Component-Based Software Design
Hierarchical Real-Time Scheduling
lecture 1/4

Enrico Bini

March 10, 2015

Outline

1. Introduction to the course
2. Composition of real-time systems
3. Scheduling problems, background
4. Supply function, definition
5. Supply function, properties
Info

- Please interrupt me anytime if something is unclear;
- Topics: hierarchical real-time scheduling over single/multi-cores.
- My classes:

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue</td>
<td>2015-03-10</td>
<td>11:00–13:00</td>
</tr>
<tr>
<td>Wed</td>
<td>2015-03-11</td>
<td>10:00–13:00</td>
</tr>
<tr>
<td>Tue</td>
<td>2015-03-24</td>
<td>11:00–13:00</td>
</tr>
<tr>
<td>Wed</td>
<td>2015-03-25</td>
<td>10:00–13:00</td>
</tr>
</tbody>
</table>

 - start at +10 min,
 - depending on the topic break for b minutes, during classes;
 - end around $-15 \times h + 10 + b$ minutes, with h number of hours.

- Exam: one/two questions in the written examination.
- Material: slides, your notes.

Outline

1. Introduction to the course
2. Composition of real-time systems
3. Scheduling problems, background
4. Supply function, definition
5. Supply function, properties
Motivations

Applications sharing the same machine. Issues:
- a misbehavior in App \(a \) (running longer than expected, etc.) may cause misbehaviors on Apps \(b, c \)
- priority of application tasks needs to be comparable
 - may violate intellectual properties
 - when a new application joins, priorities of new tasks need to be assigned w.r.t. other tasks

Solution

- *global scheduler* \(\mathcal{A} \) assigns physical machine to *virtual machines*
- tasks scheduled over VMs by *local scheduler*
- misbehavior confined at app boundary
- task prio meaningful only within app
Hierarchical real-time scheduling

Focus of my lectures:

how can real-time constraints of components be guaranteed over VMs?

Starting point:

1. Model of a real-time component (periodic tasks, deadlines, etc, we assume you are familiar with it)
2. Model of a scheduler (rules that determine what applications, tasks to execute over the platform)
3. Model of the VM: how is a virtual machine for real-time application characterized? (main focus of my classes)

Outline

1. Introduction to the course
2. Composition of real-time systems
3. Scheduling problems, background
4. Supply function, definition
5. Supply function, properties
A virtual machine is characterized by the amount of resource assigned to it by the global scheduler.

Review of scheduling problems (to be applied at global scheduler level).

Basic elements of a scheduling problem:

- a set \(\mathcal{N} \) of VMs requiring work to be made. Since they are finite, we represent them by \(\mathcal{N} = \{1, 2, \ldots, n\} \);
- a set \(\mathcal{M} \) of (physical) machines capable to perform some work. Since they are finite we represent them by \(\mathcal{M} = \{1, 2, \ldots, m\} \);
- a time set \(\mathcal{T} \), over which the scheduling is performed (in my classes always \([0, \infty)\), in general it may be \(\mathbb{N} \));

A schedule \(S \) of \(\mathcal{N} \) over \(\mathcal{M} \) is a function

\[
S : \mathcal{M} \times \mathcal{T} \rightarrow \mathcal{N} \cup \{0\}
\]

with “0” denoting idle.

Graphical representation of a schedule

- If \(S(k, t) = i \) then the machine \(k \) is assigned to the \(i \)-th VM at time \(t \).
- If \(S(k, t) = 0 \) then the machine \(k \) is not assigned at time \(t \) (we say that the \(k \)-th machine is idle at \(t \)).

This definition of schedule implies that at every instant \(t \) each machine is assigned to at most one VM.

Conversely, at every instant each VM may run over any number of machines in \(\mathcal{M} \).
VM schedule

An equivalent representation of a schedule S is given by a set of $n + 1$ VM schedule functions

$$i \in \mathcal{N} \cup \{0\} \quad s_i : \mathcal{T} \rightarrow 2^\mathcal{M}$$

such that

$$\forall t \in \mathcal{T}, \forall i \neq j, \quad s_i(t) \cap s_j(t) = \emptyset$$

$$\bigcup_{i=0}^{n} s_i(t) = \mathcal{M}$$

that is no machine can be used simultaneously by two VMs.

- A schedule S and a set of VMs schedules $\{s_1, \ldots, s_n\}$ are equivalent through

$$\forall t \in \mathcal{T}, k \in \mathcal{M}, \quad S(k, t) = i \iff k \in s_i(t)$$

Outline

1. Introduction to the course
2. Composition of real-time systems
3. Scheduling problems, background
4. Supply function, definition
5. Supply function, properties
From now on, we assume a single processor. Also, we drop the index i of the VM, since we consider only one in isolation.

- $m = |M| = 1$,
- the schedule is just $S : T \rightarrow N \cup \{0\}$
- the VM schedule functions $s_i(t)$ made by the global scheduler are
 - if $s_i(t) = 1$ the processor is allocated to the VM,
 - if $s_i(t) = 0$ the processor is not allocated to the VM.

Legal schedules

Given a global scheduling algorithm A, we denote by \mathcal{L}_* the set of all possible legal VM scheduling functions $s_i(t)$, defined as

$$\mathcal{L}_* = \{s_0, s_1, \ldots, s_n\},$$

$s_i(t)$ may be generated by A,

while the set \mathcal{L}_i of legal scheduling functions for i-th VM is defined as a projection of \mathcal{L}_*, that is

$$\mathcal{L}_i(P) = \{s_i: 1 \leq i \leq n, (s_1, \ldots, s_n) \in \mathcal{L}_*\}.$$

Example:

- \mathcal{L}_i legal schedules of a VM implemented by a periodic servers with period P_i and budget Q_i.
 - then $s_i \in \mathcal{L}_i$ is such that...
Supply functions

Definition (supply lower bound function of a VM)
We define the supply lower bound function \(\text{slbf}(t) \) of a VM as

\[
\text{slbf}(t) = \min_{t_0 \in T, s \in \mathcal{L}} \int_{t_0}^{t_0+t} s(x) \, dx.
\]

Informally, “minimum amount of resource made available by the VM in every interval of length \(t \)”.

Definition (supply upper bound function of a VM)
We define the supply upper bound function \(\text{subf}(t) \) of a VM as

\[
\text{subf}(t) = \max_{t_0 \in T, s \in \mathcal{L}} \int_{t_0}^{t_0+t} s(x) \, dx.
\]

Outline

1. Introduction to the course
2. Composition of real-time systems
3. Scheduling problems, background
4. Supply function, definition
5. Supply function, properties
Usage of supply bounds

Theorem (Resource bounds)

For any legal VM schedule $s \in \mathcal{L}$, it is always

$$\text{slbf}(b - a) \leq \int_{a}^{b} s(t) \, dt \leq \text{subf}(b - a).$$

How long does it take to compute a work W over a VM?

- **worst-case response time** $R_w(W)$ of work W over a VM
 $$R_w(W) = \sup \{ t : \text{slbf}(t) < W \},$$

- **best-case response time** $R_b(W)$ of work W over a VM
 $$R_b(W) = \inf \{ t : \text{subf}(t) \geq W \}.$$
Example slbf(t), subf(t): static partition 1

- Let us assume the static VM schedule
 \[s(t) = \begin{cases} 1 & 0 \leq (t \mod 4) < 1 \\ 0 & \text{otherwise} \end{cases} \]

- What are its slbf(t) and subf(t)?
 - Remember: “any interval of length t” not necessarily [0, t]
 - What are \(R_b(2) \) and \(R_w(2) \)?

Resource assigned with a given pattern

If resource/idle alternate according to a known sequence:
- \(S(k) \), with \(k = 1, 2, \ldots \) is the sequence of budgets
- \(Z(k) \), with \(k = 1, 2, \ldots \) is the sequence of idle intervals

Let \(t = 0 \) coincide with the start of the first budget \(S(1) \)
slbf(t) with given pattern

Theorem (slbf of sequence of budgets/idle)

\[
\text{slbf}(t) \geq \min \{t - \sigma_Z(n), \sigma_S(n)\}, \quad t \in I_n, n \in \mathbb{N}
\]

with the sequence of intervals \(\{I_n\}_{n \in \mathbb{N}}\) defined as

\[
I_n = \begin{cases}
[0, \sigma_Z(1)] & n = 0 \\
[\sigma_Z(n) + \sigma_S(n - 1), \sigma_Z(n + 1) + \sigma_S(n)] & n \geq 1
\end{cases}
\]

and with

\[
\sigma_S(n) = \inf_{n_0} \sum_{k=n_0}^{n_0+n-1} S(k),
\]

\[
\sigma_Z(n) = \sup_{n_0} \sum_{k=n_0}^{n_0+n-1} Z(k).
\]

Illustration of slbf

\[
\text{slbf}(t) \geq \min \{t - \sigma_Z(n), \sigma_S(n)\}, \quad t \in I_n, n \in \mathbb{N}
\]

\[
I_n = \begin{cases}
[0, \sigma_Z(1)] & n = 0 \\
[\sigma_Z(n) + \sigma_S(n - 1), \sigma_Z(n + 1) + \sigma_S(n)] & n \geq 1
\end{cases}
\]

Remark: the worst cases for \(S(k)\) and \(Z(k)\) are considered independently, leading to potential extra pessimism (see next example)
Example slbf \((t)\), subf \((t)\): static partition 2

- Let us assume the static VM schedule

\[
s(t) = \begin{cases}
1 & \text{if } (t \mod 12) \in [2, 3) \cup [5, 7) \cup [10, 12) \\
0 & \text{otherwise}
\end{cases}
\]

- What are its slbf \((t)\) and subf \((t)\)?
 - Remember: the interval with the minimum supply can start at different points for different \(t\)

- What is \(W\) such that \(R_w(W) - R_b(W)\) over the VM, is maximized?

Example slbf \((t)\), subf \((t)\): periodic server

- Let us assume that
 - the VM is implemented by a periodic server
 - the global scheduler guarantees a budget \(Q\) every period \(P\)

- What is its slbf \((t)\)? Remember: scenario of minimum possible supply must be assumed, among all legal schedules in \(\mathcal{L}\)
Example slbf\((t) \), subf\((t) \): periodic server

- Let us assume that
 - the VM is implemented by a periodic server
 - the global scheduler guarantees a budget \(Q \) every period \(P \)

- What is its slbf\((t) \)? Remember: scenario of minimum possible supply must be assumed, among all legal schedules in \(\mathcal{L} \)

\[
\text{slbf}(t) = \begin{cases}
0 & t \in [0, P - Q] \\
(k - 1)Q & t \in (kP - Q, (k + 1)P - 2Q] \\
(t - (k + 1)(P - Q)) & \text{otherwise}
\end{cases}
\]

with \(k = \left\lfloor \frac{t - (P - Q)}{P} \right\rfloor \).

Properties of slbf\((t) \)

1. \(\text{slbf}(0) = 0 \) (no resource in empty interval),
2. \(\forall s \geq t \geq 0, \text{slbf}(s) \geq \text{slbf}(t) \) (non-decreasing)
3. \(\forall s, t \geq 0, \text{slbf}(s + t) \geq \text{slbf}(s) + \text{slbf}(t) \) (super-additivity)
4. \(\forall s \geq t \geq 0, \text{slbf}(s) - \text{slbf}(t) \leq s - t \) (Lipschitz continuous with factor 1):
Exploiting properties

Let us assume that at some instant t^* we know that

$$\text{slbf}(t^*) \geq c^*, \quad (1)$$

From Lipschitz-continuity and (1), we find

$$\forall t \in [0, t^*] \quad \text{slbf}(t) \geq \begin{cases}
0 & 0 \leq t \leq t^* - c^* \\
(\text{slbf}(t^*) + (t - t^*)) & t^* - c^* < t \leq t^*
\end{cases}$$

Let q and r be quotient and rest of the Euclidean division of any $t \geq 0$ by t^*, that is

$$t = qt^* + r, \quad q \in \mathbb{N}, \ r \in [0, t^*).$$

Then, for any $t \geq 0$, the following lower bound holds

$$\text{slbf}(t) = \text{slbf}(t^* + \cdots + t^* + r) \geq$$

$$\geq \underbrace{\text{slbf}(t^*) + \cdots + \text{slbf}(t^*)}_{q \text{ times}} + \text{slbf}(r) = qc^* + \text{slbf}(r).$$