝑃𝑒)

𝐿TReq . (13)

When the consumer node sends (m) TReqs, the goal is to ensure that the 
producer node receives at least one TReq successfully. The probability 
of failure (not being received) for a single TReq is 1 − 𝑃𝑠(TReq), and 
the probability of all (𝑚) TReqs failed to receive is (1 − 𝑃𝑠(TReq))𝑚. 
The complement of this gives the probability that the producer node 
receives at least one TReq, which can be derived using the Complement 
rule of probability as follows: 
𝑃𝑚,success = 1 − (1 − 𝑃𝑠(TReq))𝑚. (14)

Similarly, under the assumption that each Time Response (TRes) is 
affected by random errors only, the probability that the Consumer 
successfully receives at least one of the (𝑛) time responses is: 
𝑃𝑛,success = 1 − (1 − 𝑃𝑠(TRes))𝑛. (15)

𝑃failure is the probability of failure that (𝑚) TReq and (𝑛) TRes frames 
failed to be received by their respective nodes in one block of time 
synchronization and defined as follows: 
𝑃failure = (1 − 𝑃𝑠(TReq))𝑚 × (1 − 𝑃𝑠(TRes))𝑛. (16)

Let us assume 𝑃block is the desired probability that the consumer 
node successfully synchronizes with the producer node in one block 
of the Time request cycle. This can be computed as the probability 
of receiving at least one correct time response in the consumer node, 
conditioned to the reception of one correct time request in the producer 
node. This probability 𝑃block can be computed as: 
𝑃block = 𝑃𝑚,success × 𝑃𝑛,success. (17)

We can define the communication cost (here referred to as Cost) in 
terms of transferred bits between the consumer and producer node in 
one block of the time request cycle: 
Cost = 𝑚 × 𝐿 + 𝑛 × 𝐿 . (18)
TReq TRes
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Fig. 7. Successful Time Synchronization and Time validation.
It is important to note that the openSAFETY stack under analysis 
supports a maximum of 63 consecutive time requests, denoted as 
𝑚max, and for time responses, the variable is an 8-bit unsigned integer, 
allowing a maximum of 255 time responses, denoted as 𝑛max. Thus, 
we can iteratively search for the values of 𝑚 and 𝑛 using Algorithm 1 
to minimize the communication cost. By modeling the frame receiv-
ing/transmitting success probabilities under bit error rates (BER) and 
iteratively searching for the smallest pair (𝑚, 𝑛) that satisfies a target 
reliability threshold, the proposed approach can systematically bal-
ance redundancy (to counteract frame loss) and efficiency (to reduce 
unnecessary pre-processing).
Algorithm 1 Determine Configuration of Numbers of Time Requests 
and Time Responses.
Require: Maximum m= 𝑚max, Maximum n= 𝑛max
Require: 𝑃𝑒, 𝑃block, 𝐿TRes, 𝐿TReq
Ensure: Best configuration of 𝑚 and 𝑛
1: Compute 𝑃𝑠(TReq) ← (1 − 𝑃𝑒)𝐿TReq
2: Compute 𝑃𝑠(TRes) ← (1 − 𝑃𝑒)𝐿TRes
3: 𝑃F_threshold ← 1 − 𝑃block ⊳ Failure threshold
4: Initialize min_cost ← ∞, best_config← ∅
5: for 𝑚 = 1 to 𝑚max do
6:  for 𝑛 = 1 to 𝑛max do
7:  Compute 𝑃failure ← (1 − 𝑃𝑠(TReq))𝑚 × (1 − 𝑃𝑠(TRes))𝑛
8:  if 𝑃failure ≤ 𝑃F_threshold then
9:  Compute Cost ← 𝑚 × 𝐿TReq + 𝑛 × 𝐿TRes
10:  if Cost < min_cost then
11:  min_cost ← Cost
12:  best_config ← (𝑚, 𝑛, 𝑃failure,Cost)
13:  end if
14:  end if
15:  end for
16: end for
17: return best_config

4.2. Setting the time delay timeout (td)

The time delay Td introduces a controlled time gap between two 
consecutive blocks of TReqs sent by a consumer node. When such a 
delay is well dimensioned, this controlled gap enables the following 
two benefits: (A) it allows the consumer node to potentially wait for 
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receiving all the block of TRes before sending a new set of TReq(s), 
and (B) it prevents the consumer node from sending a TReq during a 
time interval when the communication channel is experiencing a burst 
of errors [20]. Consider the example shown in Fig.  8. The consumer 
node sends TReqs (represented in blue) to the producer node over a 
communication medium prone to high message loss. In this case, the 
first TReq is lost, but the second TReq is successfully received by the 
producer node (indicated by the filled blue arrowhead). The producer 
node then begins sending time responses (TRes) back to the consumer 
node (shown in purple). We can see TRes is received by the consumer 
node but ignored due to violating the constraints (represented as a bar 
at the end of the arrowhead).

If Td is too short, the consumer node sends another set of m TReq(s) 
before all TRes associated with previously received TReq are fully 
processed. If the producer node is still responding to the previous TReq, 
it cannot process the new TReq, even if it is successfully received. 
This situation can introduce processing overheads for both the producer 
node discarding these new TReqs, and the consumer node processing 
useless TRes, which will be discarded. These issues can cause unex-
pected delays in synchronization. On the other hand, setting Td too 
long is also undesirable because it unnecessarily increases the overall 
synchronization time. To set the Td delay using the proposed systematic 
approach, two key channel properties have been taken into account: 
(A) the channel property with respect to bursts of errors, and (B) the 
channel property with respect to the random message loss.

In cases of burst errors, as described in [20], the consumer node 
should ideally wait until the Burst has subsided before sending another 
request. This is important because, during the Burst, any sent TReq(s) 
would likely be ineffective or affected by common-mode errors. Burst 
error durations are defined by standardized hardware tests for electro-
magnetic compatibility (EMC) as per EN 61000-4-4 [21], with pulse 
patterns outlined in Clause 6.2.2. Therefore, the consumer node must 
consider the maximum burst duration when determining the Td delay.

Let us consider a situation where the channel experiences random 
message loss. In Fig.  9, Just before the SafeTSyncmax timeout expires, 
the producer node receives a TReq and begins sending n TRes to the 
consumer node. As a result, the producer node won’t be able to respond 
to any other TReq for (𝑛−1)×𝛥𝑡𝑝, and all the TRes sent during this time 
will be ignored by the consumer node. This is because the consumer 
node has already waited for SafeTSyncmax from the last TReq. After 
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Fig. 8. Non systematic Td timeout.

Fig. 9. Systematic Td Timeout.

waiting for (𝑛−1)×𝛥𝑡𝑝, if the consumer node waits for the reaction time 
(RT) of the last TRes sent, it ensures that the maximum number of TRes 
will be discarded during the Td timeout. This minimizes the chance of 
receiving unwanted TRes (i.e., from the previous block of TRes) when 
a new block of TReq is initiated. Therefore, considering the channel’s 
key properties, the consumer node should wait for the maximum time 
between ((𝑛 − 1) × 𝛥𝑡𝑝 + RT

) and the Burst Error Duration before start-
ing a new block of TReq. The proposed approach suggests to adjust the 
Td as follows: 
Td = max

(

(𝑛 − 1) × 𝛥𝑡𝑝 + RT,
Burst Error Duration )

.
(19)
9 
Fig. 10. Non systematic TRC timeout.

4.3. Setting the time request cycle (TRC)

The Time Request Cycle is an essential parameter during time 
synchronization, where the consumer node attempts to synchronizes 
with the producer node. A non-systematic configuration of the TRC can 
increase the TTS (See Definition  19), especially when there is a high 
probability of message loss in the transmission medium.

Consider an example of non-safe communication in Fig.  10 with 
parameters 𝛥𝑡𝑐 = 𝛥𝑡𝑝 = 1, SafeTSyncmax = 5,Td = 3,TRC = 15 , 𝑚 =
6, 𝑛 = 8. As the consumer node sets the TRC, the first TReq is lost. The 
second TReq is received (with a blue arrowhead), and the producer 
node sends the TRes back to the consumer node. All TRes (shown in 
purple) are lost or arrived after passing the SafeTSyncmax, so these 
TReqs will be ignored (can be seen as the bar on the arrowhead). After 
the Td timeout, the consumer node starts sending another set of m
TReq(s); in this example, the first new TReq is sent at time 𝑡 = 14
and it has been successfully received by the producer node. According 
to the protocol, the producer node starts sending the n TRes to the 
consumer node (it can be seen in purple dotted arrows). Based on 
the configured TRC, the TRC timeout expires at time 𝑡 = 15, and the 
consumer node declares the time synchronization failure. When the 
synchronization failure occurs, after passing the 𝛥𝑡𝑐 , the openSAFETY 
starts a new time synchronization phase, sets a new TRC, and sends a 
new TReq. The producer node successfully receives these new TReqs 
(shown in brown), but these new TReqs cannot be processed because 
the producer node is still busy in responding to the TReq accepted at 
time 𝑡 = 14 (shown in dotted arrows). According to the openSAFETY, 
if the producer receives a new TReq and is already responding to 
the same RxSPDO, it will ignore the new TReq. So, these TReqs will 
be ignored, and all of the received TRes at the consumer node are 
invalid as these are from previous TRC for which the synchronization 
failure has already been declared. OpenSAFETY stack generates the 
error(s) whenever it receives invalid TRes(s). We can see in Fig.  10 
that, although at 𝑡 = 18 the consumer node receives the TRes within 
the SafeTSyncmax window, this TRes is invalid as the consumer node has 
already declared the Sync-fail for the TRC during which this TReq was 
sent. Fig.  10 shows the time in the red-shaded region when a producer 
node ignores the new TReq(s) as it is busy processing old TReq, and 
the consumer node receives the invalid TRes(s).

The proposed solution to address this problem is to define the time 
request cycle in 𝑘 blocks (𝑘 = 1, 2,…) of TReq(s) such that, whenever 
the TRC timeout expires, the consumer node has already passed the Td 
timeout without sending another TReq. If a block of TReq is added to 
the time request cycle, it is mandatory to exactly complete its entire 
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Fig. 11. Systematic TRC Timeout.

duration, including the Initiation phase, Safe MaxTSync Propagation 
Delay Waiting, Time Delay, and Residual Refresh Prescale Timeout (see 
the first four points under the management of TRC timeout in Definition 
17). We can determine the minimum number of such k blocks in a TRC 
based on the target probability of successful synchronization.

The probability 𝑃block of success of the time synchronization process 
in a single block is given by Eq.  (17). From this value, we can com-
pute the probability of failure in one block of the time request cycle: 
𝑃block_fail = 1 − 𝑃block. As each synchronization block is independent 
of the previous one, the probability of synchronization failure after 𝑘
blocks (k = 1, 2, …) of TRC is as follows: 
𝑃fail(𝑘) = (𝑃block_fail)𝑘. (20)

The desired reliability (𝑅) of the transmission medium is the tar-
get probability of accomplishing synchronization in 𝑘 blocks of TRC, 
i.e., 𝑃fail(𝑘) ≤ 1 − 𝑅. Given 𝑅, we can compute the minimum amount 
of blocks required to achieve the desired reliability by rearranging the 
last inequality, hence obtaining: 

𝑘 ≥
⌈

log(1 − 𝑅)
log(𝑃block_fail)

⌉

. (21)

The overall duration of time request cycle comprise of k block is 
represented as TRC𝑘 in Eq.  (22) . Two time requests are delayed by 
𝛥𝑡𝑐 in a single block of time requests. To send m time requests, the 
maximum time will be (𝑚−1) ×𝛥𝑡𝑐 . After sending the last time request 
(TReq), there will be a waiting period of SafeTSyncmax. If the consumer 
node intends to start another time request, it must wait for the duration 
Td. However, after waiting for Td, the consumer node may still be 
unable to send the time request again due to the Refresh prescale 
Consumer has not expired (denoted as 𝛼 in Eq.  (22)). Based on the 
protocol specification, the time request for generic 𝑘 blocks (k = 1, 2, 
…) can be written as: 
TRC𝑘 = 𝑘

[

(𝑚 − 1) ⋅ 𝛥𝑡𝑐 + SafeTSyncmax] + 𝑘[Td + 𝛼], (22)

where 𝛼 is the residual Refresh prescale timeout consumer and is 
defined as: 

𝛼 =

{

0, if (TW𝑐 mod 𝛥𝑡𝑐 ) = 0;
𝛥𝑡𝑐 − (TW𝑐 mod 𝛥𝑡𝑐 ), otherwise,

(23)

where TW𝑐 (Time Wait Consumer) is defined as follows: 
TW𝑐 = SafeTSyncmax + Td. (24)

Suppose we consider the same scenario discussed in Fig.  10, with 
identical parameter configurations except for the TRC timeout, which 
is now set to TRC = 13 according to Equation  (22), we observe a better 
1

10 
outcome as shown in Fig.  11, the TRC timeout expires at time 𝑡 = 13, 
prompting the consumer node to set a new TRC at 𝑡 = 14 and send a new 
TReq (indicated by the brown arrowhead). The corresponding TRes 
is received and processed (indicated by the red arrowhead), resulting 
in successful synchronization (illustrated by the green shaded region 
with a red circle marking the accepted and processed SPDO after 
synchronization), which did not occur in the previous case. In this 
scenario, synchronization is successfully achieved at time 𝑡 = 18 during 
the second TRC, unlike the earlier scenario. Our proposed approach 
helps in reducing the time to synchronize (TTS).

4.4. Setting the time synchronization timeout (ts)

After successful time synchronization, the consumer node stores the 
values of TRefConsumer and TRefProducer (as defined in Equation  (7)). 
However, this offset changes over time due to the tolerance of the 
quartz crystal, which can cause the clocks to drift apart. Generally, this 
clock drift (𝜆) can be either positive or negative. The clock drift can 
cause the consumer node to:

1. Calculate an SPDO propagation delay that increases continu-
ously during time validation.

2. Calculate an SPDO propagation delay that decreases continu-
ously during time validation.

If the consumer node calculates the SPDO propagation delay that 
increases over time, it can cause the SPDO propagation delay to be 
greater than the residual safety control time. According to the defi-
nition 23 of the residual safety control time, we can write SCT𝑅 =
(SCT-PD)+RT. This relationship leads to the fact that to keep the 
consumer node operational and continue receiving the SPDOs, the 
SCT-PD ≥ 0. Otherwise, the residual safety control time will be less 
than the reaction time, which cannot be possible to keep the safety 
node operational. This leads to the fact that:
(

TSPDOConsumer − TRefConsumer
)

−
(

TSPDOProducer − TRefProducer
)

≤ SCT. (25)

Consider the following nominal values during the time validation:
TSPDO𝑁

Consumer = Nominal value of TSPDOConsumer.
TSPDO𝑁

Producer = Nominal value of TSPDOProducer.
We can write Equation (25) by incorporating the clock drift accumu-
lated over time:
(

TSPDO𝑁
Consumer ± 𝜆𝑡 − TRefConsumer

)

−
(

TSPDO𝑁
Producer ± 𝜆𝑡 − TRefProducer

)

≤ SCT. (26)

⟹ |𝑡| ≤
SCT −

(

TSPDO𝑁
Consumer − TRefConsumer

)

|±2𝜆|

+

(

TSPDO𝑁
Producer − TRefProducer

)

|±2𝜆|
. (27)

The above equation (|𝑡| = ts(1) as first consideration) can be simplified, 
assuming the consumer and producer nodes have the same clock drifts: 

ts(1) ≤ SCT − Reaction Time
|±2𝜆|

. (28)

We can simplify the above equation by considering the clock drifts of 
the Producer and Consumer node separately as follows: 

ts(1) ≤ SCT − Reaction Time
|±𝜆Consumer ± 𝜆Producer|

. (29)

While ±𝜆Consumer and ±𝜆Producer are the clock drifts of the consumer and 
producer nodes, respectively.

If the consumer node calculates the SPDO propagation delay that 
decreases over time, then it can cause the SPDO propagation delay to 
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be less than SPDOmin. Therefore, according to the definition  20, the 
following condition should be valid during the time validation:
(

TSPDO𝑁
Consumer ± 𝜆𝑡 − TRefConsumer

)

−
(

TSPDO𝑁
Producer ± 𝜆𝑡 − TRefProducer

)

> SPDOmin. (30)

During the time validation, the consumer node have additional time 
SCT as safety margin.
(

TSPDO𝑁
Consumer ± 𝜆𝑡 − TRefConsumer

)

−
(

TSPDO𝑁
Producer ± 𝜆𝑡 − TRefProducer

)

+SCT > SPDOmin. (31)

The above equation (|𝑡| = ts(2) as second consideration) can be 
simplified as follows: 

ts(2) ≤ SRT − SPDOmin

|±𝜆Consumer ± 𝜆Producer|
. (32)

The maximum value of ts (tsmax) can be chosen as the minimum value 
between ts(1) and ts(2): 
tsmax = min (ts(1), ts(2)) . (33)

Equation (33) represents the maximum value of ts during which time 
synchronization must happen otherwise the consumer node will fall 
into FAIL-SAFE due to increase in the synchronization error. The max-
imum estimation of the synchronization error is dependent of the tsmax

also on and static delays (DStatic
) (NIC Latency,scheduling and execu-

tion delays) and maximum jitter (Jmax). The maximum synchronization 
error (Emax) can be given by the following equation: 
Emax = |±𝜆Consumer ± 𝜆Producer| × tsmax + Jmax + DStatic. (34)

4.5. Setting the configuration parameters for time synchronization

In this section, we summarize the key configuration steps needed 
to achieve successful time synchronization, as previously discussed. 
Application designers can follow these steps to properly adjust the 
TxSPDO and RxSPDO parameters as required.

1. RxSPDO: Set Td according to the Equation  (19)
2. RxSPDO: Set m,n using Algorithm 1.
3. Estimate 𝑘 according to the Equation  (21).
4. RxSPDO: Set Delay SPDOmax = SRT.
5. RxSPDO: Set SCT = SRT - RT.
6. RxSPDO: Set MaxTSyncPropDelay = (SRT-SCT + 𝛽𝑐

)

.
7. SafeTSyncmax ← MaxTSyncPropDelay + SCT.
8. RxSPDO: Set 𝛽𝑐 < TSyncmin < 𝛽𝑐𝑝.
9. RxSPDO: Set Delay SPDOmin < 𝛽𝑝.
10. RxSPDO: Compute and set TRC𝑘 according to Eq.  (22).
11. RxSPDO: Set ts < tsmax.

5. Experimental analysis on the tuning of some key parameters

This section highlights the positive impact of parameter config-
urations based on the proposed approach, referred to as Systematic 
Configuration, compared to configurations following alternative meth-
ods, which we categorize as Non-Systematic Configuration. In the 
context of this paper, the following three configuration parameters 
have been analyzed: TRC, ts, and (𝑚, 𝑛). The used experimental setup 
involves three safety nodes within a dedicated Local Area Network 
(LAN) connected via Ethernet. These nodes include the Safety Control 
Manager (SCM), the SN–Producer Node, and the SN–Consumer Node. 
The SCM is responsible for sharing the Safety Network Management 
Telegram (SNMT) and Safety Service Device Object (SSDO) frames, 
while the SN–Producer Node handles the transmission of Safety-Process 
Data Object (SPDO) frames from the producer to the consumer node. 
The Safety Hardware Near Firmware (SHNF), utilizes the UDP protocol 
for communication. The experimental setup is shown in Fig.  12, and 
detailed information about the safety nodes can be found in Table  8.
11 
Fig. 12. Experiment setup.

Fig. 13. Experimental Results of tuning TRC.

5.1. Experimental analysis of TRC tuning

For evaluating the impact of a well-configured TRC parameter, we 
have introduced the controlled network impairments, NETEM [22], 
shown in Table  2. The introduced network impairments are delay, 
jitter, maximum packet loss, and the correlation of error burst (CRERR), 
which shows the likelihood of losing another frame if one frame is lost. 
The protocol and application parameters used to perform this analysis 
are shown in Table  1. This experiment aims to determine the time to 
synchronize (TTS) (See Definition  19) over time, and shows the advan-
tages obtained when TRC is set according to our approach. See Table 
3 for the Systematic and Non-Systematic TRC timeout configurations 
used in these experiments.

The experiment results are shown in Fig.  13, where the 𝑥-axis 
represents the time in seconds, while the 𝑦-axis shows the TTS in 
milliseconds associated with both configurations. The red and blue 
lines represent the TTS for non-systematic and systematic TRC configu-
rations, respectively; the horizontal dotted lines show the configured 
TRC values. The red line corresponds to the Non-Systematic TRC, 
and the blue line corresponds to the Systematic TRC timeout. TTS 
mostly remains below 10 ms for both configurations, indicating that the 
synchronization between the consumer and producer nodes is on av-
erage, efficient. However, TTS values are strongly different when TRC 
elapses. With the non-systematic TRC value, TTS can reach spikes up to 
143 ms. When TRC elapses, after passing the refresh prescale consumer, 
the consumer node attempts to synchronize again but often receives 
invalid time response(s) from the producer node, and the producer node 
remains busy in sending the TRes due to previously accepted TReq. 
This can lead to synchronization failures, and the consumer node must 
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Table 1
Fixed application parameters.
 Parameter SCT RT m n Δ𝑡𝑐 Δ𝑡𝑝 Td Payload ts SPDOmin SNMT timeout Test duration 
 Value 20 (ms) 3 (ms) 3 5 0.3 (ms) 1 (ms) 4 (ms) 311 Bytes 10 (s) 0.2 ms 1 (s) 2500 (s)  
Table 2
Introduced network impairments.
 Test name Delay (ms) Jitter (ms) Max Packet Loss CRERR 
 TTS 5 ± 3 5% 15%  

Table 3
Systematic and non-systematic TRC timeouts.
 Test
name

Systematic TRC
(k=1)

Non-Systematic TRC
(1<k<2)

 TTS 27.9 (ms) 28.5 (ms)  

Fig. 14. Experimental results of tuning ts.

repeatedly attempt to synchronize, which can cause unexpected delays. 
Whereas, with the systematic TRC value, the highest spike is around 
35 ms. The experimental results provide strong evidence supporting the 
effectiveness of the proposed Systematic TRC approach.

5.2. Experimental analysis of ts tuning

To conduct the experiment on the impact of the ts timeout, we first 
measured the clock drifts of the producer and consumer nodes using 
the Chrony tool on Linux [23]. Over the course of the experiment, 
we collected more than 1,000 clock drift observations and used the 
maximum drift value as the approximated clock drift for the safety 
node. In this case, the accumulated clock drifts of both the producer 
and consumer nodes were approximately a negative 30 ppm with a 
maximum skew of ±1.2ppm. We then ran the test using the parameters 
described in Table  1, with the only variation being the ts timeout. Table 
4 reports the tsmax derived from the Equation  (25) and the Systematic 
and Non-Systematic ts timeout values used in the test; note that our 
approach allows us to compute the maximum ts and, thus, we choose 
a ts less than such a maximum value, e.g. 10 s. On the other hand, in 
the case of a non-systematic ts timeout value, the application designer 
does not know in advance that a ts = 800(s) is an incorrect parameter 
that may lead to unavailability or, worst, safety issues if the minimum 
SPDO propagation delay is incorrectly configured and the clock drift of 
both nodes is negative.

There were no induced network impairments in these experiments. 
The experiment results are presented in Fig.  14 where the SPDO Propa-
gation Delay is plot over time for the two different configurations. The 
12 
Table 4
Systematic and non-systematic ts timeout.
 Test
name

tsmax Systematic ts
(ts< tsmax)

Non-Systematic ts
(ts> tsmax)

 ts-test 760 (s) 10 (s) 800 (s)  

Table 5
Application specifications: Best configuration test for m and n.
 𝐿TReq 𝐿TRes 𝑃block ts TRC Duration 
 55-Bytes 57-Bytes 0.96 10 (s) 43.2 (ms) 5 min  

𝑥-axis shows the time in seconds, and the 𝑦-axis shows the propagation 
delay in milliseconds. The blue line corresponds to the experiment 
with the Systematic ts configuration, while the red line represents the 
experiment with the Non-Systematic ts configuration. The horizontal 
dashed red line indicates the minimum allowed SPDO propagation 
delay, which serves as the lower limit for the acceptable propagation 
delay.

The purpose of this experiment was to show the impact of using a 
wrong ts timeout, greater than tsmax computed using our approach. The 
Non-Systematic ts configuration (red line), has a negative trend due 
to the clock drift between the producer and consumer nodes. As the 
measured clock drifts of both nodes were negative, such negative drifts 
lead to a decreasing SPDO propagation delay calculation over time. 
When such a propagation delay drops below the minimum allowable 
threshold, which is represented by the red dashed line, the consumer 
node enters the FAIL-SAFE state. This occurs when 𝑡 is around 770 s. 
On the other hand, using our approach, the maximum allowed ts value 
is computed, i.e. 760 s, and the application designer can set the ts 
parameter to a value that will not lead a consumer node to fall into 
the FAIL-SAFE state.

5.3. Experimental analysis on m and n

To evaluate the impact of configuring the number of time requests 
(m) and time responses (n) on the overall efficiency of the time syn-
chronization protocol, we conducted 5 min experiments under varying 
levels of randomly induced frame loss, ranging from 0% to 4% (See Ta-
ble  5 for the details which contains the length of 𝐿TReq and 𝐿TRes). The 
objective was to assess the number of discarded time responses TRes(D)
received at the consumer node after successful time synchronization. 
These discarded responses, although no longer contributing to the 
synchronization, still require validation and checking the criteria to be 
processed, thereby introducing unnecessary overhead in communica-
tion and computation, particularly in real-time or resource-constrained 
environments.

We compared two configurations:

• Non-Systematic Configuration, where maximum values of m and
n are fixed without accounting for channel conditions.

• Systematic Configuration,where m and n are dynamically set 
based on estimated parameters such as Bit Error Rate (BER), pay-
load length, and required reliability, as derived from Algorithm 
1.

The experimental results are presented in Table  7. They clearly demon-
strate that the Systematic Configuration significantly reduces the num-
ber of discarded time responses while maintaining synchronization 
reliability. At 0% loss, the Non-Systematic Configuration results in 1860 
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Table 6
Impact of Systematic Configuration on safety application.
 Parameter
Symbol

Impact due to systematic configuration  

 m Reduces redundant processing of SPDO,
improves performance.

 

 n Reduces redundant processing of SPDO,
improves performance.

 

 TRC𝑘 Better in terms of performance and efficiency. 
 ts Better in terms of ensuring safe operations.  

discarded responses compared to only 42 for the Systematic Configu-
ration, which is a reduction of approximately 97.7%. This observation 
continues across all levels of loss, with Systematic Configuration con-
sistently reducing TRes(D) by a large margin. For instance, at 4% 
induced loss, Systematic Configuration leads to 350 discarded responses 
compared to 1761 in the Non-Systematic case, which is approximately 
80.1% reduction.

It is worth noting that both configurations maintain successful syn-
chronization across all tested loss levels, with a single synchronization 
failure occurring only at 4% loss in both cases. This outcome vali-
dates that the Systematic Configuration achieves equivalent reliability 
while offering superior efficiency. Furthermore, the Non-Systematic 
Configuration generates a high number of superfluous time responses 
regardless of the actual network conditions. Non-Systematic approach 
is quite inefficient, as it introduces fixed redundancy without con-
sidering the actual loss characteristics of the medium. On the other 
hand, the Systematic Configuration adapts the level of redundancy 
based on network conditions, which keeps a balance between reliability 
and resource utilization. These results support our proposed systematic 
method for configuring m and n, which leads to a more scalable, 
adaptive, and efficient time synchronization. It minimizes unnecessary 
pre-processing by reducing the volume of discarded TRes, thereby it 
improves the protocol’s applicability in real-time systems and networks 
with constrained computational and communication resources.

6. Performance analysis test of openSAFETY protocol

In this section, we have performed the performance analysis of the 
openSAFETY protocol. Our experimental setup consists of three safety 
nodes within a dedicated Local Area Network (LAN) connected via 
Ethernet. These nodes are the SCM, the SN–Producer Node, and the 
SN–Consumer Node. The SCM is responsible for sharing the SNMT and 
SSDO frames, while the SN–Producer Node handles the transmission of 
Safety-Critical Data (SPDO) frames from the producer to the consumer 
node. The safety hardware, including the firmware SHNF, uses the UDP 
protocol. The experimental setup is illustrated in Fig.  12, and detailed 
information about the safety nodes is provided in Table  8.

We conducted two types of performance tests, as described below:

• Test Case 1: openSAFETY performance by varying the payload 
and transmission periods.

• Test Case 2: Network Impairment and Resilience Evaluation of 
openSAFETY Protocol.

6.1. Test case 1

In Test Case-1, we have shown the network conditions and the 
application requirements in Table  10. We evaluated the protocol’s 
performance by varying the transmission period of SPDO frames and 
the payload size of the data. This test consisted of two experiments:

1. Experiment 1: We set the payload to half of the maximum 
capacity of a standard SPDO frame (See Table  11) and varied 
the transmission frequencies from 5 kHz to 100 Hz.
13 
Fig. 15. Propagation Delay Experiment-1: Half Payload.

2. Experiment 2: We used the maximum payload capacity of 
a standard SPDO frame (See Table 11) and again varied the 
transmission frequencies from 5 kHz to 100 Hz.

A dedicated task was created using the Ptask library [24] to ensure 
the period update of the data in the SOD. Safety-critical data was 
exchanged for 60 s during each experiment, as outlined in Table  9. 
For each experiment, we have evaluated the performance based on the 
following metrics:

1. SPDO Propagation delay (PD): See Definition  22.
2. Max Jitter (𝐉max

)

: The difference between Maximum and Mini-
mum propagation delay is the maximum jitter during the trans-
mission. Max Jitter can be represented as Max(PD)- Min(PD).

3. Inter-Frame Delay Variation (IFDV): The absolute value of the 
difference between the Propagation delay of two consecutive 
received SPDOs. IFDV can be expressed as |𝑃𝐷(𝑖 + 1) − 𝑃𝐷(𝑖)|, 
where 𝑖 is the order the frames were received [25].

4. Bandwidth: Bandwidth refers to the maximum rate at which 
data can be transferred over a network connection or commu-
nication channel Bandwidth = Frames/s * Payload.

5. %Failure: (SPDOs Failed/SPDOs Sent)*100.

6.2. Results test case 1

For both experiments, the propagation delay slightly decreases as 
the transmission period increases from 0.2 ms to 10 ms. The Box 
plots Fig.  15,16 highlight two frequency ranges: 5 kHz to 1.1 kHz (in 
green) and 1 kHz to 100 Hz (in orange). The 5 kHz to 1.1 kHz range, 
associated with shorter transmission periods, shows a slight increase in 
the propagation delay when the transmission frequency is high, but the 
mean propagation delay remains below 2.5 ms across all transmission 
frequency ranges.

Experiment 2 generally shows a slight variability compared to Ex-
periment 1. In Experiment 1, the mean propagation delay lies between 
1.8 and 2.4 ms. The number of outliers in the 5 kHz to 1.1 kHz range 
is higher than the 1 kHz to 100 Hz range. However, the distribution 
of propagation delay shows that most data points cluster around the 
mean values, indicating no significant variation in propagation delay 
for most cases.

In Experiment 2, the maximum jitter is slightly high at shorter 
transmission periods (up to 0.5 ms), reaching up to 20 ms. In contrast, 
Experiment 1 shows lower maximum jitter, reaching around 12 ms 
for a transmission period of 0.2 ms. We have shown the results of 
the experiments in Tables  12, 13. In Experiment 2 and Experiment 
1, we observed that the mean IFDV is below 0.3 ms. The dots in 
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Table 7
Experiment results of Systematic and Non-Systematic Configuration of Number(s) of TReq(s) and TRes(s)
 % Introduced loss Configuration No of m and n TRes(D) Sync-Fail 
 0% Non-Systematic m=63,n=63 1860 0  
 0% Systematic m=2,n=2 42 0  
 1% Non-Systematic m=63,n=63 1845 0  
 1% Systematic m=4,n=5 88 0  
 2% Non-Systematic m=63,n=63 1830 0  
 2% Systematic m=7,n=7 220 0  
 3% Non-Systematic m=63,n=63 1794 0  
 3% Systematic m=9,n=13 280 0  
 4% Non-Systematic m=63,n=63 1761 1  
 4% Systematic m=13,n=15 350 1  
Table 8
Detailed information about safety nodes and Ethernet controller network.
 Safety Node CPU Approx. Clock Drift skew OS and Kernel Ethernet and Driver 
 SCM Intel Core i7/3.9 GHz 12.212 ppm fast 1.338 ppm Linux Mint 5.15.0–56 82541PI e1000  
 SN–Producer Intel Core i5/2.9 GHz 20.612 ppm slow 0.255 ppm Linux Mint 5.15.0–56 RTL8111 r8169  
 SN–Consumer Intel Core i7/4.7 GHz 8.526 ppm slow 0.934 ppm Linux Mint 5.15.0–56 RTL8111 r8169  
Table 9
Baseline Test-Case 1.
 Experiment
ID

Payload Transmission
Frequencies

 1 Half 5 kHz to 100 Hz 
 2 Full 5 kHz to 100 Hz 

Fig. 16. Propagation Delay Experiment-2: Full Payload.

the bar in Figs.  18, 17 represent the mean of IFDV, and the bars’ 
length represents the standard deviation. At shorter transmission pe-
riods (0.2 ms to 0.9 ms), the mean IFDV usually remains between 
0.20 ms and 0.30 ms; this indicates low variability in frame arrival 
times. However, at higher frequencies, the IFDV reaches up to 0.40 ms. 
This might be possible due to the increased data rate, which causes 
network congestion. Experiment 1 shows a lower mean IFDV across 
all transmission periods, showing improved stability when the Payload 
is half. The lower transmission frequency range (1 kHz to 100 Hz) 
consistently shows reduced IFDV in both experiments, indicating that 
lower transmission rates mitigate the impact of data variability. This 
disparity between the experiments shows the importance of optimizing 
transmission frequency and data load to minimize inter-frame delay 
variation. By leveraging lower transmission frequencies and adjust-
ing the data load, the openSAFETY achieves more consistent frame 
intervals, which can help improve performance and stability.

In both experiments, Initially, at shorter transmission periods
(0.2 ms to 0.5 ms), the bandwidth is higher due to the frequent trans-
mission of frames. In Experiment 1, the peak bandwidth (consuming 
14 
Fig. 17. IFDV Experiment-1: Half Payload.

Fig. 18. IFDV Experiment-2: Full Payload.

SPDO frames only) reaches approximately 12.5 Mbps; in Experiment 
2, it reaches nearly 22.5 Mbps; the higher bandwidth observed in 
Experiment 2 shows increased network utilization under full Payload. 
The total message failures indicate that shorter transmission periods 
correlate with a higher incidence of failed messages. In both experi-
ments, the number of failed messages increases when the transmission 
period reduces to 0.2 ms and 0.3 ms. Specifically, Experiment 2 shows 
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Table 10
Application design requirements: Test Case 1.
 Parameter 𝑃𝑒 CRERR 𝛽𝑐𝑝 SRT RT SNMT/SSDO timeout 
 Value 0.001 25% 0.2 ms 500 ms 10 ms 1 s  
Table 11
Distribution of SPDO data Bytes under Half and Full Payload.
 Payload Data

Bytes
Header-OS
Bytes

Data-OS
Bytes

Header-UDP
Bytes

Header-IPV4
Bytes

Header-Ethernet
Bytes

Total Payload
Bytes

 Half 128 13 2 × 128 8 20 14 311  
 Full 254 13 2 × 254 8 20 14 563  
Table 12
Experiment-1 results.
 Transmission
period (ms)

Bandwidth
(Mbps)

Mean PD
(ms)

Max PD
(ms)

Min PD
(ms)

Max Jitter
(ms)

Std Dev
PD (ms)

SPDOs
Sent

SPDOs
Failed

Failure
(%)

 10.0 0.2488 1.8559 3.019 0.977 2.042 0.144 6001 0 0.0  
 9.0 0.2764 1.8696 2.946 0.977 1.969 0.1426 6667 0 0.0  
 8.0 0.311 1.8652 3.232 0.91 2.322 0.1413 7501 0 0.0  
 7.0 0.3554 1.8606 2.98 0.921 2.059 0.1408 8573 0 0.0  
 6.0 0.4147 1.8665 3.982 1.604 2.378 0.1431 10,001 0 0.0  
 5.0 0.4976 1.849 4.099 1.591 2.508 0.1445 12,001 0 0.0  
 4.0 0.622 1.8561 2.43 0.951 1.479 0.1413 15,001 0 0.0  
 3.0 0.8293 1.8524 4.579 0.927 3.652 0.1522 20,001 0 0.0  
 2.0 1.244 1.844 4.432 1.598 2.834 0.1439 30,001 0 0.0  
 1.0 2.488 2.1114 4.16 0.954 3.206 0.1061 59,997 0 0.0  
 0.9 2.7644 2.0372 3.186 0.998 2.188 0.1958 66,665 0 0.0  
 0.8 3.11 2.2395 6.221 0.911 5.31 0.1194 75,000 0 0.0  
 0.7 3.5543 2.2145 5.807 1.787 4.02 0.1967 85,710 0 0.0  
 0.6 4.1467 2.3243 6.535 0.925 5.61 0.1476 100,000 3 0.003  
 0.5 4.976 2.1419 6.174 0.902 5.272 0.2082 120,001 2 0.0017 
 0.4 6.22 2.0149 6.026 0.887 5.139 0.1758 150,001 18 0.012  
 0.3 8.2933 2.192 7.405 0.925 6.48 0.1742 200,001 66 0.033  
 0.2 12.44 2.1405 12.345 0.988 11.357 0.1958 300,001 377 0.1257 
Table 13
Experiment-2 results.
 Transmission
Period (ms)

Bandwidth
(Mbps)

Mean PD
(ms)

Max PD
(ms)

Min PD
(ms)

Max Jitter
(ms)

Std Dev
PD (ms)

SPDOs
Sent

SPDOs
Failed

Failure
(%)

 10 0.4504 2.4253 2.679 1.887 0.792 0.1015 6001 0 0.0  
 9 0.5004 2.4642 2.738 1.858 0.88 0.1151 6668 0 0.0  
 8 0.563 2.3844 5.194 1.729 3.465 0.141 7500 0 0.0  
 7 0.6434 2.3969 2.711 1.678 1.033 0.1461 8572 0 0.0  
 6 0.7507 2.3852 4.006 1.749 2.257 0.1901 10,001 0 0.0  
 5 0.9008 2.4588 2.686 1.854 0.832 0.1159 12,001 0 0.0  
 4 1.126 2.3268 3.049 1.752 1.297 0.0948 15,001 0 0.0  
 3 1.5013 2.2392 3.95 1.707 2.243 0.1711 20,001 0 0.0  
 2 2.252 2.207 6.162 1.794 4.368 0.1814 30,001 0 0.0  
 1 4.504 2.1865 6.026 1.744 4.282 0.216 59,999 0 0.0  
 0.9 5.0044 2.1237 6.324 1.662 4.662 0.2062 66,666 0 0.0  
 0.8 5.63 2.1714 5.76 1.198 4.562 0.1787 75,000 0 0.0  
 0.7 6.4343 2.2512 6.326 1.305 5.021 0.1434 85,715 2 0.0023 
 0.6 7.5067 2.3359 4.668 1.024 3.644 0.1621 100,000 3 0.003  
 0.5 9.008 2.1695 7.806 1.044 6.762 0.2319 120,001 10 0.0083 
 0.4 11.26 2.1378 10.991 1.278 9.713 0.2152 150,000 95 0.0633 
 0.3 15.0133 2.334 18.509 1.317 17.192 0.1854 200,001 90 0.045  
 0.2 22.52 2.2474 20.44 1.28 19.16 0.1928 300,237 475 0.1582 
a sharp spike in failed messages, exceeding 475 failures at 0.2 ms, 
compared to a lower count of around 377 failures in Experiment 1. This 
disparity highlights the increased likelihood of frame loss under higher 
data transfer rates and full payload conditions. As the transmission 
period goes ahead 0.7 ms, both experiments show a marked decline in 
message failures. This stabilization suggests that increasing the interval 
between transmissions allows the network to manage traffic more 
effectively, reducing frame loss and improving reliability.

6.3. Test case 2

Test Case 2 aims to test how well the protocol performs under 
adverse or non-ideal network conditions. We introduced controlled 
15 
network impairments to evaluate the protocol’s performance, including 
frame loss, latency, jitter, and bandwidth limitations using NETEM [22] 
in Linux. Ethernet networks are highly reliable, often exhibiting frame 
loss rates below 0.1%. However, testing up to 1% loss is reasonable 
to account for rare, extreme conditions according to IEEE 802.3 Eth-
ernet Standard [11]. Ethernet LANs generally experience very low 
latency, typically between 1–5 ms, which is Common for Ethernet 
LANs with multiple switches or under moderate load. However, to 
simulate the overloaded or congested LAN environment, 10 ms latency 
can be used [26]. Small amounts of jitter (1–5 ms) can occur due 
to network congestion or switch buffering [27]. Ethernet speeds have 
evolved, ranging from 10 Mbps in legacy equipment to 1 Gbps in 
modern LANs. Testing across this range ensures the protocol can handle 
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Table 14
Baseline for Test Case 2.
 Experiment
ID

Frame
Loss (%)

Latency
(ms)

Jitter
(ms)

Bandwidth
(Mbps)

Description  

 1 0% 0 ms 0 ms 1000 Mbps Normal  
 2 0.01% 0 ms 0 ms 1000 Mbps Minimal frame loss  
 3 0.1% 0 ms 0 ms 1000 Mbps Typical Ethernet LAN loss  
 4 1% 0 ms 0 ms 1000 Mbps High frame loss  
 5 0% 1 ms 0 ms 1000 Mbps Slight increase in latency  
 6 0% 5 ms 0 ms 1000 Mbps Moderate latency increase  
 7 0% 10 ms 0 ms 1000 Mbps High latency  
 8 0% 0 ms 1 ms 1000 Mbps Low jitter  
 9 0% 0 ms 2 ms 1000 Mbps Moderate jitter  
 10 0% 0 ms 5 ms 1000 Mbps High jitter  
 11 0% 0 ms 0 ms 100 Mbps Limited bandwidth  
 12 0% 0 ms 0 ms 10 Mbps Severe bandwidth constraint  
 13 0.1% 5 ms 2 ms 1000 Mbps Moderate loss, latency, and jitter  
 14 1% 10 ms 5 ms 10 Mbps Severe loss, latency, and low bandwidth 
Table 15
Results for Test Case 2: Under degraded network conditions.
 Experiment
ID

Min PD
(ms)

Mean PD
(ms)

Max PD
(ms)

Std Dev
PD (ms)

Mean IFDV
(ms)

Max Failed
SPDOs

Failure
(%)

 1 1.732 2.2384 9.997 0.2201 0.2198 0 0.0  
 2 1.647 2.1474 14.106 0.2809 0.2205 1 0.0017  
 3 1.835 2.2677 17.992 0.2666 0.2184 13 0.0217  
 4 1.655 2.2626 8.128 0.2351 0.2185 23 0.0383  
 5 2.714 3.1176 18.987 0.2491 0.221 0 0.0  
 6 6.769 7.2248 15.763 0.2099 0.2228 0 0.0  
 7 11.752 12.1304 17.791 0.1881 0.2218 0 0.0  
 8 1.872 2.4816 13.912 0.3384 0.3328 2591 4.3183  
 9 1.696 2.3175 18.560 0.3857 0.3141 6053 10.0883 
 10 1.696 2.3507 18.267 0.3880 0.2696 9553 15.9217 
 11 1.717 2.1777 17.458 0.2623 0.221 1 0.0017  
 12 39.500 58.5641 79.400 10.5432 0.1888 720 1.2000  
 13 1.600 5.0232 15.000 1.3362 0.1856 1750 2.9100  
 14 7.000 57.1092 77.800 12.3871 1.2852 26,124 43.5400 
both constrained and high-speed scenarios. The IEEE 802.3u [28] and 
802.3ab [29] standards define Fast Ethernet (100 Mbps) and Gigabit 
Ethernet (1000 Mbps), respectively [11].

Experimental setup test case 2

The experimental setup for Test Case 2 is precisely the same as for 
Test Case 1. Additionally, we have fixed the transmission frequency to 
1 KHz and the Payload to the Full Payload for this test. The baseline 
of introduced network impairments to perform these experiments are 
shown in Table  14.

6.4. Results test case 2

The experimental evaluation of the communication protocol under 
degraded network conditions shows its robustness and handling of 
network impairments. The results of the experiment are shown in Table 
15.

In the baseline test (Experiment 1), the protocol shows stable per-
formance with a low mean latency of 2.24 ms, minimal variation, and 
no frame loss, establishing an ideal reference point.

As frame loss is introduced incrementally in Experiments 2–4, there 
is a slight increase in mean latency (from 2.15 ms to 2.27 ms) and 
standard deviation, indicating a minor impact on delay. The failure 
rate remains very low, reaching 0.0383% in Experiment 4, showcasing 
the protocol’s resilience under typical Ethernet LAN conditions. In 
Experiments 5–7, increasing latency without additional faults increases 
mean latency (up to 12.13 ms) as expected. Notably, the protocol 
maintains a zero failure rate, even as the network delay increases; 
this highlights the ability to tolerate added propagation delay without 
sacrificing reliability. The introduction of jitter in Experiments 8–10 
causes noticeable increases in delay variation and the number of failed 
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messages. The reason is that the jitter can cause frames to arrive out of 
order. This can disrupt protocols expecting frames to arrive in sequence, 
potentially affecting the data integrity or requiring reordering mecha-
nisms; therefore, it causes the failure rate to rise significantly, reaching 
up to 15.92% in Experiment 10. Despite this, the mean latency remains 
relatively stable, suggesting that the protocol can handle moderate 
jitter but struggles when the variability becomes severe. Bandwidth lim-
itations in Experiments 11 and 12 substantially increase mean latency, 
particularly in Experiment 12 (mean PD of 58.56 ms). Although the 
protocol performs well under moderate constraints (Experiment 11), 
severe bandwidth limitations result in a failure rate of 1.2%, indicat-
ing congestion and potential frame loss under restricted bandwidth 
conditions.

Combined fault conditions in Experiments 13 and 14 illustrate the 
compounded effects of multiple network impairments. In Experiment 
13, the protocol manages moderate faults with a mean latency of 
5.02 ms and a failure rate of 2.91%. However, Experiment 14, involving 
severe frame loss, latency, jitter, and bandwidth constraints, pushes 
the protocol to its limits, with the highest failure rate at 43.54%. This 
indicates a significant degradation in performance, as expected under 
extreme network conditions.

7. Conclusions

OpenSAFETY offers significant flexibility and adaptability as a 
fieldbus-independent protocol, making it an ideal choice for industrial 
safety systems. Our research into the time synchronization mechanism 
has provided critical insights into maintaining the operational integrity 
of safety nodes, particularly in real-time systems where deterministic 
timing is essential. A significant contribution of this work is the devel-
opment of a structured approach for configuring safety applications. 
To the best of our knowledge, no existing method offers practical 
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guidelines for configuring safety nodes, and our approach addresses this 
gap by providing a clear, effective, and structured method for tuning 
safety applications to ensure reliable and safe operations. This method 
and the associated algorithm can be deployed in real industrial systems 
to tune the openSAFETY protocol and related application parameters 
based on real-time network conditions and application requirements.

In industrial systems, where the communication network may expe-
rience varying levels of congestion, packet loss, or delays, the proposed 
parameter tuning will be beneficial in maintaining safe and efficient 
openSAFETY operations. This approach also represents a step toward 
isolating application-dependent and protocol-dependent parameters. 
Additionally, when used as a real-time monitoring defensive technique 
within the Safety Node (SN), the SCM can trigger the parameter ad-
justment process in safety nodes. This process will recalculate the time 
synchronization parameters, raising an alarm when the current config-
uration parameters are no longer suitable or autonomously adjusting 
the time synchronization parameters to ensure they remain within a 
range verified and approved by the industry’s safety team. For example, 
when a new safety node is added to the network or an existing node is 
removed, the algorithm can adjust the time synchronization parameters 
autonomously. This process simplifies operations for end-users who 
lack protocol-level knowledge.

The parameter tuning approach and the real-time parameter mon-
itoring algorithm can be integrated into an easy-to-use software inter-
face for deployment in real industrial systems. This software interface 
would enable engineers and system designers to set high-level objec-
tives, such as the desired reaction time or required redundancy for time 
synchronization, while the monitoring algorithm handles the lower-
level adjustments based on current network conditions and application 
needs.

The software interface would also allow monitoring of the system’s 
performance, including parameters such as latency, jitter, and packet 
loss, and enable the safe and controlled adjustment of key parame-
ters if necessary, based on ongoing analysis of network performance 
and safety requirements. This is especially important in wireless net-
works [30], where the performance is sometimes unpredictable due to 
interference, multipath fading, or signal attenuation. In such systems, 
the algorithm can modify some key parameters like the Time Request 
Cycle (TRC), Time Synchronization Timeout (ts), and Time Delay (Td) 
to compensate for the loss and delay in transmission.

One of the important features of the tuning algorithm is its abil-
ity to adapt to network impairments. If the system detects that the 
communication medium is experiencing high levels of packet loss or 
high jitter, the algorithm can increase the redundancy of time requests 
and responses. This can increase the possibility that the safety nodes 
continue to synchronize properly even under suboptimal conditions. 
However, further work is needed to comprehensively analyze the pro-
tocol’s performance in wireless systems, as wireless networks introduce 
more unpredictable delays and variable network conditions, making it 
challenging to predict best and worst-case delays.

Future studies should focus on detailed evaluations of how open-
SAFETY can be optimized further for wireless communication, consid-
ering factors such as signal interference, multipath propagation, and 
real-time packet loss recovery policies. Additionally, the adaptation 
of the protocol under highly fluctuating network conditions, such as 
those seen in industrial wireless systems, will be important for future 
deployments.

As a part of this work, we have examined the impact of non-
systematic parameter configurations and demonstrated how our ap-
proach is helpful. The systematic effects of parameter configurations 
on safety applications are summarized in Table  6. Furthermore, we 
conducted a comprehensive performance analysis of openSAFETY, eval-
uating its handling of safety-critical data transmission over UDP via 
Ethernet. Our results revealed that the protocol successfully maintains 
its expected cycle time across varying payload sizes. We also assessed 
its performance under different network impairments and found that 
openSAFETY remains robust and reliable, even in network disruptions 
under a certain level.
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