Object Oriented Software Design

Exceptions and Templates

Giuseppe Lipari
hetep://retis.sssup.it/~1lipari

Scuola Supericre Sant Anna - Pisa

March 27, 2013

29/03/2015

@ Itis possible to put more catch blocks in sequence

@ they will be processed in order, the first one that catches the
exception is the last one to execute

cry {

// this code can generate excepticns

aill exceprior
} eateh (...} {
ff every exception

@ Exceptions
@ Cleanup

o Generic code
o Templates

0 Standard Template Library
@ Associative Arrays

© Advanced templates
@ Exercises

Excaptions and Templates March 27, 2013

@ It is possihle to re-throw the same exception that has been caught

he same exception that h n caugh
to the upper layers

a1

"an exception was threwn" << endl;
allocate your rescurce here, and then rethrow

Excaptions and Templates March 27, 2013

Try/catch

@ An exception object is thrown by the programmer in case of an
error condition

@ An exception object can be caught inside a try/catch block

code can generate exceptiong

} cateh (ExcTypela el) {
// all exceptions of ExcTypel are handled here

@ |If the exception is not caught at the level where the function call
has been performed, it is automatically forwarded to the upper
layer

@ Until it finds a proper try/catch block that cathes it
@ or until there is no upper layer (in which case, the program is
aborted)

ucla Suparion Sant Annal Excaptions and Tempiates March 27,2013 465

Exception specification

@ Itis possible to specify which exceptions a function might throw,
by listing them after the function prototype

@ Exceptions are part of the interface!
.void fl{int a) throw(Excl, Exc2, Exc3);

void gl ;
void h() throw():

@ f() can only throw exception Exc1, Exc2 or Exc3
@ g() can throw any exception
@ h() does not throw any exception

G. Lipari (Scucla Supariors Sant Annal

Excaptions and Templates

March 27, 2013 10/65

Terminate

@ In case of abort, the C++ run-time will call the terminate(), which calls abort()
@ Itis possible to change this behaviour

Binelude <asce

29/03/2015

9 Generic code

Resource managem

@ When wriling code with exceptions, it's particularly important that
you always ask, “If an exception occurs, will my resources be
properly cleaned up?”

@ Most of the time you're fairly safe,

@ but in constructors there’s a particular problem:

@ if an exception is thrown before a constructor is completed. the
associated destructor will not be called for that object.
@ Thus, you must be especially diligent while writing your constructor.

@ The difficulty is in allocating resources in constructors.

@ If an exception occurs in the constructor, the destructor doesn't get
a chance to deallocate the resource.

@ see exceptions/rawp.cpp

@ Consider the problem of providing a generic container of objects
@ Example
@ We designed and developed a Stack class container
@ itis an object that contains other objects, and provides operations
for inserting, extracting, finding object, and visiting them in a certain
order
@ Our stack class contains integers
o However, the code is generic enough and depends only in minimal
part from the fact that it contains integers
@ Problem:

@ How to extend it to contains other types of objects?
o for example, Shapes

How to avoid the problem

@ To prevent such resource leaks, you must guard against these
“‘raw” resource allocations in one of two ways:
@ You can calch exceptions inside the consiructor and then release
the resources
@ You can place the allocations inside an object’s constructor, and
you can place the deallocations inside an object’s destructor.
@ The last technigue is called Resource Acquisition Is Initialization
(RAIl for short) because it equates resource control with object
lifetime.

@ Example: exception_wrap.cpp

Use inheritance

@ OO0 languages that do not have templates, use inheritance for
implementing such containers

@ For example, in Smalltalk (and in Java), all classes derive from a
commen ancestor; Object

@ The containers will contain pointers to Object

@ however, the type is lost when you insert an object in a container

@ The user has to perform an appropriate downcast to get back to the
original type

@ We can do something similar in C++, by using multiple interface
inheritance

29/03/2015

@ Templates are used for generic programming

@ The general idea is: what we want to reuse is not only the abstract
concept, but the code itself

@ with templales we reuse algorithms by making them general

@ As an example, consider the code needed to swap two objects of
the same type (i.e. two pointers)

vold swaplint &a, int &bl
int tmp;
tmp = a;

int x=5,
awap (%, ¥l

@ Can we make it generic?

@ The compiier wiil instantiate a version of swap () with integeras a
internal type
@ if you call swap () with a different type, the compiler will generate
a new version
@ Oniy when a tempiate is instantiated, the code is generated
@ |f we do not use swap (). the code is nover generated, even if we
include it!
@ if there is some error in swap [} . the compiler will never find it until it
tries to generate the code

@ Looking from a different point of view:

5 Hha taraelabs measboamisns i o b8 mastba ol
s the ¥ Vi like B ke

compiling time

@ The template mechanism resembles the macro mechanism in C
@ We can do the same in C by using pre-processing macros:

#define swapitype, a, Bl | type tmp; tepea; a=b; batmp; |

ink x = 5; int y = #;

swaplint, x,

@ in this case, the C preprocessor substitutes the code

@ it works only if the programmer knows what he is doing
@ The template mechanism does something similar

@ but the compiler performs all necessary type checking

rameters

@ Atemplate can have any number of parameters
@ A parameter can be:

& aclass, or any predefined type

@ afunction

@ a constant value {a number, a pointer, etc.)

s int az>
ter |

Buffer<char, 1
Buf fer<Re

int x =
Buffer<char, x» ebuf; // error!

29/03/2015

@ Some parameter can have default value

templat

s T, class Allocator = allocator<Ts »

@ The code for the template is not instantiated until the template is
used

a It works similarly to in-lines
@ The template code must go in the header file

@ Otherwise, the template is not seen by the compiler which does not
know how io ransiaie i

Generalizing Stack

@ Now, let's go back to our Stack class, and generalize it to coniain
any type of object

@ The STL is provided with the compiler
@ It contains generic code (templates) with

€ 6 € B

string
@ Recently, with the new standard, many more features have been
added (will see a selection later in the course)

@ Itis possible to define the members of a template class later on
@ Must be preceded by keyword template

template<class Tx
class Array |
enum { size = 100 };

x out of range”);

@ Vector is the generalisation of the C array

_— anamay of integers I
T<ink> — __ aveclor of strings |
tor<string» —
vector<ints v_i
inserts an element in the vector]

prints 1 |

prints the first element

cout << v_int[0] << endl; .+

cout << v_int[12] <<

out of range: undefined behaviour I

cout << v_int.at(l2) <«

out of range: rases excepbon

v_int2 =« w_inc: — "]

T~ copies the entire vector I

29/03/2015

@ \ector requires the following basic properties of the template class

@ Copy constructor; (otherwise you cannot insert elements)
@ Assignment operator, (otherwise you cannol return an object) =
@ ltis possible to pre-allocate space for the vector; parameiers
@ This is used to avoid excessive allocation overhead when we have ./examples/06.except ions- tezplates- examples/iterator-example2.cpp
an idea of the size we need

@ Exercise: generalise function print, so that it can print the content
of vectors of any type

@ Solution:

constiucion . fexamples /06 .exceptions-templates-examples/iterator-exampled ., cpp

regerves 10 ele

vector<MyClass> v(10}; //

@ However, in ihis case MyCTlass imust decian

Iterators

@ [terators are a generic way to access elements in a container,
according to a predefined order & Th
@ The iterator is usually a class provided by the container itself course
@ It can be seen as a pointer to the elements of the container @ inthe STL, the tempiate parameter indicates the data type
@ begin () returns an iterator to the first element
@ end () returns the iterator pointing beyond the last element of the
array
@ it is possible to use ++ and - to increment/decrement the iterator
(i.e. move to the next/previous element)
@ itis possible lo access the poinfed element by using the
dereferencing cperators

for iimt i

; el
1st.push_back (i

vector<int
wectoreints

for (i = w.begin(); il=v.end(); i++) cout << si;

@ There are five types of d ding on the f
they provide:
MardomAon, * | Dideroctonal . Forward - L Irgnit
—... Outgnst

@ The difference consists in the type of operations that are
supported:
@ all types support cperator ++ and »
@ input supports copy construction and copy, operator - =, equality
== and inequality 1=

@ gutput supports assignment as lvalue (1o the left of an assignment
operator)
forward i$ as input and cutput, but also supports default
constructon
irectional Is as forward, but it also supports operater
5 as bidirectional, bul also supports operators fike +,
. comparison (<, <=, »>=, =), offset []

.

®
"
-4
B

29/03/2015

[FEp——

(ccapts aquality finaquaity comparisons

fCan bw derefurenced as an rrake

[can 2a of

Batirmcticnal loparation

foan b detauit-comtructed

fCam be decremantad

Rangsem
Access

[Supports arithmatic oparators + and -

[upports inaquality comparisons (<, =, <= and >a)
fstwesn serators

Supports compeund assignmant operations += and <=

[Supports otser derwiarance operator (11 Jatnd

Associative arrays

@ An associative array generalize the concept of array
@ Two subtypes: sets and maps
@ setckey> @nd multises<key- contain ordered sets of objects
@ in ey - the key must be unique
@ in stkeoy=, the same key can be inserted several times

alues @Nd mul

@ map<key

where wey is the “index” in the array
@ iN map<key, values, each different key must be associated one
unigue value
@ map<key, values, Several values can be associated to the same key

o if a type referred to inside template code is qualified by a template
type parameter, you must use the typename keyword as a prefix,

@ unless it appears in a base class specification or initializer list in
the same scope (in which case you must not).

Map example

int maini)

pairestring, int> elem = {*Pippo®, 32};

cout << JHLrEE <o T o= * oo elem. s

age. insert (elem);

<< andl;

@ The typical example of usage is for iterators

template emplate<class U, class = allocatoreUs =

88 »
vold printSeq(Seq<Ts& se

for(t srater b = seq.begin(};

1= seqg.end
t << *b++ << endl;

29/03/2015

@ An exampie for the compiex ciass

template<typename T> class complex |
-

@ In the declaration of w, the complex template parameter T is
double and ¥ is float, Member templates make this kind of flaxible

double 2 nat her templates

conversion easy.

@ Member template functions cannot be declared virtual.

@ Current piler technology expects to be able to the
size of a ¢iass's virtual function tabie when the ciass is parsed.

@ Allowing virtual member template functions would require knowing
all calls to such member functions everywhere in the program
ahead of time.

o This is not feasible, especially for multi-file projects.

other example

int datals] = { 1, 2, 3, 4, 5 };
vector<ints vlidata, datas5);
vector=deuble> v2{vl.begin{), vl.end()};

@ As long as the elements in 1 are assignment-compatible with the
elements in v2 (as double and int are here), all is well.

@ The vector class template has the following member template
constructor:

template<class Inputlterators
vector (InputIterator first, InputIterator last,
const Allocator& = Allocator());

:iterator

@ InputIterator isinterpreted as vector<int:>

@ The standard template library defines many function templates in
aigorithm

@ sort. find, accumulate, fi11, binary_ search, copy, elc

An example:

#includs <algorithms
int i, i

int z = min<int>(i, j§);

Type can be deducted by the compiler
@ But the compiler is smart up to a certain limit . ..

int z = min{x, j); // X is a double, error, not the same CLypes

int z = min<double>(x, j / this one works fine

other example

<class T> class Outer |

» clasa Inner |

