Object Oriented Software Design ||

Introduction to C++

Giuseppe Lipari
Scuola Superiore Sant'Anna - Pisa

February 20, 2013

29/03/2015

@ Just install the latest g++ compiler

@ You can use any editor (e.g. gedit, kate, etc.)

@ Eclipse with GDT is an IDE (lntegraled Developement Environment)
that you can use to simplify multi-file projects

o However, at the very beginning, | recommend command-line tools
@ For Windows

@ You can use Visual C++ (if you have a license available)

@ otherwise | recommend installing Cygwin
http://www.cygwin.com/), and from there install the latest
g++ compiler

o Again, use any editor you want, and then the command line for
compiling and running the code

@ Nice editors: (http://no
http://www.ultraedit
but also emacs and gVim)

org/,

traedit.html,

@ To understand this course, you should at least know the basic C
syntax
@ functions declaration and function call,
@ global and local variables
@ pointers (will do again during the course)
o structures
@ First part of the course: classes
o Classes, objects, memory layout
o Pointer and references
@ Copying
@ Inheritance, multiple inheritance
@ Access rules
@ Public, protected and private inheritance
o Exceptions

Abstraction

@ An essential instrument for OO programming is the support for
data abstraction

@ C++ permits to define new types and thelr operatlons
@ Ci

a new daia lypl—.‘ means defi
o VWhich eiements it is composed of (internai siruciure).
@ How it is built'destroyed (constructor/destructor);

How we can operate on this type (methods/operations)

@ Second part: templates

o Templates
@ The Standard Template Library

@ Fourth part: patterns
@ Some patterns in G++
@ Function objects
@ Template patterns
@ Meta-programming with templates

Classical example

class Complex |

double real ;
double imaginary_;
publiec

x():
% (double =z, double b);
lex();

const;

ginary() const;

double module () const;

(ex Loperator =(const Complex &a);
¥ Loperator+=(const C lex sa);
¥ &operator-=(const Complex &a));

How to use complex

cout << "egl=(" << cl.real() << ","

¢ cl.imaginary() << ")" << endl;

defined

: operator + not yet

29/03/2015

Declaring objects of a class: constructor

@ An object is an instance of a class
@ An object is created by calling a special function called constructor

A constructor is a function that has the same name of the class and
no return value

W ooy mo onans b bos

It may or may not have paramet

o ltis invoked in a special way
class MyClass { | Declaration of the constructor]
z _—
punlic o
MyClass(}) . —
ut << "ConstructorV<<endly
bi
J—— Invoke the constructor 1o create an

MyClass obj; — object

Using new data types

@ The new data type is used just like a predefined data type
@ it is possible to define new functions for that type:
@ real().imaginary() and module ()
@ |tis possible to define new operators
@ =, +=and
@ The compiler knows automatically which function/operator must be
invoked
@ C++ is a strongly typed language
o the compiler knows which function to invoke by looking at the type

@ A class contains members
@ A member can be

@ any kind of variable (member variables)
@ any kind of function (member functions or methods)

class My
int a;
double b;
publie:
int c;

{ | member variables (private)]

——— _ ___ member variable (public)]

void f();

int geth();

int modify (doublex"th)‘;\

Yi . member functions (public) '|

Constructor - Il

@ Constructors with parameters

A class can have many
constructors

class MyClass |
int a;

" _This is an eror, no constructor
(int x}; " without parameters
(int X, int)'?;/
/ . =
/ . Calils the first constructor i
,//
' -
= i | Caits ie second consiiucion i
a); e

Same syntax is valid for primitive
dala types

Fobruary 20. 2013 19/56

Default constructor

@ Rules for constructors
@ If you do not specify a constructor, a default one with no parameters
is provided by the compiler
@ |f you provide a constructor (any constructor) the compiler will not
provide a default one for you

@ Constructors are used to initialise members

class MyC

int a;
int b;
public:

ass(int x, int y)

Fobruary

Initialization list

@ Members can be initialised through a special syntax

@ This syntax is preferable (the compiler can catch some obvious
mistake)
@ use it whenever you can (i.e. almost always)

MyClass

X, int y) «—1t— A comma separated list of construciors,

Tollowing the :

/ other initialisation

29/03/2015

Access co I

@ A member can be:
a privata: only membar functions of the sama class can access it
other classes or global functions can’t
o protected: only member functions of the same class or of derived
| can access it: other ¢l or global functions can't
9 public: every function can access it

class MyClass | ’
MyClass data;

private:
int a;

publiec: cout << data.a; 2
int c; cout << data.cj /7 OK

li

Accessing member objects

@ Members of one object can be accessed using the dot notation,
similarly to structs in C

int aj
int £();
void g(int 1,

Assigning to a member variable of ob-
jectx

Assigning to a member variable of ob-
jecty

Calling member function 1{} of object x |

. Calling member function g(} of object y |

Fabruary 20, 2013

Implementing member functions

@ You can implement a member function (including constructors) in
a separate .cpp file

complax.h cOmplax.cop

class ¢ le double C ex::module()
double ; {
double img_; double temp;

publie: temp = real_ +
o img_ «
double module() const; return temp;

]

@ This is preferable most of the times
@ put implementation in include files only if you hope to use in-lining
optimisation

| Fongs |

class A |
friend class B;
int y;
void f();

class B
int x; B is friend of A, hence B can access private |
public: members of A

void f(A &a);

Friend functions and operator

@ Even a global function or a single member function can be friend
of a class

class A |
friend
friend |
int v;
void f();
public:
int g():

friend member function]

\ friend global function |

@ ltis better to use the friend keyword only when it is really
necessary because it breaks the access rules.

@ "Friends, much as in real life, are often more trouble than their
worth." — Scott Meyers

Fobruary

Dynamic memory

@ Dynamic memory is managed by the user
@ InC:

o to allocate memory, call function mallec

o to deallocate, call free

o Both take pointers to any type, so they are not type-safe
@ InC++

@ to allocate memory, use operator new

o to deallocate, use operator delete

@ they are more type-safe

Fabruary 20,

@ The destructor is called just before the object is deallocated.

@ Itis always called both for all objects (allocated on the stack, in
global memory, or dynamically)

@ If the programmer does not define a constructor, the compiler
automatically adds one by default (which does nothing)

@ Syntax
class A |
public: The destructor never
Ay 7 takes any parameter
~A() |

New and delete for arrays

@ To allocate an array, use this form

int +p = new int(5]; // allocates an array of 5 int
delete [] p; notice the delete syntax
A =q new A[10]; / alleca 1 array of 10

type A

// objects of

@ Inthe second case, the default constructor is called to build the 10
objects

@ Therefore, this can only be done is a default constructor (without
arguments) is available

29/03/2015

Function overloading

@ In C++, the argument list is part of the name of the function
@ this mysterious sentence means that two functions with the same
name but with different argument list are considered two different
functions and not a mistake
@ If you look at the internal name used by the compiler for a
function, you will see three parts:

@ i
o f
@ i

Fabrunry 20, 2013

class A | A £ ink [
public: T —
void f(int a); — _—
void f{int a, int b}; 1 _ A f int_int i
void f (double g); ._\

Return values

@ Notice that return values are not part of the name
9 the compiler is not able to distinguish two functions that differs only
on return values

class A |
int floor (double aj;
double floor (double a);

@ This causes a compilation error
@ ltis not possible to overload a return value

Default arguments in functions

@ Sometime, functions have long argument lists
@ Some of these arguments do not change often

o We would like to set default values for some argument
@ This is a little different from overloading, since it is the same
function we are calling!

int f(int a, int b = 0);

£(12); /It

@ The combination of overloading with default arguments can be
confusing

@ itis a good idea to avoid overusing both of them

29/03/2015

References

@ In C++ it is possible to define a reference to a variable or to an

object
int x;
int &rx = x;
/Class obj;
lass &r =

@ ris a reference to object ob

a
WADKIMS

e
a C++ uses the same symbol = for two different meanings!
o Remember:

@ when used in a declaration/definition, it is a reference

@ when used in an instruction, it indicates the address of a variable in
memory

More on pointers

@ ltis also possible to define pointers to functions:

@ The portion of memory where the code of a function resides has an
address; we can define a pointer to this address

veid («fi tr
int (+anotherPt

void f£(){...}

funcPtr = &£();
funcPtr = [

{«funcPtr) () ;

G. Lipari [March 1, 2013

P A el e F
@ T L+, A TRIRTENCE 15 dll

1aime for an objec
Pointers References
@ Painters are like other @ Must be initialised
variables @ Cannot have
e Canhave a peinter te references to void
void

@ Cannot be assigned

@ Can be assigned @ Cannot do arithmetic

arbitrary values
@ ltis possible to do
arithmetic
@ What are references good for?

Pointers to functions — I

@ To simplify notation, it is possible to use typedef:

typedef woid (b
typedef void: (-

@ |t is also possible to define arrays of function pointers:

void fl{int a) {}

woid f2{int a) [)
vold fi(int a) ()
void («funcTable []) (int) 11, £2, £3};

for (int i =0; i<3; #+i)

Copying objects

@ In the previous example, function g () is taking a object by value

void g(MyClass c) {...}

g(obi);
@ The original object is copied into parameter ¢
@ The copy is done by invoking the copy constructor
.[f.-yf_“;asstconst MyClass &r); |

@ If the user does not define it, the compiler will define a default one
for us automatically

@ The default copy constructor just performs a bitwise copy of all
members
o Remember: this is not a deep copy!

Meaning of static

@ In C/C++ static has several meanings

@ for global variables, it means that the variable is not exported in the
global symbol table to the linker, and cannot be used in other
compilation units
for local variables, it means that the variable is not allocated on the
stack: therefore, its value is maintained through different function
instances
for class data members, it means that there is only one instance of
the member across all objects
a static function member can only act on static data members of the
class

L

29/03/2015

Static data members

@ Static data members need to be initialized when the program
starts, before the main is invoked
o they can be seen as global initialized variables (and this is how they
are implemented)

@ This is an example

S/ include file A.hpp
class A |
static int

* src file A.cpp
| #inelude "A.hpp"

public: int A::i = 0;
AQ);
int get(); A::A() (...}
bi int A::get() {...}

Static members

@ We would like to implement a counter that keeps track of the
number of objects that are around
@ we can use a static variable

class ManyObj |
static int count;
int index;

int ManyObij::get
int getIndex(); return index;

statie int howMany(); }

owMany ()

| Constarts |

@ In C++, when something is const it means that it cannot change
Period.
@ Now, the particular meanings of const are a lot:
o Don't to get lost! Keep in mind: const = cannot change
@ Another thing to remember:
o constants must have an initial (and final) value!

G. Lipari

Static members

@ There is only one copy of the static variable for all the objects
@ All the objects refer to this variable
@ How to initialize a static member?
@ cannot be initialized in the class declaration
o the compiler does not allocate space for the static member until it is
initiliazed
o So, the programmer of the class must define and initialize the static
variable

Constants - Il

@ You can use const for variables that never change after
initialization. However, their initial value is decided at run-time

const int i = 1

const int i
T Compile-time constants

int main() - |

{

pe a character\n";

const char = cin.get (});

const char = (- b —

cout << ¢2; T run-lime constants

cout << "T

ERROR! c2 is const!

Constant pointers

@ There are two possibilities
@ the pointer itself is constant
@ the pointed object is constant

int a

2 . the pointer is constant
int + const u = — s I

the pointed object is constant (the pointer

const int «v; —_— ; :
L can change and poinl to anather const int!)

@ Remember: a const object needs an initial value!

Const function arguments

@ An argument can be declared constant. It means the function
can't change it

@ it's particularly useful with references

class A
public:
int i;

b

void f(const A &a) |

a.i+de; !/ error! c

dify a;

@ You can do the same thing with a pointer to a constant, but the
syntax is messy.

29/03/2015

Operator overloadin

@ binary operator: takes two arguments
@ unary operator: takes one argument
@ The syntax is the following:

Compl

_ Defaul constructor]

Constructor]

| const;

cperator - (const Cc
operator+= (const

Goperator-=(const Co

operator+ (const
operator- (const

March 1, 20013 37/42

Constant member functions

@ A member function can be declared constant
@ It means that it will not modify the object

class A |
int i;

public:
int f() const;
void g();

void A::f() const

1++;

.

/# ERROR!

function cannot

he ebject

return i;

March 4, 2013

To be member or not to be...

@ In general, operators that modify the object (like ++, +=, -, etc...)
should be member
@ Operators that do not modify the object (like +
be member, but friend functions
@ Let's write operator+ for complex:
./examples/03.operators—-examples/complex.cpp
@ Not all operators can be overloaded
o we cannot “invent” new operators,
@ we can only overload existing ones
@ we cannot change number of arguments
a we cannot change precedence
@ . (dot) cannot be overloaded

, etc,) should not

29/03/2015

Strange operators Example

@ You can overload
@ new and delete
@ used to build custom memaory allocate strategies
@ operator(]
o for example, in vector<=...

@ operator, ostreamis operator<<(ostreamé out, const My
@ You can write very funny programs! out << "[" << c.getX({) << ¥, " << c.get¥()
o operator-> return out;

@ used to make smart pointers!!

March 4,213 19/30

How 10 overload operator [

@ the prototype is the following:
.clnss A

public:
At operator(] (int index);

@ Exercise:

- iini

o add operator [] to you Stack class et 110

@ the operator must never go out of range ~ s‘j” L4 e
2 nll e it L8 a a; 14= 17
+ gi) tint :

| const {return i;}

March 4, 2013

iput on sireams

@ How to define the derived class

@ [tis possible to overload eperater<< () and cperator>> () —— class & derives publicly froma |

@ This can be useful to output an object on the terminal

X . Therefore, to construct B, we must
@ Typical way to define the operator ALl first construct &

1 & a member ol A declared as
protected; therefore, & can ac-

cperator<< (o

am &out, const My

ss aobi)i

. g cess it
@ An example is worth a thousands words) i T . .
1ok aty ciomt { ——— iinsteadis a member of &. There if
bt R anolher { that is a private mem-

ber of A, so it cannot be accessed
from B

29/03/2015

Overloading and hiding

@ There is no overloading across classes

i int mainQ) @ Let's introduce virtual functions with an example
Shape
f (int, double); .0); #x: doutile
|y _double
+draw(): void
public [[
@ A::f () has been hidden Circle Ract Triangle
hy Bi:f() or: deuble -a: double -a: double
R sdraw(): void =L _doubls =R double
@ togetA::f () into scope, “draw(): void Vdrawi): vold
the using directive is
necessary

@ using A::f({int,
double) ;

@ ltis possible to use an object of the derived class through a
pointer to the base class.

_ A pointer to the base class |

The pointer now points to an object
of a derived class

Call a function of the interface of
the base class: correct

_ Error! g() is not in the interface
of the base class, so it cannot be
called through a pointer to the base
class!

Extension through inheritance Vi

@ Why this is useful?

ual table

@ When you put the virtual keyword before a function declaration,
the compiler builds a vtable for each class

o All functions that take a reference (or a pointer) to A as a parameter, - 4~_/"VOIAj grawl)
continue to be valid and work correctly when we pass a reference [Circle - vpir void resize()
(or a pointer) to B veid rotate()

o This means that we can reuse all code that has been written for &,
also for B

@ |n addition, we can write additional code specifically for 2

==void draw(}

@ Therefore, Rect - vp!r/ void resize()
@ we can reuse exisling code also with the new class Py =Y

o We can extend existing class to implement new functionality —

@ What about modifying (customize, extend, etc.) the behaviour of

existing code without changing it?

L=void draw()
Triangle - vptr-‘—/ void resize()

void rotate()

March 4, 2013 18

@ When the compiler sees a call to a virtual function, it performs a
late binding, or dynamic binding
o each object of a class derived from st
element.

@ ltis like a hidden member variable
@ The virtual function call is translated into

pe has a vptr as first

o get the vptr (first element of object)
& move to the right position into the viable |

virtual function we are calling)
call the function

Pure vi | functiol

@ A virtual function is pure if no implementation is provided
@ Example:

This is a pure virtual function. No
object of Abs can be instantiated.

nalize the lunction 1o be able o in-

One of the dernved classes must K-
stantiate the object.

29/03/2015

hen inheritance is used

@ Inheritance should be used when we have a isA relation between
objects
@ you can say that a circle is a kind of shape
o you can say that a rect is a shape
@ What if the derived class contains some special function that is
useful only for that class?
9 Suppose that we need to compute the diagonal of a rectangle

@ another solution is to put it only in Rect and then make a
downcasting when necessary

Interface classes

@ If a class only provides pure virtual functions, it is an interface
class
o an interface class is useful when we want to specify that a certain
class conforms to an interface
@ Unlike Java, there is no special keyword to indicate an interface
class
o more examples in section multiple inheritance

@ One way to downcast is to use the dynamic_cast construct

Multipo I

10

o Traditional explicit type-casting allows to convert any pointer into
any other pointer type, independently of the types they point to.

@ The subsequent call to member result will produce either a
run-time error or a unexpected result.

@ There are more safe way to perform casting:

29/03/2015

Private inheritance

@ Until now we have seen public inheritance
@ A derived class inherits the interface and the implementation of a
base class
@ With private inheritance it is possible to inherit only the
implementation

g . Privale inheritance
int fi); /]
E e | Canaccess qand £1() I
= Icanonrycallgubutnolful

@ dynamic_cast can be used only with pointers and references to
objects.

@ Its purpose is to ensure that the result of the type conversion is a
valid complete object of the requested class.

@ The result is the pointer itself if the conversion is possible;

@ The result is nullptr if the conversion is not possible:

cl
el

void

G. Lipari

@ static_cast can perform conversions between pointers to
related classes, not only from the derived class to its base, but
also from a base class to its derived.

@ however, no safety check is performed during runtime to check if
the object being converted is in fact a full object of the destination
type.

@ Therefore, it is up to the programmer to ensure that the conversion
is safe.

rast<COeriveds> (a) ;

@ b would point to an incomplete object of the class and could lead
to runtime errors if dereferenced.

Maultiphe haditanes

jo A ralati

] Sl i
i
CiaSSiCan /54 reauonsnip

is not possible to automatically upcast from derived

@ In particular, i
io base ciass

redB cannol be accessed as

Multpio nha:

Inheritance rules

Public Inheritance

[InBase | In Derived Client
private cannot access cannol access |
protected | as protected members | cannot access
public | as public members can access

. ___Protected Inheritance

| InBase | In Derived | Client]
private cannot access cannot access

| protected | as protected members | cannot access |

| “public | as protected members | cannot access |

Private Inheritance

InBase | In Derived client
private | cannot access | cannol access |
protected cannot access cannol access

public | as privale members | cannot access |

Multipia

11

Private Inheritance

@ Why private inheritance?
o Because we want to re-use implementation but not the interface
@ |t can be seen as a sort of composition

@ When to use it

@ |tis not a popular technique
o Composition is better done by declaring a member to another class

Composition Private Inheritance

Multiple inheritance

@ A class can be derived from 2 or more base classes

@ C inherits the members of A and B

Multiplo Inhetitance

Multiple inheritance

@ Syntax

@ If both A and B define two
functions with the same
name, there is an
ambiguity

@ it can be solved with the
scope operator

29/03/2015

Why multiple inheritance?

@ s multiple inheritance really needed?
@ There are contrasts in the OO research community
@ Many OO languages do not support multiple inheritance
@ Some languages support the concept of “Interface” (e.g. Java)
@ Multiple inheritance can bring several problems both to the
programmers and to language designers

a Tharafara tha miech simnlar intarfana inharitan~a e nead (that
= nereidie, wie Muln SiMpeeT Miienale Wineridarice 1s Used jniat
mimiee bavs inbarfasmet
MIMICS vava inienaces;

@ Can | have a pointer to a member of a class?

The nroblam with it ic that th
a2

a
S ane prooemwWaEn LIS W

defined with respect to the addre

& The C++ pointer-to-member sel

scts
o The dilemma here is that a pointer needs an address, but there is
no “address” inside a class, only an “offset”;

selecting a member of a class means offsetting into that class

in other words, a pointer-to-member is a “relative” offset that can be
added to the address of an object

ss of th ob]ect
1

a location inside a class

@ To define and assign a pointer to member you need the class
@ To dereference a pointer-to-member, you need the address of an
object

12

Syntax for pointer-to-member functions

@ For member functions, the syntax is very similar:

publi

int

f{float) const | return 1; |

fp) (float) const;
«fp2) (Eleat) const = LSimpled::f;

Muttiplo Inhexitance March 25, 2013 38

29/03/2015

13

