Hypervisors
App App App App App

Retis	Agenda	
> Introduc	ction to virtualization	
Techniq	ques to implement virtualization	
> The role	e of virtualization in embedded systems	
≻ A (quicł	k) overview on the Xen Hypervisor	

Ret	is Introduction
>	Virtualization is a technique of partitioning the resources of a single computing platform into multiple segregated, virtualized, execution environments.
>	Each environment runs independently of the other, thus allowing multiple operating systems to run on the same hardware.

Introduction

Retis

- The concept of virtualization already present in every-day computing...
- Most modern operating systems contain a simplified system of virtualization;
- Each running process is able to act as if it is the only thing running. The CPUs and memory are virtualized.

Retis Introduction

- Virtualization of the CPU: If a process tries to consume all of the CPU, the operating system will preempt it and allow other processes to execute;
- Virtualization of the memory: a running process has its own virtual address space that the operating system maps to physical memory to give the process the illusion that it is the only user of RAM.

Virtualization of the CPU: If an OS tries to consume all of the CPU, the hypervisor will preempt it and allow other processes to execute; Virtualization of the memory: a running OS has its own virtual address space that the hypervisor maps to physical memory to give the process the illusion that it is the only user of RAM.

Introduction

Retis

- Each execution environment is called a *guest* and the computing platform on which they execute is called the *host*.
- The software enabling these multiple execution environments is commonly referred to as Hypervisor or Virtual Machine Monitor (VMM).
- The Hypervisor runs on the host and acts as a bridge between the host and the guests;

Retis	Methodologies
Systen emulat	n Emulation – All the hardware resources are ed.
PRO	
≻	Complete isolation
>	Total portability (VMs are not related to any specific HW platform)
۶	No modifications to the OS are needed
CONS	
≻	Slow! (Since everything is emulated)

Isolation is more challenging

Retis	Types of Hypervisor
"Form	d J. Popek and Robert P. Goldberg – nal Requirements for Virtualizable Third ration Architectures", 1974
≻ Туре	1: native (bare-metal) hypervisors
	he Hypervisor runs directly on the host's hardware to control the hardware and to manage guest operating systems.
> E	.g., Xen, VMWare ESXi, Microsoft Hyper-V
> Type	2: hosted hypervisors
	hese hypervisors run on a conventional operating system just s other computer programs do.
> E	.g., VMWare Workstation, VirtualBox

Retis Implementation
Preliminaries
Sensitive instructions = those that attempt to change the configuration of resources in the system
 Examples: update virtual to physical memory mappings, communication with devices, manipulation of global configuration registers, etc.
Privileged instructions = those that are executed in privileged mode (protected, ring 0,) and trap if executed in user mode

Retis	Imple	ementati	on
"Trap a	and Emulate"		
Popek	and Goldberg,	1974 – In otł	ner words
the co	prrect functioni	ing of the	ns that could affect VMM (sensitive ss control to the
Gu	est	VN	1M
ld ld ld	r1, (r0,ASID) CPU_ASID, r1	Exception 1da	r2, (r1,ofs_r0)

re: G H

Xen refers to each virtual machine that runs on a system as a domain. When Xen boots up, it first starts the hypervisor, which is responsible for starting a domain named Domain0 (*dom0*) in which a specific host operating system runs.

The Xen Hypervisor is the basic abstraction layer of software that sits directly on the hardware below any operating systems. It is responsible for CPU scheduling (VCPU to CPU assignment) and memory partitioning of the various virtual machines running on the hardware device.

The Xen Hypervisor

> Xen does not provide any device drivers.

Retis

- It has no direct knowledge of networking, external storage devices, video, or any other common I/O functions found on a computing system
- But provides a mechanism by which a guest operating system can be given direct access to a physical device...

How does the I/O work in Xe

The Xen Hypervisor

I/O in Xen

Retis

- dom0 is a privileged domain that can access all the hardware in the system
- The OS running on dom0 has the device drivers and performs I/O operations on behalf of unprivileged guest domains (domU);
- Shared memory is used for the communication between a domU and dom0

Retis	The Xen Hypervisor			

