29/03/2015

= |
Object Oriented Software Design

Introduction to C++

Giuseppe Lipari
Scuola Superiore Sant'‘Anna — Pisa

February 20, 2013

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro February 20, 2013 1/56

Prerequistes

@ To understand this course, you should at least know the basic C
syntax
o functions declaration and function call,
@ global and local variables
@ pointers (will do again during the course)

@ structures
@ First part of the course: classes
o Classes, objects, memory layout
Pointer and references
Copying
Inheritance, multiple inheritance
Access rules
Public, protected and private inheritance
Exceptions

®© 0 6 0 0 @

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013

@ Second part: templates
@ Templates
@ The Standard Template Library

@ Fourth part: patterns
Some patterns in C++

Function objects
Template patterns
Meta-programming with templates

e © ¢ O

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro February 20, 2013 5/56

Tools

@ On Linux;

@ Just install the latest g++ compiler

@ You can use any editor (e.g. gedit, kate, etc.)

@ Eclipse with CDT is an IDE (Integrated Developement Environment)
that you can use to simplify multi-file projects

@ However, at the very beginning, | recommend command-line tools

@ For Windows

@ You can use Visual C++ (if you have a license available)

@ otherwise | recommend installing Cygwin
(http://www.cygwin.com/), and from there install the latest
g++ compiler

@ Again, use any editor you want, and then the command line for
compiling and running the code

@ Nice editors: (http://notepad-plus-plus.org/,
http://www.ultraedit.com/products/ultraedit.html,
but also emacs and gVim)

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 6/56

29/03/2015

Abstraction

An essential instrument for OO programming is the support for
data abstraction

Y P P L.
el uperdatliuls

P o T T e 1 P g4
@ Lt pEnNDS U uell

e

iew types and
Creating a new data type means defining:
@ Which elements it is composed of (internal structure);

@ How it is built/destroyed (constructor/destructor);
@ How we can operate on this type (methods/operations).

(4]

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro

February 20, 2013

Classical example

class Complex {
double real_;
double imaginary_;
public:
Complex();
Complex (double a, double b);
~Complex () ;

double real () const;

double imaginary() econst;

double module () const;

Complex &operator = (const Complex &a);
Complex &operator+=(const Complex &a);
Complex &operator =(const Complex &a));

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro

February 20, 2013 12/56

29/03/2015

How to use complex

Complex cl; // default constructor
Complex c2(1,2); // constructor
Complex c3(3,4); // constructor

cout << "cl=(" << cl.real() << ","
<< cl.imaginary() << ")" << endl;

cl = ¢2; // assignment
c3 += cl; // operator +=
cl = c2 + c3; // ERROR: operator + not yet defined

G. Lipari (Scuola Superiore Sant'/Anna) C++ Intro Fabruary 20, 2013

_Usingnewdatatypes

@ The new data type is used just like a predefined data type
@ it is possible to define new functions for that type:
@ real (), imaginary () and module ()
@ ltis possible to define new operators
@ = +=and —=
@ The compiler knows automatically which function/operator must be
invoked
@ C++is a strongly typed language
@ the compiler knows which function to invoke by looking at the type

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 14/56

29/03/2015

29/03/2015

@ A class contains members
@ A member can be

@ any kind of variable (member variables)
@ any kind of function (member functions or methods)

class MyClaszss ! member variables (private) 1
—lOaoo IIILJ_QDD 'L fr— A ! l
int a; /
double b; . -
public
int c; . .
T ————— | member variable (public) |

void f();
int getA(); —

int modify{double\t»;\
}i . member functions (public) |

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro February 20, 2013 17 / 56

Declaring objects of a class: constructor

@ An object is an instance of a class
@ An object is created by calling a special function called constructor

@ A constructor is a function that has the same name of the class and
no return value

@ |t may or may not have parameters;

@ ltis invoked in a special way

class MyClass { | Declaration of the constructor |
public: —
MyClass () ,_,-/'"/

{

cout << "Constructor"<<endl;
}
i

| Invoke the constructor to create an
— | object

MyClass obj; — —

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 18/56

Constructor - Il

@ Constructors with parameters

class MyClass ({
int a;
int b;

public:
MyClass (int x);

int myvar (2);

A class can have many
constructors

Thig ig an arror nn congtructor
HHS 1S an 2ol NO CoNSrucior

without parameters

MyClass (int x, int vy);
} -
' Calls the first constructor |
MyClass obj; — i
MyClass Obj_l (2) i | Calls the second constructor |
MyClass obj2(2,3); e— —

Same syntax is valid for primitive |

double pi(3.14);

C++ Intro

G. Lipari (Scuola Superiore Sant’Anna)

Default constructor

@ Rules for constructors
is provided by the compiier

provide a default one for you

data types

February 20, 2013 19/56

@ If you do not specify a constructor, a default one with no parameters

@ If you provide a constructor (any constructor) the compiler will not

@ Constructors are used to initialise members

class MyClass
int a;
int b;

public:
MyClass (int x,

G. Lipari (Scuola Superiore Sant’Anna)

a=x; b= 2%

C++ Intro

int vy)

Vi

February 20, 2013 20/56

29/03/2015

29/03/2015

Initialization list

@ Members can be initialised through a special syntax

@ This syntax is preferable (the compiler can catch some obvious
mistake)
@ use it whenever you can (i.e. almost always)

class MyClass |

int a;
int b;
public:
MyClass({int x, int y) : __ 1 Acommaseparated list of constructors, 1
a(x), b(y) following the :

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro February 20, 2013 21/56

Accessing member objects

@ Members of one object can be accessed using the dot notation,
similarly to structs in C

class MyClass {

public:
int a; L~ Assigning to a member variable of ob-
int £(); ject x

void g(int i, int ii);

b Assigning to a member variable of ob-
- jecty

MyClass x;

MyClass y; | Calling member function f() of object x |
.a =5;
.a = 71; | Calling member function g() of objectyl

X

Y

x.£0); /
v.g(5, 10);

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013

Implementing member functions

@ You can implement a member function (including constructors) in
a separate .cpp file

complex.h complex.cpp

class Complex { double Complex::module ()
double real ; {
double img_; double temp;

public: temp = real_ « real_ +
cen img_ * img_;
double module () const; return temp;
.. }

}i

@ This is preferable most of the times

@ put implementation in include files only if you hope to use in-lining
optimisation

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro February 20, 2013 23/56

Access control

@ A member can be:

@ private: only member functions of the same class can access it;
other classes or global functions can't

@ protected: only member functions of the same class or of derived
classes can access it: other classes or global functions can't

@ public: every function can access it

class MyClass {

private: MyClass data;
int a;
public: cout << data.a; // ERROR!
int c; cout << data.c; // OK
b

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 26 /56

29/03/2015

class A |
friend class B;
int y;
void f();
public:
int g();

}i

class B {

int x; B is friend of A, hence B can access private
public: members of A

void f (A &a);

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro

February 20, 2013 31/56

Friend functions and operator

@ Even a global function or a single member function can be friend
of a class

class A |
friend B::£f();
friend hi();
int y;
void f();
ublic:
F int gi(); _ friend global function I

- — friend member function |

}i

@ |t is better to use the friend keyword only when it is really
necessary because it breaks the access rules.

@ "Friends, much as in real life, are often more trouble than their
worth."” — Scott Meyers

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro

February 20, 2013 32/56

29/03/2015

Dynamic memory

@ InC:

@ InC++

@ Dynamic memory is managed by the user

@ to allocate memory, call function malloc
@ to dealiocate, call free
@ Both take pointers to any type, so they are not type-safe

@ to allocate memory, use operator new
@ to deallocate, use operator delete
@ they are more type-safe

February 20, 2013 41/56

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro

Destucor

@ Syntax

@ The destructor is called just before the object is deallocated.
@ It is always called both for ali objects (allocated on the stack, in
global memory, or dynamically)

@ If the programmer does not define a constructor, the compiler
automatically adds one by default (which does nothing)

class A |

public:
A { «.. 1}
~A() |

bi

// constructor
} // destructor

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro

The destructor never
takes any parameter

February 20, 2013 43 /56

29/03/2015

10

New and delete for arrays

@ To allocate an array, use this form

int *p = new int([5]; // allocates an array of 5 int
delete [] p; // notice the delete syntax
A g = new A[10]; // allocates an array of 10

R // objects of type A
delete [] g;

@ In the second case, the default constructor is called to build the 10
objects

@ Therefore, this can only be dor

arguments) is available

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro February 20, 2013 46 / 56

Function overloading

@ In C++, the argument list is part of the name of the function

e this mysterious sentence means that two functions with the same
name but with different argument list are considered two different
functions and not a mistake

@ If you look at the internal name used by the compiler for a
function, you will see three parts:

@ the class name
@ the function name
o the argument list

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 49 / 56

29/03/2015

11

Function overloading

class A { :

public: L — __A f int I
void f(int a); +__,/’///
void f(int a, int b); . | A f int int I

y void f (double g); —

r

class B | ™~_ _A_f_double I

public:

. void f(int a); ——— | B fint i

@ To the compiler, they are all different functions!
@ beware of the type...

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 50/ 56

Return values

& Notice 0
@ the compiler is not able to distinguish two functions that differs only
on return values

ot -
Lidat 1

elass A |
int floor (double a);
double floor (double a);
}i

@ This causes a compilation error
@ It is not possible to overload a return value

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 52/56

29/03/2015

12

29/03/2015

Default arguments in functions

@ Sometime, functions have iong argument iists
@ Some of these arguments do not change often

@ We would like to set default values for some argument
@ This is a little different from overloading, since it is the same
function we are calling!

int f£(int a, int b = 0);

FL12) A1t 18 ecniva
LAy A4 1T 18 eguiva

[

@ The combination of overloading with default arguments can be
confusing

@ itis a good idea to avoid overusing both of them

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro February 20, 2013 53 /56

More on pointers

@ ltis also possible to define pointers to functions:

@ The portion of memory where the code of a function resides has an
address; we can define a pointer to this address

void (xfuncPtr) (); // pointer to void f();

int (xanotherPtr) (int) // pointer to int f(int a);
void f£(){...}

funcPtr = &f(); // now funcPtr points to f()
funcPtr = f£; // equivalent syntax

(= funcPtr) (); // call the function

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro

March 1, 2013

13

29/03/2015

Pointers to functions — Il

@ To simplify notation, it is possible to use typedef:

typedef woid (+«MYFUNC) ();
typedef voids (+«PTHREADFUN) (void +);

void f() { ... }
void smythread(veid *) { ... |}

MYFUNC funcPtr = £;
PTHREADFUN pt = mythread;

@ |t is also possible to define arrays of function pointers:

veoid f1(int a) {}
void f2(int a) {}
void f3(int a) {}

sbla 1% 3 \ tE1 £9
ailLe L)) \Aiiv) = (Li, L&y

for (int i =0; i<3; ++i) (*funcTable[i]) (i + 5);

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 1, 2013 8/42

References

@ In C++ it is possible to define a reference to a variable or to an

object
int x; // variable
int &rx = x; // reference to variable
MyClass obi; // object

MyClass &r = obj; // reference to object

@ r is a reference to object ob§

@ WARNING!
@ C++ uses the same symbol « for two different meanings!
@ Remember:
@ when used in a declaration/definition, it is a reference
@ when used in an instruction, it indicates the address of a variable in
memory

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 1, 2013 11/42

14

Reference vs pointer

@ In C++, a reference is an alternative name for an object

Pointers References
@ Pointers are like other @ Must be initialised
variables @ Cannot have
@ Can have a pointer to references to void
void @ Cannot be assigned
@ Can be assigned @ Cannot do arithmetic

arbitrary values
@ Itis possible to do
arithmetic
@ What are references good for?

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 1, 2013 13/ 42

Copying objects

@ In the previous example, function g () is taking a object by value

void g (MyClass c) {...}
g (obj);

@ The original object is copied into parameter ¢
@ The copy is done by invoking the copy constructor

MyClass (const MyClass &r);

@ If the user does not define it, the compiler will define a default one
for us automatically

@ The default copy constructor just performs a bitwise copy of all
members
@ Remember: this is not a deep copy!

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 1, 2013 17/ 42

29/03/2015

15

29/03/2015

Meaning of static

@ In C/C++ static has several meanings

@ for global variables, it means that the variable is not exported in the
global symbol table to the linker, and cannot be used in other
compilation units

o for local variables, it means that the variable is not allocated on the
stack: therefore, its value is maintained through different function
instances

o for class data members, it means that there is only one instance of
the member across all objects

@ a static function member can only act on static data members of the
class

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 1, 2013 22/42

Static members

@ We would like to implement a counter that keeps track of the
number of objects that are around
@ we can use a static variable

int ManyObij::count = 0;
class ManyObj | ManyObj: :ManyObj () {
statie int count; index = count++;
int index; }
public: ManyObj::~ManyObij() {
ManyObj () ; count--;
~ManyObj () ; }
int ManyObj::getIndex () {
int getIndex(); return index;
static int howMany () ; }
}; int ManyObij::howMany () ({
return count;
}

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 1, 2013 23/42

16

Static members

@ There is only one copy of the static variabie for ail the objects
All the objects refer to this variable

a How to initialize a static member?

= vy LT T St

o

@ cannot be initialized in the class declaration

@ the compiler does not allocate space for the static member until it is
initiliazed

. o PRyt S) FR P [Ryt S | -SRI g i e o Al

@ OUu, he prograinimer 0l e Clidass Imust agnne ana initalZe e stalic
variable

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 1, 2013 25/ 42

Static data members

@ Static data members need to be initialized when the program
starts, before the main is invoked

@ they can be seen as global initialized variables (and this is how they
are implemented)

@ This is an example

// include file A.hpp // src file A.cpp
class A #include "A.hpp"
static int i;
public: int A::1 = 0;
AQ);:
int get (); A:A() (...}
bi int A::get () {...}

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 1, 2013

29/03/2015

17

29/03/2015

@ In C++, when something is const it means that it cannot change.
Period.
@ Now, the particuiar meanings of const are a iot:
@ Don'tto get lost! Keep in mind: const = cannot change
@ Another thing to remember:

a ponctante muet have an initial fand finall valual
2 consiants must € an mnuds (anc anas; vauue:

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 1, 2013

Constants - |l

@ You can use const for variables that never change after
initialization. However, their initial value is decided at run-time

const int i = 100;

—

const int j = i + 10; Hkh““‘ahhh
___ Compile-time constants

int main ()

{
cout << "Type a character\n";
const char ¢ = cin.get ();
const char cZ2 = c + "a’;
cout << c¢2; ﬁ__HEH“ﬁﬁag_ run-time constants
C2++; ERRORI ¢2 is const!
}

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 1, 2013 35/42

18

Constant pointers

@ There are two possibilities

@ the pointer itself is constant
@ the pointed object is constant

int 2 the pointer is constant

. | — | |

int » const u = &a; .] P I
const int +v: | the pointed object is constant (the pointer |

can change and point to another const int!) I

@ Remember: a const object needs an initial value!

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 1, 2013 36/ 42

Const function arguments

@ An argument can be declared constant. It means the function
can't change it

@ it's particularly useful with references

class A {
public:
int i;

}i

void f(econst A fa) |
a.i++; // error! cannot modify a;

@ You can do the same thing with a pointer to a constant, but the
syntax is messy.

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 1, 2013 a7 /42

29/03/2015

19

Constant member functions

@ A member function can be declared constant

@ |t means that it will not modify the obiject

class A |
int i;
- Taom
PI.IHJ.J.‘_-.
int f() const;
void g();

i++; Vo4

ERROR! this function cannot
modify the object

return i; // Ok

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro

Operator overloading

@ After all, an operator is like a function

@ binary operator: takes two arguments
@ unary operator: takes one argument

@ The syntax is the following:

@ Complex &operator+=(const Complex &c);

does not insert a function call

@ Of course, if we apply operators to predefined types, the compiler

int a = 0;
a += 4;

c = b;

G. Lipari (Scuola Superiore Sant’Anna)

/ Constructor |
Complex b; _//
Complex c(1,3); _/ Sum operator |

b+= 5; ._.-’-"”

“—————_ Assignment operator I

Default constructor |

L

C++ Intro March 4, 2013 4/30

29/03/2015

20

A complete example

class Complex {
double real_;
double imaginary_;
public:
Complex(); // default constructor
Complex (double a, double b = 0); // constructor

~Complex () ; // destructor

Coammloav ieaner Coammlaws o0 £ mony constFructar

Complex {const Complex &c); // copy constructor

double real () const; // member function

double imaginary() const; // member functioen

double module () eonst; /7 member function

Crrmrm] s Comemmsemde e — (i Ceraem] s s F Y mmad ammmant mra e
Complex &Loperator ={const Complex &a); // assignment cperator
Complex &operator+=(const Complex &a); // sum operator
Complex &operator-=(const Complex &a)); // sub operator

bi

Complex operator+ (const Complex &a, const Complex &b);
Complex operator- (const Complex &a, const Complex &b);

March 4, 2013

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro

To be member or not to be...

@ In general, operators that modify the object (like ++, +=, ——, etc...)
should be member

@ Operators that do not modify the object (like +, -, etc,) should not
be member, but friend functions

@ Let's write operator+ for complex:
./examples/03.operators—examples/complex.cpp
@ Not all operators can be overloaded
@ we cannot “invent” new operators,
we can only overload existing ones
we cannot change number of arguments
we cannot change precedence
. (dot) cannot be overloaded

March 4, 2013 6/30

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro

29/03/2015

21

29/03/2015

Strange operators

@ You can overload
@ new and delete
@ used to build custom memory allocate strategies

Armaraterl]
Gperawln |
o

1]

for example, in vector<>...
L) operator,
@ You can write very funny programs!
-] operator->
@ used to make smart pointers!!

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 4, 2013 14 /30

How to overload operator []

@ the prototype is the following:

class A |

public:
A& operator[] (int index);
}i

@ Exercise:

@ add operator [] to you Stack class
@ the operator must never go out of range

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 4, 2013

22

29/03/2015

Output on streams

@ |tis possible to overload operator<< () and operator>> ()
@ This can be useful to output an object on the terminal
@ Typical way to define the operator

ostream & operator<<(ostream &out, const MyClass &obj);

@ An example is worth a thousands words

G_Linari (Scuola Sunariora Sant'Annal s Infro

March 4 2013 18/ 30

R

class MyClass {
int x;
int v;
public:
MyClass (int a, int b) : x(a), y(b) {}
int getX () const;
int getY() const;

i

ostream& operator<<(ostream& out, const MyClass &c) |

out << "[" << c.getX() << ", " << c.getY() << "]";
return out;

int main() {
MyClass obj(1l,3);
cout << "Oggetto: " << ob]j << endl;

G. Lipari (Scuola Superiore Sant'Anna) GC++ Intro

March 4, 2013 19/30

23

Inheritance

G. Lipari (Scuola Superiore Sant’Anna)

@ How to define the derived class

class A {
int 1i;
A protected:
— int 1;
- 1ot public:
j:int A() = i(0),3(0) {};
+ get() :int A e i
= it gec) COonsc (Iecvurn i;
+ f() : ushort int f() econst [return j;}
bi
class B : public A |
B int i;
- i:int public:
B() 1(0) {17
+ set() :int ~B()
+ al) :int veid set(int a) (] = a; i+= 3j}
int g() const {return i;}
}i

C++ Intro

class B : public A
int 1i;
public:
B() : AQ),

e

March 4, 2013

class B derives publicly from & |

i{0)
{}
~B() {}
void set (int a) {
J=a; e —
1+= 7i

-—

} \

int g() econst |
return i;
}
i

Therefore, to construct B, we must
first construct A

P

§ is a member of A declared as
protected; therefore, B can ac-
cess it

i instead is a member of B. There if
another i thatis a private mem-
ber of &, so it cannot be accessed
from e

G. Lipari (Scuola Superiore Sant'Anna)

C++ Intro

March 4, 2013 6/3z2

29/03/2015

24

_Overloadingand hidng

@ There is no overloading across classes

class A {
public:
int f(int, double);

class B public A {

public:
void f (double);

G. Lipari (Scuola Superiore Sant’Anna)

int main()
{
B b;
b.f£(2,3.0);
// ERROR!
}

C++ Intro

@ togetA::f () into scope,
rective is

the using di
necessary
@ using A::f (int,
double) ;
March 4, 2013 9/32

@ Itis possible to use an object of the derived class through a

pointer to the base class.

class A {
public:

void () { ... |}
bi
class B : public A {
public:

void gi) | }

bi
Ax p;
p = new B();
p->f£();

p->g();

A pointer to the base class |

L

The pointer now points to an object
e of a derived class
L~

Call a function of the interface of
the base class: correct

~ Error! g () is notin the interface
of the base class, so it cannot be
called through a pointer to the base
class!

G. Lipari (Scuola Superiore Sant'Anna)

C++ Intro

March 4, 2013 10/32

29/03/2015

25

29/03/2015

Extension through inheritance

@ Why this is useful?
@ All functions that take a reference (or a pointer) to A as a parameter,
continue to be valid and work correctly when we pass a reference
(or a pointer) to B
@ This means that we can reuse all code that has been written for A,
also for B
@ |n addition, we can write additional code specifically for B
@ Therefore,

om wsith tha s
ST Wiln e New

@ We can ex tend emsimg class to implement new functionality
@ What about modifying (customize, extend, etc.) the behaviour of

existina code without r*hnngmg it?

SANS L iy (WLE L 4

laoa
[[=t=1=]

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 4, 2013 12/32

Virtual functions

@ Let’s introduce virtual functions with an example

Shape

#x: double
#y: double
I+drawr): void

Circle Rect Triangle

-r: double -a: double -a: double
+draw(): void -b: double -b: L
+draw()}: void +draw(): void

G. Lipari (Scuola Superiore Sant'Anna) C++ Intro March 4, 2013 14/32

26

Implementation

class Shape |

protected:
double x,y;

public:
Shape (double x1, double vZ);
virtual wvoid draw() = 0;

i

class Circle : public Shape {
double r;

public:
Circle (double x1, double yl,

double r);

virtual wvoid draw();

i

class Rect public Shape {
double a, b;
public:
Rect (double x1, double v1,
double al, double p1);
virtual void draw();
bi

class Triangle
double a, b;
public:

i public Shape

double al,
virtual void draw();

bi

Triangle (double x1, double yl1,
double bl);

{

G. Lipari (Scuola Superiore Sant’Anna)

C++ Intro

March 4, 2013

15/32

Virtual table

@ When you put the virtual keyword before a function declaration,
the compiler builds a vtable for each class

>void draw()
| Circle — vplr/ void resize()

void rotate()

—void draw()
Rect — vptr—|/ void resize()

void rotate()

>-void draw()
Triangle — thr«l—/ void resize()

G. Lipari (Scuola Superiore Sant'Anna)

void rotate()

C++ Intro March 4, 2013

18/3z2

29/03/2015

27

29/03/2015

Calling a virtual function

@ When the compiler sees a call to a virtual function, it performs a
late binding, or dynamic binding
@ each object of a class derived from Shape has a vptr as first
element.
@ [tis like a hidden member variable

@ The virtual function call is translated into
o get the vptr (first element of object)

e . T ot - U FP P Y P oy Py |
W NuveE W uie Tyt pusiuun e e viai
virtual function we are calling)

@ call the function

©
o
@
o
©
c

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 4, 2013

Pure virtual functions

@ Example:

class Abs {

public:
virtual int fun() = 0;
virtual ~Abs();

bi

class Derived public Abs {

| This is a pure virtual function. No
object of Abs can be instantiated.

p‘-‘bli?: ___ One of the derived classes must fi-
Derived(); // nalize the function to be able to in-
virtual int fun(); stantiate the object.

virtual ~Derived();
Vi

. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 4, 2013 a1/32

28

29/03/2015

Interface classes

@ If a class only provides pure virtual functions, it is an interface
class
e aninterface class is useful whenwe wantic s
class conforms to an interfac
@ Unlike Java, there is no special keyword to indicate an interface

class

©
o

G. Lipari (Scuola Superiore Sant’Anna) C++ Intro March 4, 2013 32/32

When inheritance is used

@ Inheritance should be used when we have a isA relation between
objects
@ you can say that a circle is a kind of shape
@ you can say that a rect is a shape
@ What if the derived class contains some special function that is
useful only for that class?

@ Suppose that we need to compute the diagonal of a rectangle

G. Linari (Scuola Superiore Sant'Annal Multinle Inharitanca March 25. 2013 4/37

29

ISA vs. isLikeA

@ If we put function diagonal () only in Rect, we cannot call it with
a pointer to shape

@ Infact, diagonal () is not part of the interface of shape

@ If we put function diagonal () in Shape, it is inherited by
Triangle and Circle
@ diagonal () does hot make sense fora Circle
o we should raise an error when diagonal () iscalledonacircle
@ One solution is to put the function in the shape interface
@ it will return an error for the other classes, like Triangle and
Circle
@ another solution is to put it only in Rect and then make a
downcasting when necessary
@ see
./examples/05.multi
for the two solutions

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 25, 2013 5737

@ One way to downcast is to use the dynamic_cast construct

class Shape { ... };
class Circle : public Shape { ... };

void f (Shape =*5)
{

Circle =c;

c = dynamic_cast<Circle x>(s);
if (c == 0) {

S/ 5 does not point to a circle
}
else |

// s (and c) points to a circle
}

G. Lipari (Scuola Superiore Sant'Anna) Multiple Inheritance March 25, 2013 6/37

29/03/2015

30

Castg

@ Traditional explicit type-casting allows to convert any pointer into
any other pointer type, independently of the types they point to.

@ The subsequent call to member result will produce either a
e e b T Pt o 1 14
IL.

T T o~y -1 i
Turi-tie =iful Ul d UlieAapeulicu 1eou

@ There are more safe way to perform casting:

dynamic_cast <new_type> (expression)
reinterpret_cast <new_type> (expression)
static_cast <new_type> (expression)
const_cast <new_type> (expression)

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 25, 2013

@ dynamic_cast can be used only with pointers and references to
objects.

@ lts purpose is to ensure that the result of the type conversion is a
valid complete object of the requested class.

@ The result is the pointer itself if the conversion is possible;

@ The resultis nullptr if the conversion is not possible:

class CBase { wvirtual wvoid dummy () {} };
class CDerived: public CBase { int a; };

int main () {
CBase * pba = new CDerived;
CBase = pbb = new CBase;
CDerived » pd;
pd = dynamic_cast<CDeriveds*> (pba);
if (pd==0) cout << "Null pointer on first type-cast"™ << endl;
pd = dynamic_cast<CDerived~> (pbb);
if (pd==0) cout << "Null pointer on second type-cast" << endl;
return 0;

G. Lipari (Scuola Superiore Sant'Anna) Multiple Inheritance March 25, 2013

29/03/2015

31

swtocast

@ static_cast can perform conversions between pointers to
related classes, not only from the derived class to its base, but
also from a base class to its derived.

@ however, no safety check is performed during runtime to check if
the object being converted is in fact a full object of the destination
tvpe.

@ Therefore, it is up to the programmer to ensure that the conversion
is safe.

class CBase {};

class CDerived: public CBase {};

CBase *» a = new CBase;

Cherived * b = static_cast<CDeriveds> (a);

m 1 varmi el mmiimd b mm immm e mb s bt A f bl mlmms sl mm Al A
L= wuuiu }JUI Il dll ey II}JIIdI.I::' UU]UL.-I Ul Uig Lidoo diiu LUUIU 1edu
to runtime errors if dereferenced.

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 25, 2013 10/37

Private inheritance

@ Until now we have seen public inheritance
@ A derived class inherits the interface and the implementation of a
base class
@ With private inheritance it is possible to inherit only the
implementation

class Base {
int p;

protected:
int q;

ublic: i i i

p L — Private inheritance |

int £();
}; /
class Derived : private Base ({ | Canaccessgand f() I
—]

public: —
int g(); — —
}: _— lcanonlycallg () butnot £ () |

int main() { //’/,'

Derived obj; .._’,,_p'
obj.g(); ———

G. Lipari (Scuola Superiore Sant'Anna) Multiple Inheritance March 25, 2013 19/37

29/03/2015

32

Private inheritance

@ Private inheritance does not model the classical isA relationship

to base class

class Base {};
class DerivedA :
class DerivedB :

Base sptr;
DerivedA pub;
DerivedB priv;

ptr = &pub;
ptr = &apriwv;

G. Lipari (Scuola Superiore Sant’Anna)

Inheritance rules

public Base {};
private Base {};

/4 ok
// error!!

Multiple Inheritance

DerivedB cannot be accessed asl
Base I

March 25, 2013

G. Lipari (Scuola Superiore Sant'Anna)

Multiple Inheritance

Public Inheritance
[InBase | In Derived | Client |
private cannot access cannot access
protected | as protected members | cannot access
public as public members can access
Protected Inheritance i
| InBase | In Derived | Client
private cannot access cannot access
protected | as protected members | cannot access
public | as protected members | cannot access
Private Inheritance
In Base In Derived client
private cannot access cannot access
protected cannot access cannot access
public as private members | cannot access

March 25, 2013

20/37

29/03/2015

33

Private Inheritance

@ Why private inheritance?
@ Because we want to re-use implementation but not the interface
@ [t can be seen as a sort of composition

- VAL
@ VVIICT W Use Il

@ ltis not a popular technique
@ Composition is better done by declaring a member to another class

Composition Private Inheritance
class B | class B : private A {

Ax ptr; public:
public: B() : 20 {

B() { }

ptr = new A(): ~B() |
} }
~B() | i

delete ptr;

bi

Multiple Inheritance March 25, 2013 22/37

G. Lipari (Scuola Superiore Sant’Anna)

Multiple inheritance

@ A class can be derived from 2 or more base classes

A B
+1(): void +q(): void
C
+h(): wvoid

@ C inherits the members of A and B

March 25, 2013 24/37

G. Lipari (Scuola Superiore Sant'Anna) Multiple Inheritance

29/03/2015

34

29/03/2015

Multiple inheritance

@ Syntax

e @ If both A and B define two
void f(); functions with the same

b: name, there is an

ambiguit

class B { g y .

public: @ it can be solved with the
void f(); scope operator

b:

class C : public A, public B C el

) cl.Az:E£();

1s cl.B::f();

G. Lipari (Scuola Superiore Sant’Anna) Multiple Inheritance March 25, 2013 25/37

Why multiple inheritance?

@ Is multiple inheritance really needed?
@ There are contrasts in the OO research community
@ Many OO languages do not support multiple inheritance
@ Some languages support the concept of “Interface” (e.g. Java)
@ Multiple inheritance can bring several problems both to the
programmers and to language designers

@ Therefore, the much simpler interface inheritance is used (that
mimics Java interfaces)

G. Lipari (Scuola Superiore Sant'Anna) Multiple Inheritance March 25, 2013 26/37

35

Pointer to member

@ Can | have a pointer to a member of a cilass?

@ The problem with it is that the address of a member is only
defined with respect to the address of the object
@ The C++ pointer-to-member selects a location inside a class
@ The dilemma here is that a pointer needs an address, but there is
no “address” inside a class, only an “offset”;
@ selecting a member of a class means offsetting into that class
@ in other words, a pointer-to-member is a “relative” offset that can be
added to the address of an object

G. Lipari (Scuola Superiore Sant'/Anna) Multiple Inheritance March 25, 2013 34737

@ To define and assign a pointer to member you need the class
@ To dereference a pointer-to-member, you need the address of an

object
class Data {
public:
int x;
int vy;
bi
int Data::spm; S/ pointer to member
pm = &Data::x; /4 assignment
Data aa; /7 object
Data *pa = &aaj; // pointer to object
pa->+pm = 5; // assignment to aa.x
aa.+pm = 10; / another assignment to aa.x
pm = &Data::y;
aa.*pm = 20; // assignment to aa.y

G. Lipari (Scucla Superiore Sant'Anna) Multiple Inheritance March 25, 2013 35/37

29/03/2015

36

Syntax for pointer-to-member functions

@ For member functions, the syntax is very similar:

class Simple2 {

public:

int f(float) const { return 1; }
bi

int (SimpleZ::«fp) (float) const;

int main() {
fp = &Simple2::£f;
Simple? obj;
Simple2 *p = &obi;

p=>=*f Lo calling t
13 B I i g
all i

obj.+fp(.8); /S ez

int (SimpleZ::+fp2) (float) const = &Simplel::

G. Lipari (Scuola Superiore Sant’Anna)

Multiple Inheritance

March 25, 2013

29/03/2015

37

