
1

Hypervisors
Introduction

 Credits:

 P. Chaganti – Xen Virtualization – A practical
handbook

 D. Chisnall – The definitive guide to Xen Hypervisor

 G. Kesden – Lect. 25 CS 15-440

 G. Heiser – UNSW/NICTA/OKL

Agenda

 Introduction to virtualization

 Techniques to implement virtualization

 The role of virtualization in embedded systems

 A (quick) overview on the Xen Hypervisor

Introduction

 Virtualization is a technique of partitioning the
resources of a single computing platform into
multiple segregated, virtualized, execution
environments.

 Each environment runs independently of the
other, thus allowing multiple operating systems to
run on the same hardware.

Introduction

 The concept of virtualization already present in
every-day computing…

 Most modern operating systems contain a
simplified system of virtualization;

 Each running process is able to act as if it is the
only thing running. The CPUs and memory are
virtualized.

Introduction

 Virtualization of the CPU: If a process tries to
consume all of the CPU, the operating system will
preempt it and allow other processes to execute;

 Virtualization of the memory: a running process
has its own virtual address space that the
operating system maps to physical memory to
give the process the illusion that it is the only user
of RAM.



2

Introduction

 Virtualization of the CPU: If an OS tries to
consume all of the CPU, the hypervisor will
preempt it and allow other processes to execute;

 Virtualization of the memory: a running OS has its
own virtual address space that the hypervisor
maps to physical memory to give the process the
illusion that it is the only user of RAM.

Introduction

 Each execution environment is called a guest and
the computing platform on which they execute is
called the host.

 The software enabling these multiple execution
environments is commonly referred to as
Hypervisor or Virtual Machine Monitor (VMM).

 The Hypervisor runs on the host and acts as a
bridge between the host and the guests;

Mixed OS Environment

Figure: G. Kesden

Hardware

Hypervisor

Linux Red Hat Solaris 10 XP Vista Mac OS

VM3 VM4 VM5VM1 VM2

 Multiple VMs can be implemented on a single
hardware platform to provide individuals or user
groups with their own OS environments

Mixed OS Environment

Figure: G. Kesden

Hardware

Hypervisor

Linux Red Hat Solaris 10 XP Vista Mac OS

VM3 VM4 VM5VM1 VM2

 Virtualization implies a two-level hierarchical
scheduling framework

Local
Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

Global Scheduler

Benefits of Virtualization

• A virtualized system 
can be (dynamically 
or statically) re-
configured for 
changing needs

• A single hardware 
platform can support 
multiple operating 
systems concurrently

• Virtualization helps 
isolate the effects of a 
failure to the VM 
where the failure 
occurred

• A system VM provides 
a sandbox that 
isolates one system 
environment from 
other environments

Multiple 
Secure 

Environment

Failure 
Isolation

Better 
System 

Utilization

Mixed‐OS 
Environment

Figure: G. Kesden

Virtualization Properties

•Fault Isolation

•Software Isolation

•Performance Isolation 
(accomplished through 
scheduling and resource 
allocation)

Isolation

•All VM state can be captured 
into a file (i.e., you can 
operate on VM by operating 
on file– cp, rm)

•Complexity is proportional to 
virtual HW model and 
independent of guest 
software configuration

Encapsulation

•All guest actions go through 
the virtualizing software 
which can inspect, modify, 
and deny operations

•Security

Interposition
1 2 3

Figure: G. Kesden



3

Methodologies

Three main methodologies used for providing
virtualization:

 System Emulation

 Paravirtualization

 Binary Translation

 OS Level Virtualization

Methodologies

System Emulation – All the hardware resources are
emulated.

 The guest operating system can be run without any
modification;

 It can use the hardware resources through the
hardware emulation layer;

 The VMM executes the CPU instructions that need
more privileges than are available in the user space.

Methodologies

System Emulation – All the hardware resources are
emulated.

PRO

 Complete isolation

 Total portability (VMs are not related to any specific
HW platform)

 No modifications to the OS are needed

CONS

 Slow! (Since everything is emulated)

Methodologies

Paravirtualization – No hardware emulation.

 The operating system that runs on a guest needs to
be a modified version that is aware of the fact that it
is running inside a hypervisor;

 Lower number of privileged CPU instructions that
need to be executed;

 Typically paravirtualization of device drivers is also
needed

Methodologies

Paravirtualization – No hardware emulation.

PRO

 More efficient than System Emulation

 Virtualized OSes can directly communicate with
hardware resources

CONS

 Need to modify the OS!

 Isolation is more challenging

Methodologies

Hardware-assited Paravirtualization – higher
efficiency thanks to special CPU instructions

 CPUs are fully aware of the presence of a
virtualization stack

 CPUs provide an Instruction Set Architecture that
simplifies the development of a VMM

 Automatic trap of sensitive instructions

 Automatic space isolation (i.e., memory areas) to
improve efficiency



4

Methodologies

Binary Translation – intercept OS code

 Run-time translation of some OS instructions

 User-level code is directly executed on the real
hardware

 No modifications to the OS are needed: the guest OS
is not aware of virtualization

 Specific device drivers are required

Methodologies

OS Level Virtualization – Each guest is isolated and
runs in a secure environment.

 Only multiple instances of guests that run the same
operating systems as the host;

 Close to sandboxes;

 Low run-time overhead.

 E.g., FreeBSD Jails, Solaris Zones

Types of Hypervisor

 Gerald J. Popek and Robert P. Goldberg –
“Formal Requirements for Virtualizable Third
Generation Architectures”, 1974

 Type 1: native (bare-metal) hypervisors

 The Hypervisor runs directly on the host's hardware to control
the hardware and to manage guest operating systems.

 E.g., Xen, VMWare ESXi, Microsoft Hyper-V

 Type 2: hosted hypervisors

 These hypervisors run on a conventional operating system just
as other computer programs do.

 E.g., VMWare Workstation, VirtualBox

Types of Hypervisor

Hardware

Hypervisor

OS OS OS

Hardware

Hypervisor

OS OS OS

OS

Type-1
(bare-metal)

Type-2
(hosted)

Implementation

Preliminaries

 Sensitive instructions = those that attempt to
change the configuration of resources in the
system

 Examples: update virtual to physical memory 
mappings, communication with devices, manipulation 
of global configuration registers, etc.

 Privileged instructions = those that are executed in
privileged mode (protected, ring 0,…) and trap if
executed in user mode

Implementation

Preliminaries

Example: Privileged rings in x86



5

Implementation

“Trap and Emulate”

 Raise of an exception (trap) when the guest
executes a privileged instruction (e.g., accessing
a physical resources);

 The exception handler is used to invoke the
hypervisor code.

Figure: G. Heiser

Implementation

“Trap and Emulate”

Popek and Goldberg, 1974

“For any conventional third-generation computer, an
effective VMM may be constructed if the set of
sensitive instructions for that computer is a subset of
the set of privileged instructions.”

Figure: G. Heiser

Implementation

“Trap and Emulate”

Popek and Goldberg, 1974 – In other words…

It is sufficient that all the instructions that could affect
the correct functioning of the VMM (sensitive
instructions) always trap and pass control to the
VMM.

Figure: G. Heiser

Implementation

“Trap and Emulate”

Most common architectures are not virtualizable
according to definition of Popek and Goldberg

 x86 – lots of unvirtualizable features

 E.g., PUSH of PSW (Processor State Word) is not privileged

 MIPS – mostly virtualizable, but…

 Kernel registers k0,k1 (needed to save/restore state) are user-
accessible

 ARM – mostly virtualizable but…

 Some instructions are undefined in user-mode

Implementation

Impure Virtualization

Change the Guest OS code replacing sensitive
instructions

 Paravirtualization – by trapping code (hypercalls)

 Binary translation - In-line code emulation (run-time)

Hypercall

Embedded Systems

 Virtualization historically used for easier sharing
of expensive mainframes.

 Gone out of fashion in 80’s and resurrected in
recent years for improved isolation in modern
computing systems.

 Why virtualization for Embedded Systems?



6

Embedded Systems

Certification Issues

 Encapsulation of a safety-critical subsystem that
can be certified independently of the other
subsystems running on the same platform

safety-critical
subsystem

Embedded Systems

Security

 Protection against exploits;

 E.g., software attacked by UI exploits

 It is possible to compromise the
core SW from an attack of the UI
SW

 Virtualization protects this kind of
attacks ensuring a separation
into different VMs

safety-critical
subsystem

Embedded Systems

License Separation

 System composed of Linux + proprietary SW
(not open-source)

 VMs can be used to isolate
Linux

Embedded Systems

Software-Architecture Abstraction

 Support for product series: same software
running on different hardware;

 Decoupling from the real hardware.

 Benefits

 Time-to-market;

 Engineering cost.

Embedded Systems

Automotive Case-Study

 Proliferation of ECUs: more than doubled in 10
years

Embedded Systems

Automotive Case-Study

 Trend: Integration in fewer, more powerful, ECUs



7

Embedded Systems

Automotive Case-Study

 Thanks to virtualization it is possible to re-use a
complete legacy ECU software

An Overview on
The Xen Hypervisor

The Xen Hypervisor

 What is Xen?

“Xen is an open-source paravirtualization technology
that provides a platform for running multiple operating
systems in parallel on one physical hardware resource”

 Originally developed in 2003 at the University of
Cambridge Computer Laboratory

The Xen Hypervisor

The Xen Hypervisor

 Xen refers to each virtual machine that runs on a
system as a domain.

 When Xen boots up, it first starts the hypervisor,
which is responsible for starting a domain named
Domain0 (dom0) in which a specific host
operating system runs.

Impossibile v isualizzare l'immagine.

The Xen Hypervisor

 Domain0 is a privileged domain that can access
the hardware resources and can manage all the
other domains (e.g., create, destroy, save,
restore, etc.)

Impossibile v isualizzare l'immagine.



8

The Xen Hypervisor

 An Unprivileged Domain (domU) guest is more
restricted.

 Typically not allowed to perform hypercalls that
directly access to the hardware.

 Not able to manage other domains or the
hypervisor configuration

Impossibile v isualizzare l'immagine.

The Xen Hypervisor

 Xen is based on para-virtualization

 Requires modification of the guest OS

 Insertion of hypercalls to replace privileged
instructions;

 Time virtualization

 but…

The Xen Hypervisor

Supports Hardware-assisted virtualization

 Newer processors have a set of instructions that
makes virtualization easier

 x86: Intel VT-x and AMD Pacifica (AMD-V)

 The CPU provides traps for certain privileged
instructions;

 Enable Guest OSes to be run without
paravirtualization modifications (e.g., old OSes like
Windows XP)

The Xen Hypervisor

 Domain  Xen

 Hypercall (synchronous)

 Xen Domain

 Asynchronous Event Mechanism (AEM) that
replaces device interrupts

Xen

dom0 domU domU

Hypercall AEM

The Xen Hypervisor

 The Xen hypervisor is the basic abstraction layer
of software that sits directly on the hardware
below any operating systems.

 It is responsible for CPU scheduling (VCPU to
CPU assignment) and memory partitioning of the
various virtual machines running on the hardware
device.

The Xen Hypervisor

 Xen currently supports 4 VCPU schedulers

 Credit

 Credit2

 RTDS

 ARINC 653

Proportional Fair Share
(e.g.,Weighted Round‐Robin)

Global EDF with Reservation Servers

Fixed Time Slices



9

The Xen Hypervisor

 Xen does not provide any device drivers.

 It has no direct knowledge of networking, external
storage devices, video, or any other common I/O
functions found on a computing system

 But provides a mechanism by which a guest 
operating system can be given direct access to a 
physical device…

How does the I/O work in Xen?

The Xen Hypervisor

I/O in Xen

 dom0 is a privileged domain that can access all
the hardware in the system

 The OS running on dom0 has the device drivers
and performs I/O operations on behalf of
unprivileged guest domains (domU);

 Shared memory is used for the communication
between a domU and dom0

The Xen Hypervisor
Impossibile v isualizzare l'immagine.

Thank you!
Alessandro Biondi 
alessandro.biondi@sssup.it


