29/03/2015

Object Oriented Software Design

CULIU dl TU TETTTRIdLE

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant'/Anna — Pisa

March 27, 2013

G. Lipari (Scuola Superiore Sant'/Anna) Exceptions and Templates March 27, 2013 1/65

o Exceptions
@ Cleanup

© Generic code

e Templates

o Standard Template Library
@ Associative Arrays

o Advanced templates
@ Exercises

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 2165

Try/catch

@ An exception object is thrown by the programmer in case of an
error condition

@ An exception object can be caught inside a try/catch block

try {
s
// this code can generate exceptions
Vs
} catch (ExcTypel& el) {
[/ all exceptions of ExcTypel are handled here

nis vel where the fun ctlon call
1as been peri rn‘ed it is durr‘latlcaiiy forwarded to the upper

@ Until it finds a proper try/catch block that cathes it
@ or until there is no upper layer (in which case, the program is

Abmrtadl
awJi lcu)

G. Lipari (Scuola Superiore Sant'/Anna) Exceptions and Templates March 27, 2013 4 /65

@ It is possible to put more catch blocks in sequence

@ they will be processed in order, the first one that catches the
exception is the last one to execute

try {
//
// this code can generate exceptions
/S
} catch (ExcTypel&el) {
// all exceptions of ExcTypel
} catch (ExcType2 &e2) {
// all exceptions of ExcType2
} eateh (...) {
// every exception

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

29/03/2015

29/03/2015

Re-throwing

@ ltis possible to re-throw the same exception that has been caught
to the upper layers

catch(...) {

cout << "an exception was thrown" << endl;

// Deallocate your resource here, and then rethrow
throw;

1
I

G. Lipari (Scuola Superiore Sant'Anna)

Exceptions and Templates March 27, 2013

7165

Exception specification

@ It is possible to specify which exceptions a function might throw,
by listing them after the function prototype

@ Exceptions are part of the interface!

void f(int a) throw(Excl, Exc2, Exc3);
veid g();

void h() throw();

@ f() can only throw exception Exc1, Exc2 or Exc3
@ g() can throw any exception

@ h() does not throw any exception

G. Lipari (Scuola Superiore Sant'Anna)

Exceptions and Templates March 27, 2013

29/03/2015

Terminate

@ In case of abort, the C++ run-time will call the terminate(), which calls abort()
a ltis possible to change this behaviour

#include cexceptions»
#include <iostreams
uging namespace std;

void terminator() {
cout << "I‘1ll be back!" << endl; exic(0);
void (socld_terminate) (} = set_terminate(terminator);

class Botch {
public:
class Fruit {};
void £() {
cout << "Botch::f£()}" << endl;
throw Fruit():

~Botch() { throw 'c’; }

1

int main() {
try {
Botch b; b.£();
} eateh(...) {
cout << "inside catch(...)" << endl;
}
}

G. Lipari (Scuola Superiore Sant'/Anna) Exceptions and Templates March 27, 2013

Resource management

@ When writing code with exceptions, it's particularly important that
you always ask, “If an exception occurs, will my resources be
properly cleaned up?”

@ Most of the time you're fairly safe,

@ but in constructors there’s a particular problem:

o if an exception is thrown before a constructor is completed, the
associated destructor will not be called for that object.
@ Thus, you must be especially diligent while writing your constructor.

@ The difficulty is in allocating resources in constructors.

@ If an exception occurs in the constructor, the destructor doesn't get
a chance to deallocate the resource.
@ see exceptions/rawp.cpp

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 16/ 65

How to avoid the problem

@ To prevent such resource leaks, you must guard against these
“raw” resource allocations in one of two ways:
@ You can catch exceptions inside the constructor and then release
the resources
@ You can place the allocations inside an object's constructor, and
you can place the deallocations inside an object’'s destructor.

@ The last technique is called Resource Acquisition Is Initialization
(RAII for short) because it equates resource control with object
lifetime.

@ Example: exception_wrap.cpp

17 165

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

Outline

9 Generic code

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 19/ 85

29/03/2015

Containers

@ Consider the problem of providing a generic container of objects

@ Example

@ We designed and developed a Stack class container

@ itis an object that contains other objects, and provides operations
for inserting, extracting, finding object, and visiting them in a certain
order

@ Our stack class contains integers

@ However, the code is generic enough and depends only in minimal
part from the fact that it contains integers

@ Problem:

@ How to extend it to contains other types of objects?
o for example, Shapes

20/ 65

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

Use inheritance

@ OO0 languages that do not have templates, use inheritance for
implementing such containers

@ For example, in Smalltalk (and in Java), all classes derive from a
common ancestor: Object

@ The containers will contain pointers to Object

o however, the type is lost when you insert an object in a container

@ The user has to perform an appropriate downcast to get back to the
original type

@ We can do something similar in C++, by using multiple interface
inheritance

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 22185

29/03/2015

29/03/2015

Templates

@ Templates are used for generic programming

@ The general idea is: what we want to reuse is not only the abstract
concept, but the code itself

@ with templates we reuse algorithms by making them general

@ As an example, consider the code needed to swap two objects of
the same type (i.e. two pointers)

void swap(int &a, int &b)

{
int tmp;
tmp = a;
a = b;
b = tmp;

}

int x=5, y=8;
swap(x, v);

@ Can we make it generic?

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 25/85

How does it work?

@ The template mechanism resembles the macro mechanism in C
@ We can do the same in C by using pre-processing macros:

#define swap(type, a, b) { type tmp; tmp=a; a=b; b=tmp; }
int x = 5; int y = 8;

swap (int, x, ¥);

@ in this case, the C preprocessor substitutes the code

o it works only if the programmer knows what he is doing
@ The template mechanism does something similar

@ but the compiler performs all necessary type checking

Exceptions and Templates March 27, 2013 27185

G. Lipari (Scuola Superiore Sant'Anna)

Code duplicates

@ The compiler will instantiate a version of swap () with integer as a
internal type
@ if you call swap () with a different type, the compiler will generate
a new version
@ Only when a template is instantiated, the code is generated
@ If we do not use swap (), the code is never generated, even if we
include it!

@ if there is some error in swap () , the compiler will never find it until it
tries to generate the code

@ Looking from a different point of view:

o the template mechanism is like cut&paste done by the compiler at
compiling time

Exceptions and Templates March 27, 2013 281865

G. Lipari (Scuola Superiore Sant'Anna)

29/03/2015

29/03/2015

Parameters

@ A template can have any number of parameters
@ A parameter can be:

@ aclass, or any predefined type
@ a function
@ a constant value (a number, a pointer, etc.)

template<T, int sz>
class Buffer {

T v[sz];

int size ;
public:

Buffer() : size (0) {}

b

Buffer<char, 127> cbuf;
Buffer<Record, 8> rbuf;

int x = 16;

Buffer<char, x> ebuf; // error!

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

Default values

@ Some parameter can have default value

template<class T, class Allocator = allocator<Ts> >
class vector;

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 32/865

Generalizing Stack

@ Now, let's go back to our Stack class, and generalize it to contain
any type of object

template<class T> Stack() : head_(0), size_ (0)
class Stack {
class Elem { ~stack() {
public: .
T data_; 1

}i void push(const T &a) {...}
public: T pop() {...}
class Iterator | -
friend class Stack<Ts; }:

public:
inline T operators() const

{

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 33165

29/03/2015

10

Inlines

@ |tis possible to define the members of a template class later on
@ Must be preceded by keyword template

template<class T>
class Array {
enum { size = 100 };
T Alsize];
public:
T& operator[] (int index);
}:

template<class T>

T& Array<T>::operator(] (int index) {
require(index >= 0 && index < size, "Index out of range");
return A[index];

}

int main() {
Array<float> fa;
fal0)] = 1.414;

G. Lipari (Scuola Superiore Sant'Anna)

Exceptions and Templates March 27, 2013 35/85

Template instantiation

@ The code for the template is not instantiated until the template is
used

o It works similarly to in-lines
@ The template code must go in the header file

@ Otherwise, the template is not seen by the compiler which does not
know how to translate it

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 36/865

29/03/2015

11

Standard Template Library

@ The STL is provided with the compiler
@ |t contains generic code (templates) with

containers (vector, list, deque, map, set)
@ algorithms (sort, foreach, etc.)

o |/O streams (cout, cin, fstreams, etc.)

@ string

@ Recently, with the new standard, many more features have been
added (will see a selection later in the course)

38/65

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

@ Vector is the generalisation of the C array

an array of integers I
vector<int> v_int; ._/ a vector of strin
S V- - gs |
vector<string> v_s; —
vector<int> v_int2;
inserts an element in the vector
v_int.push_back(5); —T I
cout << v_int.size() << endl; .|
N\ prints 1 |
for (int i=0; i<10;i++)
v_int.push_back (i) ;
prints the first element |
cout << v_int[0] << endl; ._,/_
cout << v int[12] << endl; .. outof range: undefined behaviour I
cout << v_int.at(12) << endl; -l
: : X out of range: raises exception
v_int2 = v_int;
—_ - '_‘\ I
copies the entire vector |

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 39/65

29/03/2015

12

Vector of objects

@ Vector requires the following basic properties of the template class

@ Copy constructor; (otherwise you cannot insert elements)
o Assignment operator; (otherwise you cannot return an object)

@ It is possible to pre-allocate space for the vector,;

@ This is used to avoid excessive allocation overhead when we have
an idea of the size we need

vector<MyClass> v(10); // reserves 10 elements

@ However, in this case MyClass must declare a default constructor

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 40/ 65

Iterators

@ lterators are a generic way to access elements in a container,
according to a predefined order
@ The iterator is usually a class provided by the container itself
@ It can be seen as a pointer to the elements of the container
@ begin () returns an iterator to the first element
@ end () returns the iterator pointing beyond the last element of the
array
o itis possible to use ++ and - to increment/decrement the iterator
(i.e. move to the next/previous element)

@ it is possible to access the pointed element by using the
dereferencing operators

vector<ints> v;
vector<int>::iterator i;

for (i = v.begin(); il=v.end(); i++) cout << *i;

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

29/03/2015

13

Iterators

iterator-example.cpp

int main()

{
int al4] = {2, 4, 6, 8};
vector<int> v = {2, 4, &, B};

// visit the container with indexes
for (int i=0; i<4; i++) cout << al[i];
cout =< endl;

for (int i=0; i<d; i++) cout << v[i];
cout << endl;

// visit the container with pointers/iterators
for (int +p=a; pl=&al4]; p++) cout << *p;
cout << endl;
for (vector<ints::iterator g=v.begin();
q != v.end(); g++) cout << =q;
cout << endl;

vector<ints::iterator q = v.end();
do |
g--; cout << »qg;
} while (g != wv.begin());
cout << endl;

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 42185

Why iterators

@ lterators are available for all containers in the standard library

@ They represent a simple and uniform way to visit a container

@ Many template functions and member functions accept iterators
parameters

./examples/06.exceptions-templates-examples/iterator-example2.cpp

@ Exercise: generalise function print, so that it can print the content
of vectors of any type

@ Solution:

./examples/06.exceptions-templates-examples/iterator-example3.cpp

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 43/ 65

29/03/2015

14

@ The STL also provides the simple linked list we have seen in the
course

@ In the STL, the template parameter indicates the data type

listeints> lst;
for (int i=0; i<10; i++)
1lst.push_back (i) ;

// going through all elements
listeint>::iterator i = lst.begin();
int sum = 0;
while (i!=lst.end()) {

sum += *1i;

i+4;

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 45/ 65

Iterator types

@ There are five types of iterators, depending on the functionality
they provide:

RandomAccess|— | Bidirectional | —— Forward]—bl Input ‘

—_— Output

@ The difference consists in the type of operations that are
supported:

@ all types support operator ++ and =

@ input supports copy construction and copy, operator - >, equality
== and inequality !=

@ ocutput supports assignment as lvalue (to the left of an assignment
operator)

@ forward is as input and ocutput, but also supports default
constructor

@ bidirectional is as forward, but it also supports operator -

@ randomis as bidirectional, but also supports operators like +,
-, 4=, -=, comparison (<, <=, >=, =), offset []

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 46 / 65

29/03/2015

15

Iterator types

2 walid
category characteristic axpressions
[Can be copied and copy-constructed ; :::‘_”
all categories ++a
{Can be Incremented at+
atd
. . § a == b
lAccepts equality finequality comparisons al=b
Input .
ICan be dereferenced as an rvalue -?"‘
O stput|Can be dereferenced to be the left side of an assignment |*a = t
" utput] art = t
Bidir P =
ICan be default-constructed :‘::
—-a
iCan be decremented a--
Random .-
Access a+n
n+a
Supports arithmetic operators +and - a - n
a-b
a<h
Supports inequality comparisons (<, >, <= and >=) a=>h
jbatween iterators a=<=b
a>b
Supports comp d assi t op +=and -= : *: :
(Supports offset dereference operator ([]) aln]

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 47 1 85

Associative arrays

@ An associative array generalize the concept of array
@ Two subtypes: sets and maps

@ set<key= and multiset<key= contain ordered sets of objects
@ in set<key- the key must be unique
@ in multiset<key=, the same key can be inserted several times

@ map<key,value> and multimap<key,values contains pairs <key,values,
where key is the “index” in the array
@ in map<key, value=, each different key must be associated one
unique value
@ map<key, values, several values can be associated to the same key

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 50 / 65

29/03/2015

16

Map example

int main()

{

map<string, ints> age;
age ["Peppe"] = 40;
age ["Roberto"] = 25;

age ["Giovanna"] = 30;

pairestring, int> elem = {"Pippo", 32};

cout << elem.first << " = " << elem.second << endl;
age.insert (elem) ;

map<string, int>::iterator i;

for (i = age.begin(); i != age.end(); i++)
cout << i->first << " = " << i->second << endl;

|}

See map_example.cpp

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

The typename keyw

@ The typename keyword is needed when we want to specify that an
identifier is a type

template<class T> class X {

typename T::id i; // Without typename, it is an error:
public:

void £() { i.g(); }
}i

class Y {
public:
class id {
public:
veoid g() {}
}i
}i

int main() {
Xe¥> xy;
xy.£();

}

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 53165

29/03/2015

17

General rule

@ if a type referred to inside template code is qualified by a template
type parameter, you must use the typename keyword as a prefix,

@ unless it appears in a base class specification or initializer list in
the same scope (in which case you must not).

54 /65

G. Lipari (Scuola Superiore Sant'Anna)

Exceptions and Templates March 27, 2013

@ The typical example of usage is for iterators

template<class T, template<class U, class = allocator<Us >
class Seqg>
void printSeq(Seg<T=& seq) {
for (typename Seqg<T>::iterator b = seq.begin();
b != seq.end();)
cout << +*b++ << endl;

}

int main() {
// Process a vector
vectoreints v;
v.push_back (1) ;
v.push_back (2} ;
printSeqg(v);
// Process a list
list<int> lst;
1st.push_back(3);
lst.push_back(4) ;
printSeq(lst);

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

29/03/2015

18

29/03/2015

Making a member template

@ An example for the complex class

template<typename T> class complex |
public:
template<class X> complex(const complex<X>&);

.

complex<floats> z(1, 2);
complex<double> wi(z);

@ In the declaration of w, the complex template parameter T is
double and X is float. Member templates make this kind of flexible
conversion easy.

5. Lipari {Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 56 /65

Another example

int datalS] = { 1, 2, 2, 4, § };
vector<ints> wvl(data, data+5h);
vector<double> v2(vl.begin(), vl.end());

@ As long as the elements in v1 are assignment-compatible with the
elements in v2 (as double and int are here), all is well.

@ The vector class template has the following member template
constructor:

template<class Inputlterators>

vector (InputIterator first, Inputlterator last,
const Allocator& = Allocator());

@ Inputlterator is interpreted as vector<int>::iterator

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013

19

Another example

template<class T> class Outer |

public:
template<class R> class Inner {
public:
void f£();
i
template<class T> template<class R>
void Outer<Ts>::Inner<R=::f() {
cout << "Quter == " << typeid(T).name() << endl;
cout << "Inner == " << typeid(R).name() << endl;
cout << "Full Inner == " << typeid(sthis).name() << endl;

}

int main() {
QOuter<ints>::Inner<bool> inner;
inner.f();

}

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 58 /65

@ Member template functions cannot be declared virtual.

@ Current compiler technology expects to be able to determine the
size of a class’s virtual function table when the class is parsed.

@ Allowing virtual member template functions would require knowing
all calls to such member functions everywhere in the program
ahead of time.

@ This is not feasible, especially for multi-file projects.

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates March 27, 2013 58 /65

29/03/2015

20

Function templates

@ The standard template library defines many function templates in
algorithm
@ sort, find, accumulate, fill, binary search, copy, etc.

@ An example:

#include <algorithms
int i, j;
int z = mineints(i, j);

@ Type can be deducted by the compiler
@ But the compiler is smart up to a certain limit . ..

int z = min(x, j); // x is a double, error, not the same types

int z = mine<double=(x, j); // this one works fine

60/ 65

March 27, 2013

G. Lipari (Scuola Superiore Sant'Anna) Exceptions and Templates

29/03/2015

21

