Journal of Systems Architecture 169 (2025) 103605

journal homepage: www.elsevier.com/locate/sysarc

Contents lists available at ScienceDirect EMBEDDED
ﬁlilgliﬁWNAHE

Journal of Systems Architecture

Check for

Time synchronization and performance analysis of the openSAFETY protocol |

via UDP over Ethernet™

Shoaib Zafar®*, Salvatore Sabina, Alessandro Biondi, Giorgio Buttazzo

Real-time Systems Laboratory, Scuola Superiore Sant’Anna, Pisa, Italy

ARTICLE INFO

Keywords:

Functional safety
OpenSAFETY protocol
Safety-critical systems
Real-time systems
Industrial IoT
Industry 5.0

ABSTRACT

The growing demand for Ethernet-based Industrial Internet of Things (IIoT) is changing the shape of modern
industrial systems and emphasizing the need for high-speed, reliable, scalable, and safe communication among
industrial devices. Ethernet-based networks provide the basis for seamless device integration, real-time data
exchange, and increased operational efficiency, making them the key to Industry 5.0 applications. As industrial
automation becomes increasingly complex, the importance of functional safety grows exponentially. The
openSAFETY protocol is a fieldbus-independent, scalable, and robust protocol for implementing functional
safety. Our contribution is twofold. First, we analyze time synchronization in the openSAFETY to fully
understand the interrelated timing parameters and give some practical guidelines to tune the safety application.
We have proposed the parameter tuning approach, which is better in terms of performance and ensures
continuous, safe operations. Second, we analyze the protocol’s performance via UDP over Ethernet under
normal and degraded network conditions. We found the protocol resilient to network impairments under
certain levels during the experiments. Under normal working conditions, the cycle time was successfully

achieved in the microsecond range, even at full payload capacity.

1. Introduction

The Industrial IoT (IIoT) has revolutionized manufacturing and in-
dustrial processes by enabling connected devices, sensors, and systems
to work together seamlessly, leading to increased efficiency, predictive
maintenance, and optimized operations. However, as the complexity
of these systems increases, the stakes for ensuring their reliable and
safe operation increase. Functional safety is a cornerstone of Industry
5.0, which ensures the reliable operation of connected devices in
environments where failures can lead to dangerous consequences [1].

Functional safety addresses risks from hardware failures, software
failures, and system and communication failures through safe commu-
nication design, redundancy, and real-time error detection. In cyber—
physical systems, where physical processes are tightly integrated with
computation and communication, it is essential to have a synchronized
and predictable behavior of machines exchanging safety-critical data.
Ethernet-based IoT protocols are becoming a popular solution for indus-
trial networking challenges because they offer significant advantages
over traditional fieldbus standards. According to the HMS network
survey report [2], in 2024, almost 71% of the industrial market is
captured by devices using the Ethernet compared to the field bus, which

is 22%. This shows the rapid increase in the demand for Ethernet-based
solutions to achieve functional safety.

One possible way to achieve functional safety is to use “white
channel communication” [3], in which every device used in the com-
munication has a defined, predictable behavior. However, this comes
at a cost because integrating the device increases the overall cost,
and migrating to new technologies becomes slower. Another possible
way is to use “black channel communication”, which does not impose
any restrictions on using the safety-integrated devices. However, main-
taining the reliability and quality of the safety-critical data becomes
challenging. Black channel communication sees the communication
medium as a black box, and once the communication packet is sent
to the network, it is unknown how much time it will take to be
processed inside any device, which route it will take to reach the
destination, or the integrity of the data if it has been corrupted. To
address this challenge, the openSAFETY working group was established
with Ethernet-Powerlink Group (EPSG) [4] to develop an open bus
standard protocol for functional safety. They named this protocol as
openSAFETY protocol. The openSAFETY protocol is the open bus stan-
dard that offers safe communication regardless of vendor and network.

* This paper is based on our understanding of the openSAFETY Protocol specification and implementation received from B&R automation, including the certified

openSAFETY stack version 1.5.3 and specification version 1.5.2.
* Corresponding author.
E-mail address: shoaib.zafar@santannapisa.it (S. Zafar).

https://doi.org/10.1016/j.sysarc.2025.103605

Received 20 February 2025; Received in revised form 27 August 2025; Accepted 14 October 2025

Available online 22 October 2025

1383-7621/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0000-0001-6641-9857
mailto:shoaib.zafar@santannapisa.it
https://doi.org/10.1016/j.sysarc.2025.103605
https://doi.org/10.1016/j.sysarc.2025.103605
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2025.103605&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Zafar et al.

It seamlessly integrates with Ethernet/IP and other industrial protocols,
reducing deployment costs and improving interoperability. The open-
SAFETY protocol achieves SIL 3 according to IEC 61508 [5] and can
work on black channel communication. OpenSAFETY relies on a time
synchronization mechanism to exchange safety-critical data. Success-
fully configuring a safety application for this data exchange requires a
clear understanding and thorough analysis of the time synchronization
mechanism used in the openSAFETY protocol.

So far, very limited work has been done on openSAFETY. Some
authors [6,7] have performed the performance analysis of openSAFETY
over MQTT via Wireless. Later, Hadziaganovi¢ et al. [8] integrated the
openSAFETY in OMNET++. Soury et al. [9], have discussed a case
study of using the openSAFETY for the lift communication system.
However, precise indications on how to set and tune protocol pa-
rameters, including those that are application dependent, are missing;
we believe these indications are really important as they can directly
affect the robustness, efficiency, and continuous openSAFETY opera-
tions. When parameters are correctly set and tuned, the communication
between safety nodes will occur according to predictable timelines.
An accurate tuning of synchronization parameters can prevent wasting
resources from the overhead of redundant pre-processing of time syn-
chronization messages, reducing the time to reach and maintain a time
synchronization, and reducing the possibility of time synchronization
failures during system operations. Well-tuned parameters guarantee a
safe exchange of messages among openSAFETY nodes, even though the
used communication network is not trustworthy in terms of real-time
and safety requirements.

Our contribution is twofold. First, we analyze time synchronization
in the openSAFETY protocol. Understanding the time synchroniza-
tion mechanism is important for identifying the relationships between
timing parameters and providing practical guidelines for effectively
configuring safety applications. The key contribution of our work is the
development of a structured approach for configuring safety applica-
tions. To the best of our knowledge, no established method currently
provides clear and practical guidelines for the configuration of safety
nodes to achieve accurate time synchronization. This paper provides
justifications and discusses the impact of tuning the application pa-
rameters with experiments. Then, it evaluates the protocol’s perfor-
mance under normal and degraded network conditions. To assess the
protocol’s performance, two test cases have been designed:

» Test Case 1: Key performance metrics, such as latency, jitter,
interframe delay variation, and bandwidth (when using UDP over
Ethernet) are evaluated as a function of the payload size and
transmission frequency of safety-critical data.

» Test Case 2: Network impairments are introduced to observe the
protocol’s behavior under non-ideal conditions. This test helped
us understanding its resilience and performance when facing
network disruptions.

2. Related work

Ethernet for Control Automation Technology (EtherCAT [10]) is a
fieldbus system released by Beckhoff Automation. This protocol is based
on the Master and slave-based communication model and uses the
physical layer and standard frame defined in IEEE 802.3 standard [11].
The EtherCAT master sends a frame that passes through all of the slaves
in the network that are connected and exchanges the data. The last con-
nected slave detects the open port and returns the frame to the Master.
Fail Safe over EtherCAT (FSoE) uses EtherCAT to achieve functional
safety and is developed according to IEC 61508. Each FSoE device
has its watchdog timer. If the FSoE-master does not receive a response
from the slave till the watchdog timer times out expires, it triggers the
safety conditions and puts the respective FSoE slave in the safe state.
Although FSoE is still being used in the industry, FSoE is specifically
designed for EtherCAT, which makes it difficult to integrate with other

Journal of Systems Architecture 169 (2025) 103605

safety protocols used in different Fieldbus systems. EtherCAT relies
on distributed clocks for time synchronization, with each connected
EtherCAT slave equipped with a Distributed Clock (DC) chip. These
distributed clocks provide nanosecond-level synchronization accuracy
across all EtherCAT devices in the network. However, implementing
distributed clocks requires specialized hardware support, which is a
significant challenge and increases overall cost.

PROFInet protocol is the advanced form of Profibus [12] that allows
communication between many FieldBus protocols that use the indus-
trial Ethernet in compliance with international safety standards like IEC
61508 and ISO 13849 [13]. In PROFInet, real-time data transmission
is based on cyclic data exchange. PROFIsafe is a safety protocol that
is based on the PROFInet Protocol. To ensure a safe reaction time,
the F-Devices (Safety Devices) use a watchdog timer that is restarted
every time a new PROFIsafe message is received. Time synchronization
in PROFInet IO is based on the precision transparent clock protocol
(PTP) [14]. PROFlIsafe is tightly coupled with PROFInet and PROFIbus
systems, which limits its adoption in industries using other communica-
tion protocols [15]. CANopen Safety is a safety-critical communication
protocol based on the CANopen framework [16], designed to meet the
stringent requirements of functional safety applications [17] developed
in compliance with IEC 61508 and other relevant safety standards. The
basic concept of CANopen Safety is to transmit the safety-critical data
in two independent messages. The first message contains the actual
data, and in the second message, all data bits are inverted, with at
least two bits inverted in the message identifier field. The safety-critical
data is exchanged using SRDO (Safety Relevant Data Object) During
the transmission, the timeout is monitored using two timeouts: SRVT
(Safety-Relevant Validation Time) and Safeguard Cycle Time. SRVT is
the maximum time allowed between the first and second message of an
SRDO, and Safeguard Cycle Time is the time between multiple SRDOs,
defining the maximum timeout between the occurrence of two consec-
utive SRDOs [18]. CAN openSAFETY relies on the CANopen protocol,
which limits its adoption in industrial systems using other commu-
nication protocols. The openSAFETY protocol offers advantages over
PROFIsafe, Fail Safe over EtherCAT, and CANopen Safety, especially in
terms of flexibility, interoperability, and scalability. Unlike ProfiSAFE
and Fail Safe over EtherCAT, which are closely tied to their specific par-
ent fieldbus protocols, openSAFETY is independent of the underlying
communication protocol, allowing compatibility with various industrial
Ethernet and fieldbus systems. This independence enables integration
across different networks, simplifies system architecture, and increases
adaptability for various industrial applications.

The paper is structured to provide a detailed evaluation of network
performance verification for the openSAFETY protocol, beginning with
Section 3. This section presents the fundamental structure of open-
SAFETY communication models and frames, followed by an in-depth
analysis of time synchronization. In this section, key definitions neces-
sary for analyzing time synchronization are introduced. The robustness
of time synchronization is subsequently explored. The time validation
process is then examined, emphasizing its significance in maintaining
the operational status of safety nodes and ensuring data reception.
Section 4 discusses parameter tuning for time synchronization, where
configuration parameters are tuned as part of the contribution. Sec-
tion 5 evaluates the impact of tuning the application parameters on
the safety application. Section 6 provides a performance analysis of
the openSAFETY protocol. The evaluation is carried out under varying
conditions. Test Case 1 focuses on the impact of different transmis-
sion frequencies and payload sizes, whereas Test Case 2 investigates
network performance under impairments. Each test case is followed
by a results section, which assesses key performance metrics such as
propagation delay, latency, jitter, and interframe delay variation.

S. Zafar et al.
3. Network performance verification

The safety configuration manager (SCM) is the node responsible
for managing all the safety nodes in a safety domain. Whenever a
safety node is added or removed or becomes nonoperational, the safety
configuration manager takes care of it. The main purpose of the SCM
is to send periodic lifeguarding signals to the safety nodes in a safety
domain. Standard openSAFETY has three types of frames, each used for
different purposes:

1. Safety Network Management (SNMT).
2. Safety Service Data Object (SSDO).
3. Safety Process Data Object (SPDO).

The lifeguard signals are SNMT frames of the openSAFETY protocol.
After becoming operational, each Safety Node must receive a lifeguard
signal from the Safety Configuration Manager (SCM) within a specified
duration, configured in the Safety Object Dictionary (SOD). The Safety
Object Dictionary is a data structure that holds all parameters of a
safety node, such as the unique identification number, lifeguarding,
communication configurations, the consecutive time base, and more.
Each node can have its own Safety Object Dictionary or be downloaded
from the SCM to the safety nodes during initialization using SSDO
frames. Safety-critical data is exchanged between safety nodes using
SPDO frames. openSAFETY uses the producer and consumer commu-
nication model to exchange safety-critical data. The producer node
broadcasts the data in the safety domain, and the consumer nodes with
the producer node’s SADR (Safety Address, a configurable parameter)
can receive the data. This paper focuses on one of the most important
aspects of the protocol, which is network performance verification,
primarily involving SPDO frames. Therefore, it is assumed that the
Safety Nodes (i.e., producer and consumer nodes) are operational and
are receiving SNMT frames (i.e., lifeguarding signals) from the SCM.
To cope with application requirements such as data freshness and
data repetition, network performance verification needs to be done to
determine the network’s efficiency in meeting the requirements of the
application. Network performance verification is carried out through
two consecutive steps:

1. Time Synchronization;
2. Time Validation.

3.1. Time synchronization

Time synchronization is a process in which a consumer node up-
dates itself about the relative time at the producer node. The consumer
node is supposed to be the consumer of the safety-critical data sent by
the producer node. Both the consumer and producer nodes can have
different clock times (i.e., there may be a clock offset between any
two nodes). However, to carry out successful time synchronization,
the consecutive time-base (a configurable parameter) of both nodes
(consumer and producer) should be the same. Time synchronization is
done using the SPDO frames. There are three types of SPDO frames:

1. TReq: SPDO with a time request;
2. TRes: SPDO with a time response;
3. Data Only: SPDO with data-only.

An SPDO sent from the consumer node to the producer node for the
time synchronization request is called the SPDO with time request
or TReq. A consumer node sends one or more time synchronization
requests (TReq) to its producer node to achieve time synchronization.
Whenever a producer node receives a time request (TReq), it has to
react immediately and send one or more time responses (TRes) back to
the consumer node. The CT field of the openSAFETY frame contains
information about the time instant at which the TReq or TRes is
dispatched from the respective node.

Journal of Systems Architecture 169 (2025) 103605

After receiving the time response, the consumer node determines
the TReq that was being answered. This information is stored in the
TR field of the openSAFETY frame. Once the consumer node receives
the TRes, it determines the round trip delay starting when the TReq is
sent from the consumer node. Then, this delay will be checked against
the constraints (see Definition 8 and 12). If the delay of the received
TRes satisfies the constraints, then the time synchronization is said to be
successful; otherwise, it is unsuccessful time synchronization. However,
during normal operations, when time synchronization is done, the data
is exchanged using SPDO data-only frames.

The openSAFETY protocol has a robustness feature, which allows
sending multiple TReq and TRes consecutively, so if there is any loss
in the transmission medium, the producer should receive at least one
TReq. This analysis initially presents the time synchronization steps,
assuming no lost messages exist (e.g., the protocol does not use the
robustness feature). Then, the protocol stack feature (i.e., robustness
feature) to cope with lost messages is described. To understand the time
synchronization and time validation, the paper first examines some
configurable parameters of both consumer and producer nodes. All
configurable timing parameters in this paper use the consecutive time
base (see Definition 1) as the base time unit.

Definition 1. The Consecutive time base is a configurable parameter
of the consumer and producer nodes. The consecutive time base refers
to the basic time unit (the Tick) used for time synchronization and
time validation. The openSAFETY stack supports four different time
bases (i.e., 1 p's, 10 p's, 100 p s, 1 ms). The application designer can
choose one of them depending on the application requirements and the
efficiency (Scheduling and execution delays) of the safety nodes. This
value should be equal for all of the safety nodes.

Definition 2. openSAFETY Transmit Process Data Object (TxSPDO) is
the Tx or transmitter of the Safety Node (SN) responsible for sending
the SPDO frame. openSAFETY Receive Process Data Object (RxSPDO)
is the Rx or receiver of the Safety Node(SN) responsible for receiving
the SPDO for time synchronization.

Definition 3. Refresh Prescale Consumer is the configurable param-
eter of the consumer node, which represents the delay between two
consecutive SPDOs sent by the TxSPDO of the consumer node. It is
denoted by 4z,.

Definition 4. Refresh Prescale Producer is the configurable param-
eter of the producer node, which represents the delay between two
consecutive SPDOs sent by the TxSPDO of the producer node. It is
denoted by 4¢,. However, if new data is available at the producer node,
SPDO can be sent to the consumer node without waiting for the refresh
prescale timeout to expire.

In the openSAEFTY stack, TxSPDO and RxSPDO are the dedicated
data structures responsible for sending and receiving the SPDO frames.
For a Safety Node (SN), the RxSPDO is required if the time synchro-
nization is needed to be done for that SN (i.e., if node is only producer
node, then the node does not need to have a RxSPDO). However, at
least one TxSPDO is mandatory for each SN; either it is the producer of
the data (i.e., to send the SPDO data frames or sending the SPDO time
response frames) or it is the consumer of the data (i.e., to send the time
synchronization request to the producer node).

Definition 5. BestCaseTReqDelay(C) is a configurable parameter of
the consumer node, representing the best estimation of the minimum
time (from the consumer point of view) required for (a) transferring
data (a time request (TReq)) from the consumer node to producer
node and (b) to be processed and acknowledged by the producer
node. This metric takes into account the optimal network performance
conditions (i.e., network without any loss in transmission medium and

S. Zafar et al.

best transferring time) and the highest efficiency levels (minimum
scheduling and execution delays) of the producer node. In this analysis,
this parameter is denoted as f- and formally defined in the equation
below:

Be =min ({dc|,dcy,dcy, ... }), 1)

where dc; represents the transmission delay of SPDO from the consumer
node to the producer node in the ith observation of the experiment.

Definition 6. BestCaseTResDelay(P) represents the best estimation
of the minimum time (from the producer point of view) required for
transferring data (a time response(TRes)) from the producer node to the
consumer node and its processing by the consumer node. This metric
takes into account the optimal network performance conditions and the
highest efficiency levels (minimum scheduling and execution delays) of
the consumer node. In this analysis, this parameter is denoted as fp and
formally defined in the equation below:

ﬁP=min({dp1,dpz,dp3v"})’ @

where dp; represents the transmission delay of SPDO from the producer
node to the consumer node in the ith observation of the experiment.

Definition 7. BestCase minimum communication network round
trip. This is the sum of BestCaseTReqDelay(C) and BestCaseTResDe-
lay(P). In this analysis, we denote this parameter as fp.

Definition 8. Minimum TSync Propagation Delay is a configurable
parameter of the consumer node, representing the minimum allowed
time for a time response to be received by the consumer node as a
reply to the sent time request. This delay is calculated from the moment
the consumer node sends the time request and accounts for optimal
network performance conditions and the highest efficiency levels of
both the consumer and producer nodes. It establishes a time delay
threshold below which the consumer node will not accept the response.
In this analysis, this parameter is denoted as TSync™",

Definition 9. Reaction Time (RT) is the maximum time for a single
communication relationship (unidirectional) between the producer of
the SPDO and the consumer of the corresponding SPDO. The time inter-
vals required for preparing the SPDO and processing the SPDO are not
included in this reaction time (i.e., Scheduling and execution delays).
Therefore, it generally represents the maximum time for transferring
the data frame from the sender node to the receiving node without
considering the safety margin.

Definition 10. Safety Control Time (SCT): Safety Control Time (SCT)
is an application-configurable parameter of the consumer node and
represents the maximum allowed delay between the reception of two
consecutive valid SPDOs at the consumer node, but only if the prior
valid SPDO delay is equal to the reaction time. A failure should be
raised if an SPDO is not received before the SCT delay. This parameter
is also considered as the safety margin.

Definition 11. Safe Reaction Time (SRT) is the conservative value
of the reaction time, including a safety margin equal to SCT. Therefore:

SRT = RT+SCT. 3)

Definition 12. MaxTSyncPropagationDelay is the configurable pa-
rameter of the consumer node representing the maximum time allowed
for a time response sent from a producer node to be received by the
consumer node. This value includes the reaction time related to the
TRes, and it is the estimation of the delay (from the consumer’s point
of view) which can be experienced in the reception of an SPDO because
of the worst network conditions. For each TReq sent by the consumer
node, this delay is computed as the time interval starting from the time
instant when the TReq is sent.

Journal of Systems Architecture 169 (2025) 103605

| Producer Node | |Consumer Nodel

A
Time Time

Fig. 1. Scenario where BestCaseTReqDelay(C) is the perfect estimation of the
actual delay to send TReq and SPDO is received consuming the complete
Reaction time (Successful Time Synchronization).

Producer Node| | Consumer Node|

A

IBestCaseTRquelay(C)

Minimum TSync Propagation Delay
Reaction y

Time Maximum TSync Propagation Delay

Time Time

Fig. 2. Scenario where BestCaseTReqDelay(C) is the minimum best case
estimation, and actual delay in sending TReq is more than that. In this case,
the Reaction Time value includes this delay (Successful Time Synchronization).

Definition 13. Safe MaxTSync Propagation Delay is the conservative
value of the MaxTSyncPropagationDelay, including a margin equal to
SCT. This delay is calculated from the moment the consumer node
sends the time request and accounts for worst network performance
conditions and the lowest efficiency levels of both the consumer and
producer nodes. It establishes a time delay threshold above which it is
assumed that the consumer node will not have received the valid time
response. This parameter is denoted as SafeTSync™* and is defined as:

SafeTSync™ = SCT + MaxTSyncPropagationDelay. @

We illustrate various scenarios of time synchronization in the context
of estimating and handling delays for transmitting TReq and receiving
TRes. In Fig. 1, the BestCaseTReqDelay(C) is perfectly estimated, and
the TRes is received after fully consuming the reaction time, resulting
in successful time synchronization. Fig. 2 shows a case where the
BestCaseTReqDelay(C) represents a minimum best-case estimation, but
the actual delay exceeds this value; in this case, the reaction time
includes the extra delay, leading to successful synchronization. Fig.
3 depicts a situation where the BestCaseTReqDelay(C) is incorrectly
estimated, causing the reaction time to fail in representing the max-
imum transfer time, resulting in unsuccessful time synchronization.
Lastly, Fig. 4 presents a scenario where the BestCaseTReqDelay(C) is
accurately estimated, and the TRes fully consumes the reaction time
but is still received before the SRT timeout expires, achieving successful
time synchronization.

Time synchronization is said to be successful if the Time Response
(TRes) is received within the Minimum TSync Propagation Delay and
Safe MaxTSync Propagation Delay window. If time synchronization is
successful, then the consumer node memorizes the relative time of the
producer node TRefp, qucer Which is saved in the CT field of TRes and
the TRefconsumer 1S defined below:

TRefconsumer = t+ BestCaseTReqDelay(C), 5)

S. Zafar et al.

Producer Node Consumer Node
“ﬂ;
BestCaseTReqDelay(C)
... MmlmumTSync
Reaction 1Propagation Delay
Time Maximum TSync
! Propagation Delay
v A
Time Time

Fig. 3. Scenario where BestCaseTRegDelay(C) has been wrongly estimated.
In this case, the reaction time value does not represent the maximum time for
transferring the SPDO (Unsuccessful Time Synchronization).

[Producer Node | [Consumer Node]
BestCase)
TReqDelay(C)
Minimum TSync
Reaction Prqpagatlon Delay | gafe
Safe Time \/[ax1mun_1 TSync MaximumTSync
Reaction] Propagation Delay Propagation Delay
time \
SCT SCT
Time Time

Fig. 4. Scenario where BestCaseTReqDelay(C) is the perfect estimation of the
actual delay and TRes completely consumed the Reaction time but received
before SRT timeout expires (Successful Time Synchronization).

where t is the time at which the time request (which has been an-
swered) is sent. There is no need to inform the producer node about
the successful time synchronization of the Consumer. There could be
at most three cases if the time synchronization is unsuccessful.

1. Time Response Received Before the Minimum TSync Propaga-
tion Delay timeout expires.

2. Time Response Received After the Safe MaxTSync Propagation
Delay elapses.

3. Time Response is not received due to loss in the transmission
medium.

If the Time response is received before the Minimum TSync Propagation
delay, then the Consumer will fall into FAIL SAFE STATE. It indicates
that the BestCaseTRegDelay(C) has not been set correctly. If the Time
response is received after the Safe MaxTSync Propagation Delay, then
the consumer node will ignore the Time Response. There is no need to
inform the producer node about the unsuccessful time synchronization
of the Consumer.

3.2. Robustness in time synchronization

To increase the robustness of the protocol with respect to the loss
of messages, the time request and time response are carried out as
sequence of consecutive TReq and TRes. To study this feature, we will
study some configurable parameters.

Definition 14. Number of Consecutive Time Requests (m) refers
to the count of sequential time requests that a consumer node is

Journal of Systems Architecture 169 (2025) 103605

configured to send to a producer node. This set is named a block of
time requests. This configuration parameter allows the consumer node
to send multiple time requests, interleaved by a time delay (refresh
prescale Consumer, see Definition 3).

Definition 15. Number of Consecutive Time Responses (n) refers
to the count of sequential time responses that a producer node is
configured to send to a consumer node after the reception of the first-
time request. The set of time responses is named a block of time
responses. This configuration allows the producer node to send multiple
time responses, interleaved by a time delay (refresh prescale producer,
see Definition 4), whenever there is a need to send TRes back to the
consumer node.

A consumer node can be configured to send multiple blocks of
time requests to achieve the desired reliability of the communication.
These blocks of time requests are interleaved by a time delay Td (see
Definition 16). In each block of time request, the count of distinct time
request numbers is stored as a TR counter within the TReq.

Definition 16. The consumer node sets the Time Delay after (a)
having sent (m) time request(s) and (b) having waited for the Safe
MaxTSync Propagation Delay from the last time request without receiv-
ing a valid time response. After this time delay, the consumer node is
allowed to send (m) time request(s) for synchronization. Meanwhile,
any time response received while Td has not elapsed will be ignored.
This time delay is used when at least one time synchronization step is
unsuccessful. It is denoted by Td.

Definition 17. During the time synchronization phase, Time Request
Cycle is the maximum timeout from the start event of the synchro-
nization phase, during which a consumer node has to receive a valid
time response. Otherwise, a time synchronization failure must be raised
when it expires. The management of this timeout includes the following
stages:

1. Initiation: The time request cycle starts when the consumer
node sends the first-time request to the producer node.

2. Safe MaxTSync Propagation Delay Waiting: After sending
(m) time requests, the consumer node waits for Safe MaxTSync
Propagation Delay from the last sent TReq.

3. Time Delay (Td): After sending the (m) TRegs, If no valid time
response is received within the Safe maximum Tsync propaga-
tion delay of the Last TReq, the consumer node waits for time
delay Td before sending another set of (m) time requests.

4. Residual Refresh Prescale Timeout: If the consumer node
intends to send another TReq from a new block of m TReq(s),
the consumer node will wait for the residual refresh prescale
timeout after waiting for Td timeout. It is the remaining time in
the refresh prescale to complete its duration after the Td timeout
finishes. In this analysis, we have denoted it as a.

5. Repetition: The consumer node continues sending time requests
and waiting for responses until a successful time synchronization
is achieved or the Time Request Cycle timeout expires.

The time request cycle timeout is reset each time a successful time
synchronization step is achieved. We have denoted this as TRC.

Consider the example in Fig. 5 in which a consumer node tries to
establish the time synchronization with the Producer with (m=2,n=2,
a, = A, =2, =3, TSync‘"i" = 4, SafeTSync™ = 7, Td=4) while
the total blocks of time requests are two. From the first block of TReq,
the first TReq is lost in a nonsafe communication medium, and second
TReq is received successfully at the producer node. The Producer node
starts to send time responses back to the consumer node in which the
first TRes is lost and second TRes is received at the consumer node

while the consumer node ignores this time response because this time

S. Zafar et al.

Producer| [Consumer

1 t=0 Set TRC timeout
ES A
T I tAt‘ k=1, m=2 TReq Sent

1B | TSyncmin
L SafeTSync™™

At T

n=2 TRes S’e]nt

[TRes Ignored | Tf

: a1

I -: ﬁ T k=2, m=2 TReq Sent
i = c min

T SR feTSync™
::\F TL:=23 v

TRC timeout Expires

TS Sync FAIL

Time

Fig. 5. Time Request Cycle timeout.

response is sent as a time response to the received time request (TR=2)
from the first block of time request which has the SafeTSync™** = 7
and this timeout has already been passed. However, after passing the
Td timeout, the consumer node cannot start another block of time
synchronization because the refresh prescale timeout is not expired,
which is taking the two time units in this example; therefore a = 1
can be seen in Fig. 5. However, in this example, time synchronization
cannot be achieved due to poor network conditions, and the time
request cycle timeout elapses. Even though Time Synchronization is
successful, in order to cope with clock drifts in producer and consumer
Nodes and to keep the time synchronization error under a bounded
value, a new synchronization phase is required after a certain time
delay.

Definition 18. A Consumer Node sets Time Delay Synchronization
when a successful time synchronization is reached after resetting the
time request cycle. This parameter represents the maximum time delay
between one successful time synchronization phase and the initiation
of the next attempt to perform another time synchronization phase. It
ensures that there is a controlled gap between successive time synchro-
nization phases. When this timeout expires, a new time synchronization
phase is started. It is denoted by ts.

Definition 19. Time To Synchronize (TTS) is defined as the total time
taken by a consumer node to achieve successful time synchronization
with a producer node. It begins at the moment the consumer node sends
its first time synchronization request and ends when the consumer
successfully synchronizes with the producer. The TTS may span one or
more time request cycles, depending on parameter configuration and
network conditions.

3.3. Time validation

The time validation phase starts after the successful time synchro-
nization phase. The producer node does not need to be informed that
the time validation phase has begun. The validation phase allows the
consumer node to verify if the received SPDO meets the constraints
on the propagation delay (Definition 20 21). After successful time
synchronization, the consumer node is able to verify the quality of
the received data. Whenever a successful time synchronization phase
occurs, the consumer node resets the Time request cycle timeout (TRC)
and sets the Time Delay Synchronization (ts) time out. To understand
the time validation phase, we will first examine some parameters of a
consumer node.

Journal of Systems Architecture 169 (2025) 103605

Definition 20. Minimum SPDO Propagation Delay is a config-
urable parameter of the consumer node, representing the minimum
propagation delay for receiving a valid SPDO after successful time
synchronization. This metric accounts for optimal network performance
conditions and the highest efficiency levels of the consumer node. If the
SPDO Propagation delay of the current received SPDO is less than the
Minimum SPDO Propagation Delay, the consumer node will notify this
anomaly and enter into a FAIL-SAFE state. We denote this parameter
as SPDO™™,

Definition 21. Maximum allowed SPDO Propagation Delay: Repre-
sents the maximum allowable delay for receiving a valid SPDO after
successful time synchronization. This metric accounts for the worst
network performance conditions and the lowest efficiency level of the
consumer node. If the consumer Node does not receive the SPDO after
the Maximum allowed SPDO Propagation Delay timeout expires, the
consumer node will ignore the SPDO. This parameter is equivalent to
the Safe Reaction time. Maximum allowed SPDO Propagation Delay
(SPDO™) can be computed using the following formula:

SPDO™** = SafeTSync™* — BestCaseTReqDelay(C). 6)

TSPDOp,qucer iS the timestamp of the producer node when the SPDO is
dispatched. This value is included in the received SPDO. This timestamp
serves as a reference for estimating the minimum SPDO propagation
delay. While TSPDO¢,sumer is the time stamp of the consumer node at
which SPDO is received.

Definition 22. SPDO Propagation Delay is the delay experienced
in the reception of an SPDO at the consumer node with respect to
the dispatch time of TSPDO contained in the received SPDO. We have
denoted this as PD in our analysis. This delay is calculated using the
following equation:

PD = (TSPDOCOrAsumer - TRefConsumer)

@)
- (TSPDOProducer - TRefProducer) .

Equation (7) stores the offset between the clocks of the Consumer and
Producer Nodes at the time instant of successful time synchronization.
However, since this offset typically changes over time due to the
clock quality of both nodes, the protocol stack periodically forces new
synchronization phases (see Definition 18). Without successful time
synchronization, the Consumer Node cannot verify whether the SPDO
propagation delay is correctly bounded.

Definition 23. Residual Safety Control Time (SCTy) is the residual
delay between the reception of two consecutive valid SPDOs at the
consumer node after successful time synchronization. Each time a valid
SPDO is received, the SCTy timeout is set. The next valid SPDO must be
received before the SCTj timeout expires. If the SCT timeout expires
without the reception of a valid SPDO, the consumer node will enter
into the FAIL-SAFE state. The value of SCTy timeout is set according
to the following equation:

SCTy = SRT - PD. €))
According to Definition 11, we have:

SRT = SCT + Maximum TSync Propagation delay

— BestCaseTReqDelay(C),

However, during the operational phase of the protocol, the actual
propagation delay, "SPDO Propagation Delay (see Definition 22)”, can
be less or greater than (Maximum TSync Propagation Delay - BestCase-
TRegDelay(C)). The difference between (Maximum TSync Propagation

)

S. Zafar et al.

Producer| |[Consumer|

Set TRC timeout
I A m TReq Sent gimeh o
4 -+ nchronization
TRef producer 1€ n TRef consumer Y :
-+ - v
4 o ReSet TRC/ Set ts timeout
TSPDOp,oducer L OO JNR
: TSPDOCUnSllWIPY
] Set SCTg timeout Time
] [SetSCTg timeout Validation
1 _— —Set SCTg timeout

SCTRr timeout Expires (Trigger Fail Safe)

Fig. 6. Residual SCT timeout.

Delay - BestCaseTReqDelay(C)) and the actual propagation delay must
be taken into account for setting the SCT, available for monitoring the
reception of valid SPDO within an SCT time window. To this end, let
us write the above equation of SRT as follows:

SRT = SCT+ (Maximum TSync Propagation Delay

(10)
— BestCaseTReqDelay(C)) —PD + PD.
Therefore, if we define the residual SCT as follows:
SCTx = SCT+ (Maximum TSync Propagation Delay an

— BestCaseTReqDelay(C)) —PD,

then we can write the above formula according to Definition 11 as
follows:

SRT = SCTy + PD, (12)

which gives SCT, = SRT — PD, as in Definition 23. Whenever the ts
timeout expires, the consumer node sends another time synchronization
request to the producer node and continues receiving the SPDO, check-
ing its topicality by monitoring the SCT, timeout. This can be seen
in Fig. 7. In other words, it restarts the time synchronization phase, sets
the Time Request Cycle timeout again, and keeps receiving the SPDOs.
If it receives the TRes, it updates the TRefp qycer and the TRefc, scumers
and sets the ts timeout again this can be seen in Fig. 7. If the SCTy
elapses, the consumer node will fall into the FAIL-SAFE state as shown
in Fig. 6.

4. Parameters tuning for time synchronization

This section outlines some advantages of systematically tuning the
openSAFETY parameters and application-related ones. Tuning such
parameters according to the proposed approach reduces computation
costs and ensures continuous, safe, and reliable operations in real-time
environments. In the following subsections, we will explore the issues
that arise from non-systematic parameter configurations and demon-
strate how our approach addresses these challenges. The considerations
discussed in these subsections do not impose any limitations on the
application of the protocol stack.

4.1. Setting the no. of time requests (m) and time responses (n) in one
block of time request cycle

Initially, when a consumer node starts the time synchronization,
it enters a state in which it sends the first Time Request (TReq), and
then it changes the state, waiting for the time response to be received,
and continues to send the remaining TReq(s). When a producer node
receives the first TReq, it sends a block of n TRes to the consumer node
and any further TReq(s) will be ignored. The consumer node has to
process the first received TRes and ignore the remaining TRes(s). Each

Journal of Systems Architecture 169 (2025) 103605

received TRes requires protocol-level checks (e.g., to verify whether the
received SPDO is valid for time synchronization, timestamp validation,
etc.). If the transmission medium is highly reliable and there is less
chance of loss of messages, then setting a high value of n for TRes
should not be a good choice, as the consumer node has to pass protocol
level checks for each received TRes. On the other hand, the producer
node will also be busy sending the n TRes to the consumer node,
which can cause a delay in serving another TReq (can be from another
RxSPDO). On the other hand, the robustness feature of repetition of
TReq and TRes is essential if there is a high loss in the transmission
medium, and setting the low value of m and n can increase the risk of
synchronization failure.

The proposed method determines the best configuration of m and
n based on the probability of loss of messages on the transmission
medium. It models the probability of message loss and the desired
probability of successful synchronization to estimate the number of m
and n that systematically balance the redundancy and efficiency. To
model this, we consider BER as the probability that a single bit will
be received in error. Forward error correction (FEC) mechanisms can
be applied to the physical layer to address bit errors. However, these
techniques cannot correct all possible bit errors within a frame [19].
For this reason, we refer to the residual BER as the P, after redundancy
has been applied for error correction. In this context, the transmission
of each bit in a frame can be treated as an independent Bernoulli trial,
where each trial (bit) can either succeed (be transmitted correctly) with
probability 1 — P, or fail (not transmitted correctly) with probability P,
which represents the probability that a single bit is received in error or
lost due to noise or other impairments in the transmission medium. This
analysis assumes that the bit error rate (BER) remains uniform across
all bits in a frame. For successful time synchronization, all Lygeq bits in
the frame must be received correctly without any loss. The probability
of successfully transmitting a frame of Lyg,q bits, denoted as P,(TReq),
is given by:

P,(TReq) = (1 — P,)ETReq, 13)

When the consumer node sends (m) TRegs, the goal is to ensure that the
producer node receives at least one TReq successfully. The probability
of failure (not being received) for a single TReq is 1 — P,(TReq), and
the probability of all (m) TRegs failed to receive is (1 — P,(TReq))".
The complement of this gives the probability that the producer node
receives at least one TReq, which can be derived using the Complement
rule of probability as follows:

Py success =1 — (1 — Py(TReq))™. 14)

Similarly, under the assumption that each Time Response (TRes) is
affected by random errors only, the probability that the Consumer
successfully receives at least one of the (n) time responses is:

P

n,success

=1-(1 - Py(TRes))". (15)

Prailure 1S the probability of failure that (m) TReq and (n) TRes frames
failed to be received by their respective nodes in one block of time
synchronization and defined as follows:

Ppiture = (1 = P,(TReQ))" x (1 — P,(TRes))". (16)

Let us assume P, is the desired probability that the consumer
node successfully synchronizes with the producer node in one block
of the Time request cycle. This can be computed as the probability
of receiving at least one correct time response in the consumer node,
conditioned to the reception of one correct time request in the producer
node. This probability P, can be computed as:

15 block = P,

m,success X PVI,SUCCGSS‘ (17)

We can define the communication cost (here referred to as Cost) in
terms of transferred bits between the consumer and producer node in
one block of the time request cycle:

Cost = m X Lygeq + 1 X Lpes. (18)

S. Zafar et al.

TR=1

;(;v— TR=2

| TRe consumer

TREf producer —

ATR=3 TReq Sent (m=3)

SafeTSync™*(TR = 3)

Journal of Systems Architecture 169 (2025) 103605

Set TRC timeout

, Time
Synchronization

TSPD: oproducer

v

ReSet TRC/ Set ts timeout

-

SPDO™*
Time

_TSPDOcmzsumer I

" Set SCTy timeout

TR=4,
R=5,

Set SCTy timeout

Set SCTy timeout
T Set SCTg timeout +

Set SCTy timeout Reset ts timeout/ SET TRC timeout b,

\— Set SCTy timeout
: TRefmnsumH(k = 1)

Set SCTy timeout

Set SCTy timeout

¢ Validation

Time

Synchronization

& Validation
Set SCTp timeout Successtul Time Sync, Reset TRC/ Set ts timeout Time
Set SCTR timeout Receive Data, ignore TRes o
Receive Data, ignore TRes Validation

Fig. 7. Successful Time Synchronization and Time validation.

It is important to note that the openSAFETY stack under analysis
supports a maximum of 63 consecutive time requests, denoted as
M and for time responses, the variable is an 8-bit unsigned integer,
allowing a maximum of 255 time responses, denoted as n,,,. Thus,
we can iteratively search for the values of m and » using Algorithm 1
to minimize the communication cost. By modeling the frame receiv-
ing/transmitting success probabilities under bit error rates (BER) and
iteratively searching for the smallest pair (m, n) that satisfies a target
reliability threshold, the proposed approach can systematically bal-
ance redundancy (to counteract frame loss) and efficiency (to reduce
unnecessary pre-processing).
Algorithm 1 Determine Configuration of Numbers of Time Requests
and Time Responses.
Require: Maximum m= m,, ,, Maximum n= n,,
Require: Pe’ Pblock’ LTRess LTReq
Ensure: Best configuration of m and n
: Compute P,(TReq) « (1 — P,)lme
: Compute P,(TRes) « (1 — P,)lme
* Pr threshold < 1 = Phlock
: Initialize min_cost < oo, best_config < @
: for m=1 to my,, do
for n=1 to ny,, do
Compute P < (1 — P(TReq))" x (1 — P(TRes))"
if Pfailure < PF_lhreshold then
Compute Cost < m X Ligeq + 1 X Lypes
if Cost < min_cost then
min_cost < Cost
best_config « (m, n, Peijyre, COSE)

end if
14: end if
15: end for
16: end for
17: return best_config

> Failure threshold

Co0RNOUAEWN R

-
N

13:

4.2. Setting the time delay timeout (td)

The time delay Td introduces a controlled time gap between two
consecutive blocks of TRegs sent by a consumer node. When such a
delay is well dimensioned, this controlled gap enables the following
two benefits: (A) it allows the consumer node to potentially wait for

receiving all the block of TRes before sending a new set of TReq(s),
and (B) it prevents the consumer node from sending a TReq during a
time interval when the communication channel is experiencing a burst
of errors [20]. Consider the example shown in Fig. 8. The consumer
node sends TRegs (represented in blue) to the producer node over a
communication medium prone to high message loss. In this case, the
first TReq is lost, but the second TReq is successfully received by the
producer node (indicated by the filled blue arrowhead). The producer
node then begins sending time responses (TRes) back to the consumer
node (shown in purple). We can see TRes is received by the consumer
node but ignored due to violating the constraints (represented as a bar
at the end of the arrowhead).

If Td is too short, the consumer node sends another set of m TReq(s)
before all TRes associated with previously received TReq are fully
processed. If the producer node is still responding to the previous TReq,
it cannot process the new TReq, even if it is successfully received.
This situation can introduce processing overheads for both the producer
node discarding these new TRegs, and the consumer node processing
useless TRes, which will be discarded. These issues can cause unex-
pected delays in synchronization. On the other hand, setting Td too
long is also undesirable because it unnecessarily increases the overall
synchronization time. To set the Td delay using the proposed systematic
approach, two key channel properties have been taken into account:
(A) the channel property with respect to bursts of errors, and (B) the
channel property with respect to the random message loss.

In cases of burst errors, as described in [20], the consumer node
should ideally wait until the Burst has subsided before sending another
request. This is important because, during the Burst, any sent TReq(s)
would likely be ineffective or affected by common-mode errors. Burst
error durations are defined by standardized hardware tests for electro-
magnetic compatibility (EMC) as per EN 61000-4-4 [21], with pulse
patterns outlined in Clause 6.2.2. Therefore, the consumer node must
consider the maximum burst duration when determining the Td delay.

Let us consider a situation where the channel experiences random
message loss. In Fig. 9, Just before the SafeTSync™* timeout expires,
the producer node receives a TReq and begins sending n TRes to the
consumer node. As a result, the producer node won’t be able to respond
to any other TReq for (n—1)x 4t,, and all the TRes sent during this time
will be ignored by the consumer node. This is because the consumer
node has already waited for SafeTSync™* from the last TReq. After

S. Zafar et al.
Producer
—— Sync Start -TRC Set
Accepted TReq L SafeTSync™™
g;o;zd TREGR - |lgnored TRes
: g s FSafeTSync™™
in Process T i
< 41 d Non Systematic
" | SafeTSync™™
Accepted TReq-4 " f Ignored TRegs
Ignored TRegs ¢
Old TReq is \ |SafeTSync™™
in Process o
+{Td Non Systematic
4
Accepted TReq E Ignored TReqs
L/
7
Time Non-safe Time

communication

Fig. 8. Non systematic Td timeout.

Producer m

— Sync Start -TRC Set
Be { ,,,,, Tt
RT T
T | SafeTSync™™
ser T T
A4
(n—1)At, Tt
Can't Process ﬁ
Another TReq f
v
; Td Systematic
L v
Non-safe ime

communication

Fig. 9. Systematic Td Timeout.

waiting for (n—1)x 41, if the consumer node waits for the reaction time
(RT) of the last TRes sent, it ensures that the maximum number of TRes
will be discarded during the Td timeout. This minimizes the chance of
receiving unwanted TRes (i.e., from the previous block of TRes) when
a new block of TReq is initiated. Therefore, considering the channel’s
key properties, the consumer node should wait for the maximum time
between ((n - x4, + RT) and the Burst Error Duration before start-
ing a new block of TReq. The proposed approach suggests to adjust the
Td as follows:

Td = max ((n— 1) X 4t, + RT,

19
Burst Error Duration) .

Journal of Systems Architecture 169 (2025) 103605

Producer m =00
Y TRC Set
Accepted TReq i 3%: SﬂfETSynCmax
Ignored TRegs Homas: >
0ld TReq is > |Ignored TR%SM
in Process }. : f §afeTSynC
| Td
: % T t=15 TRC Expire
Accepted TReq o)/ i m,lxNeW TRC Set
:SafeTSync
Processing .
0ld TReq { \ TRes are Invalid
as these are from
Previous TRC
TRC Expire
Time Time

Fig. 10. Non systematic TRC timeout.

4.3. Setting the time request cycle (TRC)

The Time Request Cycle is an essential parameter during time
synchronization, where the consumer node attempts to synchronizes
with the producer node. A non-systematic configuration of the TRC can
increase the TTS (See Definition 19), especially when there is a high
probability of message loss in the transmission medium.

Consider an example of non-safe communication in Fig. 10 with
parameters Ar, = At, = 1, SafeTSync™* = 5,Td = 3,TRC = 15,m =
6, n = 8. As the consumer node sets the TRC, the first TReq is lost. The
second TReq is received (with a blue arrowhead), and the producer
node sends the TRes back to the consumer node. All TRes (shown in
purple) are lost or arrived after passing the SafeTSync™, so these
TRegs will be ignored (can be seen as the bar on the arrowhead). After
the Td timeout, the consumer node starts sending another set of m
TReq(s); in this example, the first new TReq is sent at time ¢t = 14
and it has been successfully received by the producer node. According
to the protocol, the producer node starts sending the n TRes to the
consumer node (it can be seen in purple dotted arrows). Based on
the configured TRC, the TRC timeout expires at time ¢t = 15, and the
consumer node declares the time synchronization failure. When the
synchronization failure occurs, after passing the 4r,, the openSAFETY
starts a new time synchronization phase, sets a new TRC, and sends a
new TReq. The producer node successfully receives these new TReqs
(shown in brown), but these new TRegs cannot be processed because
the producer node is still busy in responding to the TReq accepted at
time ¢ = 14 (shown in dotted arrows). According to the openSAFETY,
if the producer receives a new TReq and is already responding to
the same RxSPDO, it will ignore the new TReq. So, these TRegs will
be ignored, and all of the received TRes at the consumer node are
invalid as these are from previous TRC for which the synchronization
failure has already been declared. OpenSAFETY stack generates the
error(s) whenever it receives invalid TRes(s). We can see in Fig. 10
that, although at + = 18 the consumer node receives the TRes within
the SafeTSync™ window, this TRes is invalid as the consumer node has
already declared the Sync-fail for the TRC during which this TReq was
sent. Fig. 10 shows the time in the red-shaded region when a producer
node ignores the new TReq(s) as it is busy processing old TReq, and
the consumer node receives the invalid TRes(s).

The proposed solution to address this problem is to define the time
request cycle in k blocks (k = 1,2,...) of TReq(s) such that, whenever
the TRC timeout expires, the consumer node has already passed the Td
timeout without sending another TReq. If a block of TReq is added to
the time request cycle, it is mandatory to exactly complete its entire

S. Zafar et al.

Producer
t=0
i TRC Set
Accepted TReq : W: SafeTSync™™
Old TReq is o I lignored TRes | TRC1
in Process T) ma
: ~ {ga feTSync
s Td t=13 TRC Expire
o : New TRC Set
. 2
Accepted TReq :)/ T 1 SafeTSync™™
% . Sync-Successful
X
. Compute SPDO Propagation delay

Time

Fig. 11. Systematic TRC Timeout.

duration, including the Initiation phase, Safe MaxTSync Propagation
Delay Waiting, Time Delay, and Residual Refresh Prescale Timeout (see
the first four points under the management of TRC timeout in Definition
17). We can determine the minimum number of such k blocks in a TRC
based on the target probability of successful synchronization.

The probability P, of success of the time synchronization process
in a single block is given by Eq. (17). From this value, we can com-
pute the probability of failure in one block of the time request cycle:
Pojock fail = 1 — Pylock- As each synchronization block is independent
of the previous one, the probability of synchronization failure after k
blocks (k = 1, 2, ...) of TRC is as follows:

Pyt (k) = (Ppjock fai)*

The desired reliability (R) of the transmission medium is the tar-
get probability of accomplishing synchronization in k blocks of TRC,
i.e., Pyj(k) < 1— R. Given R, we can compute the minimum amount
of blocks required to achieve the desired reliability by rearranging the
last inequality, hence obtaining:
[log(1 — R) -|
™ | log(Potock fait) |
The overall duration of time request cycle comprise of k block is
represented as TRC, in Eq. (22) . Two time requests are delayed by
Ar, in a single block of time requests. To send m time requests, the
maximum time will be (m — 1) x 4z,. After sending the last time request
(TReq), there will be a waiting period of SafeTSync™*. If the consumer
node intends to start another time request, it must wait for the duration
Td. However, after waiting for Td, the consumer node may still be
unable to send the time request again due to the Refresh prescale
Consumer has not expired (denoted as « in Eq. (22)). Based on the
protocol specification, the time request for generic k blocks (k = 1, 2,
...) can be written as:

(20)

2D

TRCy = k [(m — 1) - At, + SafeTSync™| + k[Td + al, (22)

where « is the residual Refresh prescale timeout consumer and is
defined as:

0, if (TW, mod 4z,) = 0;

a= . (23)
At, — (TW, mod 4r,), otherwise,

where TW, (Time Wait Consumer) is defined as follows:

TW, = SafeTSync™* + Td. 24

Suppose we consider the same scenario discussed in Fig. 10, with
identical parameter configurations except for the TRC timeout, which
is now set to TRC; = 13 according to Equation (22), we observe a better

10

Journal of Systems Architecture 169 (2025) 103605

outcome as shown in Fig. 11, the TRC timeout expires at time ¢t = 13,
prompting the consumer node to set a new TRC at r = 14 and send a new
TReq (indicated by the brown arrowhead). The corresponding TRes
is received and processed (indicated by the red arrowhead), resulting
in successful synchronization (illustrated by the green shaded region
with a red circle marking the accepted and processed SPDO after
synchronization), which did not occur in the previous case. In this
scenario, synchronization is successfully achieved at time 7 = 18 during
the second TRC, unlike the earlier scenario. Our proposed approach
helps in reducing the time to synchronize (TTS).

4.4. Setting the time synchronization timeout (ts)

After successful time synchronization, the consumer node stores the
values of TRefqg cumer and TRefp o qucer (as defined in Equation (7)).
However, this offset changes over time due to the tolerance of the
quartz crystal, which can cause the clocks to drift apart. Generally, this
clock drift (1) can be either positive or negative. The clock drift can
cause the consumer node to:

1. Calculate an SPDO propagation delay that increases continu-
ously during time validation.

2. Calculate an SPDO propagation delay that decreases continu-
ously during time validation.

If the consumer node calculates the SPDO propagation delay that
increases over time, it can cause the SPDO propagation delay to be
greater than the residual safety control time. According to the defi-
nition 23 of the residual safety control time, we can write SCT, =
(SCT-PD)+RT. This relationship leads to the fact that to keep the
consumer node operational and continue receiving the SPDOs, the
SCT-PD > 0. Otherwise, the residual safety control time will be less
than the reaction time, which cannot be possible to keep the safety
node operational. This leads to the fact that:
(TSPDOConsumer - TRefConsumer)

- (TSPDOProducer - TRefProducer) < SCT. (25)

Consider the following nominal values during the time validation:

TSPDO(’:VOnsum or = Nominal value of TSPDO¢gnsumer-
TSPDOY _1.e; = Nominal value of TSPDOpogycer-

We can write Equation (25) by incorporating the clock drift accumu-
lated over time:

(TSPDOgonsumer + At — TRefConsumer)
— (TSPDO 4ucer = At — TREfprogucer) < SCT. (26)
SCT — (TSPDOY, _ — TRefcopsumer)
= |t] <
[£24]
N
(TSPDOProducer - TRemeducer) 27)
|+24] '

The above equation (|7| = ts(1) as first consideration) can be simplified,
assuming the consumer and producer nodes have the same clock drifts:

SCT — Reaction Time
|+24]

We can simplify the above equation by considering the clock drifts of
the Producer and Consumer node separately as follows:
SCT — Reaction Time

|i’1Consumer + AProducerl

ts(1) < (28)

ts(1) <

(29

While +A¢onsumer a0d +Aproducer are the clock drifts of the consumer and
producer nodes, respectively.

If the consumer node calculates the SPDO propagation delay that
decreases over time, then it can cause the SPDO propagation delay to

S. Zafar et al.

be less than SPDO™". Therefore, according to the definition 20, the
following condition should be valid during the time validation:

(TSPDOgonsumer + A= TRefCOﬂSllmer)
— (TSPDOY e £ At — TRefprogucer) > SPDO™™. (30)

During the time validation, the consumer node have additional time
SCT as safety margin.

(TSPDO(]:Vonsumer + Af - TRefConsumer)
- (TSPDOIIDdeucer + At — TRefProducer)

+SCT > SPDO™™, (31)

The above equation (|f| = ts(2) as second consideration) can be

simplified as follows:
SRT — SPDO™"
|i}“Consurner + }“Producerl

The maximum value of ts (ts™**) can be chosen as the minimum value
between ts(1) and ts(2):

ts™ = min (ts(1), ts(2)).

ts(2) <

(32)

(33)

Equation (33) represents the maximum value of ts during which time
synchronization must happen otherwise the consumer node will fall
into FAIL-SAFE due to increase in the synchronization error. The max-
imum estimation of the synchronization error is dependent of the ts™*
also on and static delays (Dg) (NIC Latency,scheduling and execu-
tion delays) and maximum jitter (J,,). The maximum synchronization
error (E™) can be given by the following equation:

EmZIX

= |ilC0nsumer + /lProducerl X g™ + Jmax + DStatiC' (34)

4.5. Setting the configuration parameters for time synchronization

In this section, we summarize the key configuration steps needed
to achieve successful time synchronization, as previously discussed.
Application designers can follow these steps to properly adjust the
TxSPDO and RxSPDO parameters as required.

1. RxSPDO: Set Td according to the Equation (19)

2. RxSPDO: Set m,n using Algorithm 1.

3. Estimate k according to the Equation (21).

4. RxSPDO: Set Delay SPDO™®* = SRT.

5. RxSPDO: Set SCT = SRT - RT.

6. RxSPDO: Set MaxTSyncPropDelay = (SRT-SCT + ﬁc).

7. SafeTSync™* « MaxTSyncPropDelay + SCT.

8. RxSPDO: Set f, < TSync™" < f,,.

9. RxSPDO: Set Delay SPDO™" < By-
10. RxSPDO: Compute and set TRC, according to Eq. (22).
11. RxSPDO: Set ts < ts™ax,

5. Experimental analysis on the tuning of some key parameters

This section highlights the positive impact of parameter config-
urations based on the proposed approach, referred to as Systematic
Configuration, compared to configurations following alternative meth-
ods, which we categorize as Non-Systematic Configuration. In the
context of this paper, the following three configuration parameters
have been analyzed: TRC, ts, and (m,n). The used experimental setup
involves three safety nodes within a dedicated Local Area Network
(LAN) connected via Ethernet. These nodes include the Safety Control
Manager (SCM), the SN-Producer Node, and the SN-Consumer Node.
The SCM is responsible for sharing the Safety Network Management
Telegram (SNMT) and Safety Service Device Object (SSDO) frames,
while the SN-Producer Node handles the transmission of Safety-Process
Data Object (SPDO) frames from the producer to the consumer node.
The Safety Hardware Near Firmware (SHNF), utilizes the UDP protocol
for communication. The experimental setup is shown in Fig. 12, and
detailed information about the safety nodes can be found in Table 8.

11

Journal of Systems Architecture 169 (2025) 103605

SCM

Tx
SN-Producer ! SN-Consumer
© SNMT/SSDO
Tx I Tx Rx
l SPDO (TReq) 4

\ 4

SPDO (TRes/Data)

Fig. 12. Experiment setup.

—— TRC-Systematic
TRC-Non Systematic
== = TRC-Systematic timeout
== = TRC Non-Systematic timeout

1401

1201

100 A

80 4

60

TTS (milliseconds)

y T
1000 1500
Time (seconds)

Fig. 13. Experimental Results of tuning TRC.

5.1. Experimental analysis of TRC tuning

For evaluating the impact of a well-configured TRC parameter, we
have introduced the controlled network impairments, NETEM [22],
shown in Table 2. The introduced network impairments are delay,
jitter, maximum packet loss, and the correlation of error burst (CRERR),
which shows the likelihood of losing another frame if one frame is lost.
The protocol and application parameters used to perform this analysis
are shown in Table 1. This experiment aims to determine the time to
synchronize (TTS) (See Definition 19) over time, and shows the advan-
tages obtained when TRC is set according to our approach. See Table
3 for the Systematic and Non-Systematic TRC timeout configurations
used in these experiments.

The experiment results are shown in Fig. 13, where the x-axis
represents the time in seconds, while the y-axis shows the TTS in
milliseconds associated with both configurations. The red and blue
lines represent the TTS for non-systematic and systematic TRC configu-
rations, respectively; the horizontal dotted lines show the configured
TRC values. The red line corresponds to the Non-Systematic TRC,
and the blue line corresponds to the Systematic TRC timeout. TTS
mostly remains below 10 ms for both configurations, indicating that the
synchronization between the consumer and producer nodes is on av-
erage, efficient. However, TTS values are strongly different when TRC
elapses. With the non-systematic TRC value, TTS can reach spikes up to
143 ms. When TRC elapses, after passing the refresh prescale consumer,
the consumer node attempts to synchronize again but often receives
invalid time response(s) from the producer node, and the producer node
remains busy in sending the TRes due to previously accepted TReq.
This can lead to synchronization failures, and the consumer node must

S. Zafar et al.

Journal of Systems Architecture 169 (2025) 103605

Table 1
Fixed application parameters.
Parameter SCT RT m n At, A, Td Payload ts SPDO™" SNMT timeout Test duration
Value 20 (ms) 3 (ms) 3 5 0.3 (ms) 1 (ms) 4 (ms) 311 Bytes 10 (s) 0.2 ms 1(s) 2500 (s)
Table 2 Table 4
Introduced network impairments. Systematic and non-systematic ts timeout.
Test name Delay (ms) Jitter (ms) Max Packet Loss CRERR Test tsmax Systematic ts Non-Systematic ts
TTS 5 L3 50 15% name (ts< ts™=) (ts> ts™>)
ts-test 760 (s) 10 (s) 800 (s)
Table 3
Systematic and non-systematic TRC timeouts. Table 5
Test Systematic TRC Non-Systematic TRC Application specifications: Best configuration test for m and n.
name (k=1) (1<k<2) L1peq Lpes Pojock ts TRC Duration
TTS 27.9 (ms) 28.5 (ms) 55-Bytes 57-Bytes 0.96 10 (s) 43.2 (ms) 5 min
L j— ts-Systematic
ts-Non Systematic x-axis shows the time in seconds, and the y-axis shows the propagation
14 4 = = Min-SPDO Propagation Delay

-
N

=
o

®

Propagation Delay (milliseconds)

f

400 500 600 700

Time (seconds)

200 300

Fig. 14. Experimental results of tuning ts.

repeatedly attempt to synchronize, which can cause unexpected delays.
Whereas, with the systematic TRC value, the highest spike is around
35 ms. The experimental results provide strong evidence supporting the
effectiveness of the proposed Systematic TRC approach.

5.2. Experimental analysis of ts tuning

To conduct the experiment on the impact of the ts timeout, we first
measured the clock drifts of the producer and consumer nodes using
the Chrony tool on Linux [23]. Over the course of the experiment,
we collected more than 1,000 clock drift observations and used the
maximum drift value as the approximated clock drift for the safety
node. In this case, the accumulated clock drifts of both the producer
and consumer nodes were approximately a negative 30 ppm with a
maximum skew of +1.2 ppm. We then ran the test using the parameters
described in Table 1, with the only variation being the ts timeout. Table
4 reports the ts™** derived from the Equation (25) and the Systematic
and Non-Systematic ts timeout values used in the test; note that our
approach allows us to compute the maximum ts and, thus, we choose
a ts less than such a maximum value, e.g. 10 s. On the other hand, in
the case of a non-systematic ts timeout value, the application designer
does not know in advance that a ts = 800(s) is an incorrect parameter
that may lead to unavailability or, worst, safety issues if the minimum
SPDO propagation delay is incorrectly configured and the clock drift of
both nodes is negative.

There were no induced network impairments in these experiments.
The experiment results are presented in Fig. 14 where the SPDO Propa-
gation Delay is plot over time for the two different configurations. The

12

delay in milliseconds. The blue line corresponds to the experiment
with the Systematic ts configuration, while the red line represents the
experiment with the Non-Systematic ts configuration. The horizontal
dashed red line indicates the minimum allowed SPDO propagation
delay, which serves as the lower limit for the acceptable propagation
delay.

The purpose of this experiment was to show the impact of using a
wrong ts timeout, greater than ts™* computed using our approach. The
Non-Systematic ts configuration (red line), has a negative trend due
to the clock drift between the producer and consumer nodes. As the
measured clock drifts of both nodes were negative, such negative drifts
lead to a decreasing SPDO propagation delay calculation over time.
When such a propagation delay drops below the minimum allowable
threshold, which is represented by the red dashed line, the consumer
node enters the FAIL-SAFE state. This occurs when ¢ is around 770 s.
On the other hand, using our approach, the maximum allowed ts value
is computed, i.e. 760 s, and the application designer can set the ts
parameter to a value that will not lead a consumer node to fall into
the FAIL-SAFE state.

5.3. Experimental analysis on m and n

To evaluate the impact of configuring the number of time requests
(m) and time responses (n) on the overall efficiency of the time syn-
chronization protocol, we conducted 5 min experiments under varying
levels of randomly induced frame loss, ranging from 0% to 4% (See Ta-
ble 5 for the details which contains the length of Lgeq and Lges)- The
objective was to assess the number of discarded time responses TRes(D)
received at the consumer node after successful time synchronization.
These discarded responses, although no longer contributing to the
synchronization, still require validation and checking the criteria to be
processed, thereby introducing unnecessary overhead in communica-
tion and computation, particularly in real-time or resource-constrained
environments.

We compared two configurations:

» Non-Systematic Configuration, where maximum values of m and
n are fixed without accounting for channel conditions.

+ Systematic Configuration,where m and n are dynamically set
based on estimated parameters such as Bit Error Rate (BER), pay-
load length, and required reliability, as derived from Algorithm
1.

The experimental results are presented in Table 7. They clearly demon-
strate that the Systematic Configuration significantly reduces the num-
ber of discarded time responses while maintaining synchronization
reliability. At 0% loss, the Non-Systematic Configuration results in 1860

S. Zafar et al.

Table 6
Impact of Systematic Configuration on safety application.

Parameter Impact due to systematic configuration

Symbol

m Reduces redundant processing of SPDO,
improves performance.

n Reduces redundant processing of SPDO,
improves performance.

TRC, Better in terms of performance and efficiency.

ts Better in terms of ensuring safe operations.

discarded responses compared to only 42 for the Systematic Configu-
ration, which is a reduction of approximately 97.7%. This observation
continues across all levels of loss, with Systematic Configuration con-
sistently reducing TRes(D) by a large margin. For instance, at 4%
induced loss, Systematic Configuration leads to 350 discarded responses
compared to 1761 in the Non-Systematic case, which is approximately
80.1% reduction.

It is worth noting that both configurations maintain successful syn-
chronization across all tested loss levels, with a single synchronization
failure occurring only at 4% loss in both cases. This outcome vali-
dates that the Systematic Configuration achieves equivalent reliability
while offering superior efficiency. Furthermore, the Non-Systematic
Configuration generates a high number of superfluous time responses
regardless of the actual network conditions. Non-Systematic approach
is quite inefficient, as it introduces fixed redundancy without con-
sidering the actual loss characteristics of the medium. On the other
hand, the Systematic Configuration adapts the level of redundancy
based on network conditions, which keeps a balance between reliability
and resource utilization. These results support our proposed systematic
method for configuring m and n, which leads to a more scalable,
adaptive, and efficient time synchronization. It minimizes unnecessary
pre-processing by reducing the volume of discarded TRes, thereby it
improves the protocol’s applicability in real-time systems and networks
with constrained computational and communication resources.

6. Performance analysis test of openSAFETY protocol

In this section, we have performed the performance analysis of the
openSAFETY protocol. Our experimental setup consists of three safety
nodes within a dedicated Local Area Network (LAN) connected via
Ethernet. These nodes are the SCM, the SN-Producer Node, and the
SN-Consumer Node. The SCM is responsible for sharing the SNMT and
SSDO frames, while the SN-Producer Node handles the transmission of
Safety-Critical Data (SPDO) frames from the producer to the consumer
node. The safety hardware, including the firmware SHNF, uses the UDP
protocol. The experimental setup is illustrated in Fig. 12, and detailed
information about the safety nodes is provided in Table 8.

We conducted two types of performance tests, as described below:

» Test Case 1: openSAFETY performance by varying the payload
and transmission periods.

» Test Case 2: Network Impairment and Resilience Evaluation of
openSAFETY Protocol.

6.1. Test case 1

In Test Case-1, we have shown the network conditions and the
application requirements in Table 10. We evaluated the protocol’s
performance by varying the transmission period of SPDO frames and
the payload size of the data. This test consisted of two experiments:

1. Experiment 1: We set the payload to half of the maximum
capacity of a standard SPDO frame (See Table 11) and varied
the transmission frequencies from 5 kHz to 100 Hz.

13

Journal of Systems Architecture 169 (2025) 103605

15

Transmission Frequency (SPDO)
[10kHz to 1.1kHz

101 © [0 1kHz to 100Hz
. o
0 o o g °
é5§ Pyl P
| [B I Lo .
RN I B : .
s 8 CI ° 5 o o
£3 § 8 g § ¢ g o e g e
g 8
©
s
Pl 3 Tenosseasas

N °

§
° ° ° e °
° o 8 o = L] o

08 09 1.0 20 3.0 4.0
Transmission Period (ms)

50 60 7.0 80 9.0 100

Fig. 15. Propagation Delay Experiment-1: Half Payload.

2. Experiment 2: We used the maximum payload capacity of
a standard SPDO frame (See Table 11) and again varied the
transmission frequencies from 5 kHz to 100 Hz.

A dedicated task was created using the Ptask library [24] to ensure
the period update of the data in the SOD. Safety-critical data was
exchanged for 60 s during each experiment, as outlined in Table 9.
For each experiment, we have evaluated the performance based on the
following metrics:

1. SPDO Propagation delay (PD): See Definition 22.

2. Max Jitter (J,,,): The difference between Maximum and Mini-
mum propagation delay is the maximum jitter during the trans-
mission. Max Jitter can be represented as Max(PD)- Min(PD).

3. Inter-Frame Delay Variation (IFDV): The absolute value of the
difference between the Propagation delay of two consecutive
received SPDOs. IFDV can be expressed as |PD(i + 1) — PD(i)|,
where i is the order the frames were received [25].

4. Bandwidth: Bandwidth refers to the maximum rate at which
data can be transferred over a network connection or commu-
nication channel Bandwidth = Frames/s * Payload.

5. %Failure: (SPDOs Failed/SPDOs Sent)*100.

6.2. Results test case 1

For both experiments, the propagation delay slightly decreases as
the transmission period increases from 0.2 ms to 10 ms. The Box
plots Fig. 15,16 highlight two frequency ranges: 5 kHz to 1.1 kHz (in
green) and 1 kHz to 100 Hz (in orange). The 5 kHz to 1.1 kHz range,
associated with shorter transmission periods, shows a slight increase in
the propagation delay when the transmission frequency is high, but the
mean propagation delay remains below 2.5 ms across all transmission
frequency ranges.

Experiment 2 generally shows a slight variability compared to Ex-
periment 1. In Experiment 1, the mean propagation delay lies between
1.8 and 2.4 ms. The number of outliers in the 5 kHz to 1.1 kHz range
is higher than the 1 kHz to 100 Hz range. However, the distribution
of propagation delay shows that most data points cluster around the
mean values, indicating no significant variation in propagation delay
for most cases.

In Experiment 2, the maximum jitter is slightly high at shorter
transmission periods (up to 0.5 ms), reaching up to 20 ms. In contrast,
Experiment 1 shows lower maximum jitter, reaching around 12 ms
for a transmission period of 0.2 ms. We have shown the results of
the experiments in Tables 12, 13. In Experiment 2 and Experiment
1, we observed that the mean IFDV is below 0.3 ms. The dots in

S. Zafar et al.

Journal of Systems Architecture 169 (2025) 103605

Table 7
Experiment results of Systematic and Non-Systematic Configuration of Number(s) of TReq(s) and TRes(s)
% Introduced loss Configuration No of m and n TRes(D) Sync-Fail
0% Non-Systematic m=63,n=63 1860 0
0% Systematic m=2,n=2 42 0
1% Non-Systematic m=63,n=63 1845 0
1% Systematic m=4,n=5 88 0
2% Non-Systematic m=63,n=63 1830 0
2% Systematic m=7,n=7 220 0
3% Non-Systematic m=63,n=63 1794 0
3% Systematic m=9,n=13 280 0
4% Non-Systematic m=63,n=63 1761 1
4% Systematic m=13,n=15 350 1
Table 8
Detailed information about safety nodes and Ethernet controller network.
Safety Node CPU Approx. Clock Drift skew OS and Kernel Ethernet and Driver
SCM Intel Core i7/3.9 GHz 12.212 ppm fast 1.338 ppm Linux Mint 5.15.0-56 82541PI €1000
SN-Producer Intel Core i5/2.9 GHz 20.612 ppm slow 0.255 ppm Linux Mint 5.15.0-56 RTL8111 r8169
SN-Consumer Intel Core i7/4.7 GHz 8.526 ppm slow 0.934 ppm Linux Mint 5.15.0-56 RTL8111 r8169
Table 9 Transmission Frequency (SPDO)
Baseline Test-Case 1. 020 T SkHzto 11kHz
¥ 1kHz to 100Hz
Experiment Payload Transmission
D Frequencies
1 Half 5 kHz to 100 Hz 030
2 Full 5 kHz to 100 Hz
o
£
> 0.20
° Transmission Frequency (SPDO) E
° B 10kHz to 1.1kHz
15{ ¢ = 1kHz to 100Hz
° 0.10
o), o g
E | o
= 8
S I R U R
T o S 85 o o 0.00
Qs ' FA A °
c g8 ° 2 o 10° 10
'g E 8 8 ® 8 H % ° 2 Transmission Period (ms)
2, L O
g] % : 22 2 _ Fig. 17. IFDV Experiment-1: Half Payload.
) smeEs T TTTTTT
2 e o
° % % E l ©° °
° 8 Transmission Frequency (SPDO)
o o o . ° g 0.40 ¥ 5kHzto 1.1kHz
° 8 ¥ 1kHz to 100Hz
1
0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 40 5.0 6.0 7.0 8.0 9.0 10.0
Transmission Period (ms)
0.30
Fig. 16. Propagation Delay Experiment-2: Full Payload. _
£
>0.20
£
the bar in Figs. 18, 17 represent the mean of IFDV, and the bars’
length represents the standard deviation. At shorter transmission pe-
riods (0.2 ms to 0.9 ms), the mean IFDV usually remains between 010
0.20 ms and 0.30 ms; this indicates low variability in frame arrival
times. However, at higher frequencies, the IFDV reaches up to 0.40 ms. 1 + 4 l *
This might be possible due to the increased data rate, which causes 0:00

network congestion. Experiment 1 shows a lower mean IFDV across
all transmission periods, showing improved stability when the Payload
is half. The lower transmission frequency range (1 kHz to 100 Hz)
consistently shows reduced IFDV in both experiments, indicating that
lower transmission rates mitigate the impact of data variability. This
disparity between the experiments shows the importance of optimizing
transmission frequency and data load to minimize inter-frame delay
variation. By leveraging lower transmission frequencies and adjust-
ing the data load, the openSAFETY achieves more consistent frame
intervals, which can help improve performance and stability.

In both experiments, Initially, at shorter transmission periods
(0.2 ms to 0.5 ms), the bandwidth is higher due to the frequent trans-
mission of frames. In Experiment 1, the peak bandwidth (consuming

10° 10!
Transmission Period (ms)

Fig. 18. IFDV Experiment-2: Full Payload.

SPDO frames only) reaches approximately 12.5 Mbps; in Experiment
2, it reaches nearly 22.5 Mbps; the higher bandwidth observed in
Experiment 2 shows increased network utilization under full Payload.
The total message failures indicate that shorter transmission periods
correlate with a higher incidence of failed messages. In both experi-
ments, the number of failed messages increases when the transmission
period reduces to 0.2 ms and 0.3 ms. Specifically, Experiment 2 shows

14

S. Zafar et al.

Journal of Systems Architecture 169 (2025) 103605

Table 10
Application design requirements: Test Case 1.
Parameter P, CRERR By SRT RT SNMT/SSDO timeout
Value 0.001 25% 0.2 ms 500 ms 10 ms 1s
Table 11
Distribution of SPDO data Bytes under Half and Full Payload.
Payload Data Header-0S Data-OS Header-UDP Header-1PV4 Header-Ethernet Total Payload
Bytes Bytes Bytes Bytes Bytes Bytes Bytes
Half 128 13 2 x 128 8 20 14 311
Full 254 13 2 x 254 8 20 14 563
Table 12
Experiment-1 results.
Transmission Bandwidth Mean PD Max PD Min PD Max Jitter Std Dev SPDOs SPDOs Failure
period (ms) (Mbps) (ms) (ms) (ms) (ms) PD (ms) Sent Failed (%)
10.0 0.2488 1.8559 3.019 0.977 2.042 0.144 6001 0 0.0
9.0 0.2764 1.8696 2.946 0.977 1.969 0.1426 6667 0 0.0
8.0 0.311 1.8652 3.232 0.91 2.322 0.1413 7501 0 0.0
7.0 0.3554 1.8606 2.98 0.921 2.059 0.1408 8573 0 0.0
6.0 0.4147 1.8665 3.982 1.604 2.378 0.1431 10,001 0 0.0
5.0 0.4976 1.849 4.099 1.591 2.508 0.1445 12,001 0 0.0
4.0 0.622 1.8561 2.43 0.951 1.479 0.1413 15,001 0 0.0
3.0 0.8293 1.8524 4.579 0.927 3.652 0.1522 20,001 0 0.0
2.0 1.244 1.844 4.432 1.598 2.834 0.1439 30,001 0 0.0
1.0 2.488 2.1114 4.16 0.954 3.206 0.1061 59,997 0 0.0
0.9 2.7644 2.0372 3.186 0.998 2.188 0.1958 66,665 0 0.0
0.8 3.11 2.2395 6.221 0.911 5.31 0.1194 75,000 0 0.0
0.7 3.5543 2.2145 5.807 1.787 4.02 0.1967 85,710 0 0.0
0.6 4.1467 2.3243 6.535 0.925 5.61 0.1476 100,000 3 0.003
0.5 4.976 2.1419 6.174 0.902 5.272 0.2082 120,001 2 0.0017
0.4 6.22 2.0149 6.026 0.887 5.139 0.1758 150,001 18 0.012
0.3 8.2933 2.192 7.405 0.925 6.48 0.1742 200,001 66 0.033
0.2 12.44 2.1405 12.345 0.988 11.357 0.1958 300,001 377 0.1257
Table 13
Experiment-2 results.
Transmission Bandwidth Mean PD Max PD Min PD Max Jitter Std Dev SPDOs SPDOs Failure
Period (ms) (Mbps) (ms) (ms) (ms) (ms) PD (ms) Sent Failed (%)
10 0.4504 2.4253 2.679 1.887 0.792 0.1015 6001 0 0.0
9 0.5004 2.4642 2.738 1.858 0.88 0.1151 6668 0 0.0
8 0.563 2.3844 5.194 1.729 3.465 0.141 7500 0 0.0
7 0.6434 2.3969 2.711 1.678 1.033 0.1461 8572 0 0.0
6 0.7507 2.3852 4.006 1.749 2.257 0.1901 10,001 0 0.0
5 0.9008 2.4588 2.686 1.854 0.832 0.1159 12,001 0 0.0
4 1.126 2.3268 3.049 1.752 1.297 0.0948 15,001 0 0.0
3 1.5013 2.2392 3.95 1.707 2.243 0.1711 20,001 0 0.0
2 2.252 2.207 6.162 1.794 4.368 0.1814 30,001 0 0.0
1 4.504 2.1865 6.026 1.744 4.282 0.216 59,999 0 0.0
0.9 5.0044 2.1237 6.324 1.662 4.662 0.2062 66,666 0 0.0
0.8 5.63 2.1714 5.76 1.198 4.562 0.1787 75,000 0 0.0
0.7 6.4343 2.2512 6.326 1.305 5.021 0.1434 85,715 2 0.0023
0.6 7.5067 2.3359 4.668 1.024 3.644 0.1621 100,000 3 0.003
0.5 9.008 2.1695 7.806 1.044 6.762 0.2319 120,001 10 0.0083
0.4 11.26 2.1378 10.991 1.278 9.713 0.2152 150,000 95 0.0633
0.3 15.0133 2.334 18.509 1.317 17.192 0.1854 200,001 90 0.045
0.2 22.52 2.2474 20.44 1.28 19.16 0.1928 300,237 475 0.1582

a sharp spike in failed messages, exceeding 475 failures at 0.2 ms,
compared to a lower count of around 377 failures in Experiment 1. This
disparity highlights the increased likelihood of frame loss under higher
data transfer rates and full payload conditions. As the transmission
period goes ahead 0.7 ms, both experiments show a marked decline in
message failures. This stabilization suggests that increasing the interval
between transmissions allows the network to manage traffic more
effectively, reducing frame loss and improving reliability.

6.3. Test case 2

Test Case 2 aims to test how well the protocol performs under
adverse or non-ideal network conditions. We introduced controlled

15

network impairments to evaluate the protocol’s performance, including
frame loss, latency, jitter, and bandwidth limitations using NETEM [22]
in Linux. Ethernet networks are highly reliable, often exhibiting frame
loss rates below 0.1%. However, testing up to 1% loss is reasonable
to account for rare, extreme conditions according to IEEE 802.3 Eth-
ernet Standard [11]. Ethernet LANs generally experience very low
latency, typically between 1-5 ms, which is Common for Ethernet
LANs with multiple switches or under moderate load. However, to
simulate the overloaded or congested LAN environment, 10 ms latency
can be used [26]. Small amounts of jitter (1-5 ms) can occur due
to network congestion or switch buffering [27]. Ethernet speeds have
evolved, ranging from 10 Mbps in legacy equipment to 1 Gbps in
modern LANSs. Testing across this range ensures the protocol can handle

S. Zafar et al.

Journal of Systems Architecture 169 (2025) 103605

Table 14
Baseline for Test Case 2.

Experiment Frame Latency Jitter Bandwidth Description

D Loss (%) (ms) (ms) (Mbps)

1 0% 0 ms 0 ms 1000 Mbps Normal

2 0.01% 0 ms 0 ms 1000 Mbps Minimal frame loss

3 0.1% 0 ms 0 ms 1000 Mbps Typical Ethernet LAN loss

4 1% 0 ms 0 ms 1000 Mbps High frame loss

5 0% 1 ms 0 ms 1000 Mbps Slight increase in latency

6 0% 5 ms 0 ms 1000 Mbps Moderate latency increase

7 0% 10 ms 0 ms 1000 Mbps High latency

8 0% 0 ms 1 ms 1000 Mbps Low jitter

9 0% 0 ms 2 ms 1000 Mbps Moderate jitter

10 0% 0 ms 5 ms 1000 Mbps High jitter

11 0% 0 ms 0 ms 100 Mbps Limited bandwidth

12 0% 0 ms 0 ms 10 Mbps Severe bandwidth constraint

13 0.1% 5 ms 2 ms 1000 Mbps Moderate loss, latency, and jitter

14 1% 10 ms 5 ms 10 Mbps Severe loss, latency, and low bandwidth

Table 15
Results for Test Case 2: Under degraded network conditions.

Experiment Min PD Mean PD Max PD Std Dev Mean IFDV Max Failed Failure
D (ms) (ms) (ms) PD (ms) (ms) SPDOs (%)
1 1.732 2.2384 9.997 0.2201 0.2198 0 0.0
2 1.647 2.1474 14.106 0.2809 0.2205 1 0.0017
3 1.835 2.2677 17.992 0.2666 0.2184 13 0.0217
4 1.655 2.2626 8.128 0.2351 0.2185 23 0.0383
5 2.714 3.1176 18.987 0.2491 0.221 0 0.0
6 6.769 7.2248 15.763 0.2099 0.2228 0 0.0
7 11.752 12.1304 17.791 0.1881 0.2218 0 0.0
8 1.872 2.4816 13.912 0.3384 0.3328 2591 4.3183
9 1.696 2.3175 18.560 0.3857 0.3141 6053 10.0883
10 1.696 2.3507 18.267 0.3880 0.2696 9553 15.9217
11 1.717 21777 17.458 0.2623 0.221 1 0.0017
12 39.500 58.5641 79.400 10.5432 0.1888 720 1.2000
13 1.600 5.0232 15.000 1.3362 0.1856 1750 2.9100
14 7.000 57.1092 77.800 12.3871 1.2852 26,124 43.5400

both constrained and high-speed scenarios. The IEEE 802.3u [28] and
802.3ab [29] standards define Fast Ethernet (100 Mbps) and Gigabit
Ethernet (1000 Mbps), respectively [11].

Experimental setup test case 2

The experimental setup for Test Case 2 is precisely the same as for
Test Case 1. Additionally, we have fixed the transmission frequency to
1 KHz and the Payload to the Full Payload for this test. The baseline
of introduced network impairments to perform these experiments are
shown in Table 14.

6.4. Results test case 2

The experimental evaluation of the communication protocol under
degraded network conditions shows its robustness and handling of
network impairments. The results of the experiment are shown in Table
15.

In the baseline test (Experiment 1), the protocol shows stable per-
formance with a low mean latency of 2.24 ms, minimal variation, and
no frame loss, establishing an ideal reference point.

As frame loss is introduced incrementally in Experiments 2-4, there
is a slight increase in mean latency (from 2.15 ms to 2.27 ms) and
standard deviation, indicating a minor impact on delay. The failure
rate remains very low, reaching 0.0383% in Experiment 4, showcasing
the protocol’s resilience under typical Ethernet LAN conditions. In
Experiments 5-7, increasing latency without additional faults increases
mean latency (up to 12.13 ms) as expected. Notably, the protocol
maintains a zero failure rate, even as the network delay increases;
this highlights the ability to tolerate added propagation delay without
sacrificing reliability. The introduction of jitter in Experiments 8-10
causes noticeable increases in delay variation and the number of failed

16

messages. The reason is that the jitter can cause frames to arrive out of
order. This can disrupt protocols expecting frames to arrive in sequence,
potentially affecting the data integrity or requiring reordering mecha-
nisms; therefore, it causes the failure rate to rise significantly, reaching
up to 15.92% in Experiment 10. Despite this, the mean latency remains
relatively stable, suggesting that the protocol can handle moderate
jitter but struggles when the variability becomes severe. Bandwidth lim-
itations in Experiments 11 and 12 substantially increase mean latency,
particularly in Experiment 12 (mean PD of 58.56 ms). Although the
protocol performs well under moderate constraints (Experiment 11),
severe bandwidth limitations result in a failure rate of 1.2%, indicat-
ing congestion and potential frame loss under restricted bandwidth
conditions.

Combined fault conditions in Experiments 13 and 14 illustrate the
compounded effects of multiple network impairments. In Experiment
13, the protocol manages moderate faults with a mean latency of
5.02 ms and a failure rate of 2.91%. However, Experiment 14, involving
severe frame loss, latency, jitter, and bandwidth constraints, pushes
the protocol to its limits, with the highest failure rate at 43.54%. This
indicates a significant degradation in performance, as expected under
extreme network conditions.

7. Conclusions

OpenSAFETY offers significant flexibility and adaptability as a
fieldbus-independent protocol, making it an ideal choice for industrial
safety systems. Our research into the time synchronization mechanism
has provided critical insights into maintaining the operational integrity
of safety nodes, particularly in real-time systems where deterministic
timing is essential. A significant contribution of this work is the devel-
opment of a structured approach for configuring safety applications.
To the best of our knowledge, no existing method offers practical

S. Zafar et al.

guidelines for configuring safety nodes, and our approach addresses this
gap by providing a clear, effective, and structured method for tuning
safety applications to ensure reliable and safe operations. This method
and the associated algorithm can be deployed in real industrial systems
to tune the openSAFETY protocol and related application parameters
based on real-time network conditions and application requirements.

In industrial systems, where the communication network may expe-
rience varying levels of congestion, packet loss, or delays, the proposed
parameter tuning will be beneficial in maintaining safe and efficient
openSAFETY operations. This approach also represents a step toward
isolating application-dependent and protocol-dependent parameters.
Additionally, when used as a real-time monitoring defensive technique
within the Safety Node (SN), the SCM can trigger the parameter ad-
justment process in safety nodes. This process will recalculate the time
synchronization parameters, raising an alarm when the current config-
uration parameters are no longer suitable or autonomously adjusting
the time synchronization parameters to ensure they remain within a
range verified and approved by the industry’s safety team. For example,
when a new safety node is added to the network or an existing node is
removed, the algorithm can adjust the time synchronization parameters
autonomously. This process simplifies operations for end-users who
lack protocol-level knowledge.

The parameter tuning approach and the real-time parameter mon-
itoring algorithm can be integrated into an easy-to-use software inter-
face for deployment in real industrial systems. This software interface
would enable engineers and system designers to set high-level objec-
tives, such as the desired reaction time or required redundancy for time
synchronization, while the monitoring algorithm handles the lower-
level adjustments based on current network conditions and application
needs.

The software interface would also allow monitoring of the system’s
performance, including parameters such as latency, jitter, and packet
loss, and enable the safe and controlled adjustment of key parame-
ters if necessary, based on ongoing analysis of network performance
and safety requirements. This is especially important in wireless net-
works [30], where the performance is sometimes unpredictable due to
interference, multipath fading, or signal attenuation. In such systems,
the algorithm can modify some key parameters like the Time Request
Cycle (TRC), Time Synchronization Timeout (ts), and Time Delay (Td)
to compensate for the loss and delay in transmission.

One of the important features of the tuning algorithm is its abil-
ity to adapt to network impairments. If the system detects that the
communication medium is experiencing high levels of packet loss or
high jitter, the algorithm can increase the redundancy of time requests
and responses. This can increase the possibility that the safety nodes
continue to synchronize properly even under suboptimal conditions.
However, further work is needed to comprehensively analyze the pro-
tocol’s performance in wireless systems, as wireless networks introduce
more unpredictable delays and variable network conditions, making it
challenging to predict best and worst-case delays.

Future studies should focus on detailed evaluations of how open-
SAFETY can be optimized further for wireless communication, consid-
ering factors such as signal interference, multipath propagation, and
real-time packet loss recovery policies. Additionally, the adaptation
of the protocol under highly fluctuating network conditions, such as
those seen in industrial wireless systems, will be important for future
deployments.

As a part of this work, we have examined the impact of non-
systematic parameter configurations and demonstrated how our ap-
proach is helpful. The systematic effects of parameter configurations
on safety applications are summarized in Table 6. Furthermore, we
conducted a comprehensive performance analysis of openSAFETY, eval-
uating its handling of safety-critical data transmission over UDP via
Ethernet. Our results revealed that the protocol successfully maintains
its expected cycle time across varying payload sizes. We also assessed
its performance under different network impairments and found that
openSAFETY remains robust and reliable, even in network disruptions
under a certain level.

17

Journal of Systems Architecture 169 (2025) 103605

CRediT authorship contribution statement

Shoaib Zafar: Writing — original draft, Visualization, Validation,
Software, Methodology, Formal analysis, Conceptualization. Salvatore
Sabina: Writing — review & editing, Visualization, Validation, Super-
vision, Investigation. Alessandro Biondi: Validation, Supervision, Re-
sources, Project administration, Investigation. Giorgio Buttazzo: Val-
idation, Supervision, Resources, Project administration, Investigation,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We are thankful to B&R automation for providing the openSAFETY
stack for research purpose.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.sysarc.2025.103605.

Data availability

The authors do not have permission to share data.

References

[1] G. Peserico, A. Morato, F. Tramarin, S. Vitturi, Functional safety networks and
protocols in the industrial internet of things era, Sensors 21 (18) (2021) 6073,
http://dx.doi.org/10.3390/5s21186073.

HMS Networks, Annual analysis reveals steady growth in industrial network
market, 2024, URL: https://www.hms-networks.com. (Accessed 24 November
2024).

G. Creech, Black channel communication: What is it and how does it
work? Meas. Control. 40 (10) (2007) 304-309, http://dx.doi.org/10.1177/
002029400704001003.

B.I. Automation, Wireless transmission of safety data, 2018, https://www.br-
automation.com/en/about-us/press-room/wireless-transmission-of-safety-data-
24-09-2018/. (Accessed 24 November 2024).

LE. Commission, IEC 61508 Commented version, 2.0, 2020, IEC, 2010, Stability
date.

F. Haslhofer, OpenSafety for wired and wireless connections over MQTT, 2020,
URL: https://epub.jku.at/download/pdf/5335415.pdf. (Accessed 24 November
2024).

A. Hadziaganovié¢, M.K. Atiq, T. Blazek, H.-P. Bernhard, A. Springer, The
performance of opensafety protocol via IEEE 802.11 wireless communication, in:
2021 26th IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA, 2021, pp. 1-8, http://dx.doi.org/10.1109/ETFA45728.2021.
9613548.

A. HadZiaganovi¢, R. Muzaffar, H.P. Bernhard, A. Springer, Integration of
opensafety in omnet++, in: IECON 2022 - 48th Annual Conference of the
IEEE Industrial Electronics Society, 2022, pp. 1-6, http://dx.doi.org/10.1109/
IECON49645.2022.9968888.

A. Soury, M. Charfi, D. Genon-Catalot, J.M. Thiriet, Performance analysis of
ethernet powerlink protocol: Application to a new lift system generation, 2015,
pp. 1-6, http://dx.doi.org/10.1109/ETFA.2015.7301492.

E.T. Group, Ethercat technology, 2024, https://www.ethercat.org/en/technology.
html. (Accessed 24 November 2024).

IEEE Computer Society, IEEE Standard for Ethernet, Technical Report IEEE
Std 802.3-2018, IEEE Standards Association, New York, NY, USA, 2018, http:
//dx.doi.org/10.1109/IEEESTD.2018.8457469, Revision of IEEE Std 802.3-2015.
PROFIBUS, P. International, PROFIBUS technology, 2024, https://www.profibus.
com/technologies/profibus. (Accessed 24 November 2024).

International Organization for Standardization (ISO), Safety of machinery —
Safety-related parts of control systems. Part 1: General principles for design,
Technical Report ISO 13849-1:2023, ISO, 2023, (Accessed 24 November 2024).

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

https://doi.org/10.1016/j.sysarc.2025.103605
http://dx.doi.org/10.3390/s21186073
https://www.hms-networks.com
http://dx.doi.org/10.1177/002029400704001003
http://dx.doi.org/10.1177/002029400704001003
http://dx.doi.org/10.1177/002029400704001003
https://www.br-automation.com/en/about-us/press-room/wireless-transmission-of-safety-data-24-09-2018/
https://www.br-automation.com/en/about-us/press-room/wireless-transmission-of-safety-data-24-09-2018/
https://www.br-automation.com/en/about-us/press-room/wireless-transmission-of-safety-data-24-09-2018/
https://www.br-automation.com/en/about-us/press-room/wireless-transmission-of-safety-data-24-09-2018/
https://www.br-automation.com/en/about-us/press-room/wireless-transmission-of-safety-data-24-09-2018/
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb5
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb5
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb5
https://epub.jku.at/download/pdf/5335415.pdf
http://dx.doi.org/10.1109/ETFA45728.2021.9613548
http://dx.doi.org/10.1109/ETFA45728.2021.9613548
http://dx.doi.org/10.1109/ETFA45728.2021.9613548
http://dx.doi.org/10.1109/IECON49645.2022.9968888
http://dx.doi.org/10.1109/IECON49645.2022.9968888
http://dx.doi.org/10.1109/IECON49645.2022.9968888
http://dx.doi.org/10.1109/ETFA.2015.7301492
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
http://dx.doi.org/10.1109/IEEESTD.2018.8457469
http://dx.doi.org/10.1109/IEEESTD.2018.8457469
http://dx.doi.org/10.1109/IEEESTD.2018.8457469
https://www.profibus.com/technologies/profibus
https://www.profibus.com/technologies/profibus
https://www.profibus.com/technologies/profibus
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb13
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb13
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb13
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb13
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb13

S. Zafar et al

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

G. Cena, I.C. Bertolotti, S. Scanzio, A. Valenzano, C. Zunino, Synchronize your
watches: Part II: Special-purpose solutions for distributed real-time control, IEEE
Ind. Electron. Mag. 7 (2) (2013) 27-39, http://dx.doi.org/10.1109/MIE.2013.
2248431.

T. Krauss, R. Schierl, Safety-critical systems based on PROFIsafe: An overview,
in: Proceedings of the International Conference on Industrial Networks and
Intelligent Systems, 2016, pp. 15-22.

H. Networks, Canopen protocol whitepaper, 2024, https://media.hms-networks.
com/image/upload/v1701953901/Documents/Whitepapers/Ixxat CANopen-
Protocol-Whitepaper EN.pdf. (Accessed 24 November 2024).

G. Peserico, A. John, Development of functional safety applications for
autec products. Study of protocols: Canopen, canopen safety, FSOE, and
ProfiSafe, 2019/2020, https://hdl.handle.net/20.500.12608/23978. (Accessed 24
November 2024).

D.D. Chowdhury, NextGen Network Synchronization, Springer International
Publishing, 2021, http://dx.doi.org/10.1007/978-3-030-71179-5, (Accessed 24
November 2024).

J. Peeck, M. Mostl, T. Ishigooka, R. Ernst, A protocol for reliable real-time
wireless communication of large data samples, IEEE Trans. Veh. Technol. 72
(10) (2023) 13146-13161, http://dx.doi.org/10.1109/TVT.2023.3275300.

A. Platschek, B. Thiemann, H. Zeilinger, T. Sauter, An error model for safe
industrial communication, in: IECON 2015 - 41st Annual Conference of the IEEE
Industrial Electronics Society, 2015, pp. 004672-004677, http://dx.doi.org/10.
1109/IECON.2015.7392829.

C. KS, 61000-4-4: Electromagnetic compatibility (EMC)-part 4: Testing and
measurement techniques-section 4: Electrical fast transient/burst immunity test,
Basic EMC Publ. Korean Stand. Assoc. (2009).

Linux Foundation, Tc-netem(8) - linux manual page, 2024, URL: https://www.
linux.org/docs/man8/tc-netem.html. (Accessed 18 November 2024).

C. Project, Chrony: A versatile implementation of the network time protocol
(NTP), 2024, https://chrony-project.org/index.html. (Accessed 30 April 2024).
G. Buttazzo, G. Lipari, Ptask: An educational c library for programming real-
time systems on linux, in: Proceedings of the 2013 IEEE 18th Conference on
Emerging Technologies & Factory Automation, ETFA, IEEE, 2013, pp. 1-8,
http://dx.doi.org/10.1109/ETFA.2013.6648001.

J.H. Salim, J.M. Halpern, E. Shenker, Terminology for traffic control mechanisms,
2006, http://dx.doi.org/10.17487/RFC4689, RFC 4689 URL: https://www.rfc-
editor.org/rfc/rfc4689.

G. Almes, S. Kalidindi, M.J. Zekauskas, A one-way packet loss metric for IP
performance metrics (IPPM), 1999, http://dx.doi.org/10.17487/RFC2680, RFC
2680. URL: https://www.rfc-editor.org/rfc/rfc2680.

A. Morton, B. Holbrook, H. Schulzrinne, Packet delay variation applicability
statement, 2009, http://dx.doi.org/10.17487/RFC5481, RFC 5481. URL: https:
//www.rfc-editor.org/rfc/rfc5481.

IEEE Computer Society, IEEE standard for information technology — telecommu-
nications and information exchange between systems — local and metropolitan
area networks — specific requirements — part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer specifications —
amendment 3: Media access control (MAC) parameters, physical layer, medium
attachment units, and repeater for 100 mb/s operation (100base-t), Technical
Report IEEE Std 802.3u-1995, IEEE Standards Association, New York, NY, USA,
1995.

IEEE Computer Society, IEEE Standard for Information Technology — Telecommu-
nications and Information Exchange Between Systems — Local and Metropolitan
Area Networks — Specific Requirements — Part 3: Carrier Sense Multiple Ac-
cess with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications — Amendment 5: Physical Layer Specifications for 1000 Mb/s
Operation on Four-Pair Category 5 Cabling (1000BASE-T), Technical Report IEEE
Std 802.3ab-1999, IEEE Standards Association, New York, NY, USA, 1999.
Schildknecht, Wireless opensafety via bluetooth, 2025, URL: https://www.
schildknecht.ag/en/products/industrial-wireless/wireless-opensafety/. (Accessed
24 August 2025.

18

Journal of Systems Architecture 169 (2025) 103605

Shoaib Zafar is currently pursuing a Ph.D. in Emerging
Digital Technologies at Scuola Superiore Sant’Anna, Pisa,
Italy. He is affiliated with the Real-Time Systems (ReTiS)
Laboratory, where his research focuses on hard real-time
communication protocols and safety mechanisms in embed-
ded systems. He is being supervised by Prof. Alessandro
Biondi and Prof. Giorgio Buttazzo. He obtained his Master
of Engineering in Computer Science and Technology from
Harbin Institute of Technology, China, in 2021, under the
supervision of Prof. Weizhe Zhang. He has also worked as a
Visiting Researcher at the University of Western Macedonia,
Greece. His research interests include functional safety,
industrial communication protocols, cyber-physical systems,
and the safety and security of embedded systems.

Salvatore Sabina received the M.S. degree in electronic
engineering from the University of Pisa in 1983. From 1985
to 1998, he involved in satellite applications, hardware
designs, and HRT operating systems. In 1999, he joined
Ansaldo Segnalamento Ferroviario (now Hitachi Rail STS)
as responsible for the Product Development Department. At
the end of 2022, he completed his professional career in
Hitachi Rail STS as Vice President of the STS Innovation
Department. He is currently acting as S.Anna’s Professional
Affiliate (TeCIP) for setting up innovative projects and
collaborations with research and development organizations.

Alessandro Biondi is associate professor at the Real-
Time Systems (ReTiS) Laboratory of the Scuola Superiore
Sant’Anna.He graduated (cum laude) in Computer Engineer-
ing at the University of Pisa, Italy, within the excellence
program, and received a Ph.D. in computer engineering at
the Scuola Superiore Sant’Anna under the supervision of
Prof. Giorgio Buttazzo and Prof. Marco Di Natale. In 2016,
he has been visiting scholar at the Max Planck Institute
for Software Systems (Germany). His research interests
include design and implementation of real-time operating
systems and hypervisors, schedulability analysis, cyber—
physical systems, synchronization protocols, and safe and
secure machine learning. He was recipient of six Best Paper
Awards, one Outstanding Paper Award, the ACM SIGBED
Early Career Award 2019, the IEEE TCCPS Early Career
Award 2023, and the EDAA Dissertation Award 2017.

Giorgio Buttazzo is full professor of computer engineering
at the Scuola Superiore Sant’Anna of Pisa. He graduated in
Electronic Engineering at the University of Pisa, received a
M.S. degree in Computer Science at the University of Penn-
sylvania, and a Ph.D. in Computer Engineering at the Scuola
Superiore Sant’Anna of Pisa. He has been Editor-in-Chief of
Real-Time Systems, Associate Editor of IEEE Transactions
on Industrial Informatics and ACM Transactions on Cyber-
Physical Systems. He is IEEE fellow since 2012, wrote 7
books on real-time systems and more than 300 papers in
the field of real-time systems, robotics, and neural networks,
receiving 15 best paper awards.

http://dx.doi.org/10.1109/MIE.2013.2248431
http://dx.doi.org/10.1109/MIE.2013.2248431
http://dx.doi.org/10.1109/MIE.2013.2248431
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb15
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb15
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb15
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb15
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb15
https://media.hms-networks.com/image/upload/v1701953901/Documents/Whitepapers/Ixxat_CANopen-Protocol-Whitepaper_EN.pdf
https://media.hms-networks.com/image/upload/v1701953901/Documents/Whitepapers/Ixxat_CANopen-Protocol-Whitepaper_EN.pdf
https://media.hms-networks.com/image/upload/v1701953901/Documents/Whitepapers/Ixxat_CANopen-Protocol-Whitepaper_EN.pdf
https://media.hms-networks.com/image/upload/v1701953901/Documents/Whitepapers/Ixxat_CANopen-Protocol-Whitepaper_EN.pdf
https://media.hms-networks.com/image/upload/v1701953901/Documents/Whitepapers/Ixxat_CANopen-Protocol-Whitepaper_EN.pdf
https://hdl.handle.net/20.500.12608/23978
http://dx.doi.org/10.1007/978-3-030-71179-5
http://dx.doi.org/10.1109/TVT.2023.3275300
http://dx.doi.org/10.1109/IECON.2015.7392829
http://dx.doi.org/10.1109/IECON.2015.7392829
http://dx.doi.org/10.1109/IECON.2015.7392829
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb21
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb21
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb21
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb21
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb21
https://www.linux.org/docs/man8/tc-netem.html
https://www.linux.org/docs/man8/tc-netem.html
https://www.linux.org/docs/man8/tc-netem.html
https://chrony-project.org/index.html
http://dx.doi.org/10.1109/ETFA.2013.6648001
http://dx.doi.org/10.17487/RFC4689
https://www.rfc-editor.org/rfc/rfc4689
https://www.rfc-editor.org/rfc/rfc4689
https://www.rfc-editor.org/rfc/rfc4689
http://dx.doi.org/10.17487/RFC2680
https://www.rfc-editor.org/rfc/rfc2680
http://dx.doi.org/10.17487/RFC5481
https://www.rfc-editor.org/rfc/rfc5481
https://www.rfc-editor.org/rfc/rfc5481
https://www.rfc-editor.org/rfc/rfc5481
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb28
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
http://refhub.elsevier.com/S1383-7621(25)00277-2/sb29
https://www.schildknecht.ag/en/products/industrial-wireless/wireless-opensafety/
https://www.schildknecht.ag/en/products/industrial-wireless/wireless-opensafety/
https://www.schildknecht.ag/en/products/industrial-wireless/wireless-opensafety/

	Time synchronization and performance analysis of the openSAFETY protocol via UDP over Ethernet
	Introduction
	Related Work
	Network Performance Verification
	Time Synchronization
	Robustness in Time Synchronization
	Time Validation

	Parameters Tuning for Time Synchronization
	Setting the No. of Time Requests (m) and Time Responses (n) in one block of Time Request Cycle
	Setting the Time Delay timeout (Td)
	Setting the Time Request Cycle (TRC)
	Setting the time Synchronization timeout (ts)
	Setting the Configuration Parameters for Time Synchronization

	Experimental Analysis on the Tuning of some key parameters
	Experimental Analysis of TRC Tuning
	Experimental Analysis of ts Tuning
	Experimental Analysis on m and n

	Performance Analysis Test of openSAFETY protocol
	Test Case 1
	Results Test Case 1
	Test Case 2
	Experimental Setup Test Case 2
	Results Test Case 2

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	Data availability
	References

