
1

C++ Machine Objects (MACHO)

Macho 

The Machine Objects class library allows the 
creation of state machines based on the "State" 
design pattern in C++.

It extends the pattern with the option to create 
hierarchical state machines, entry and exit 
actions, state histories and state variables.

Freely available at 
http://ehiti.de/machine_objects/ 

A Macho Hello World 

top

operational

idle stop

disabled

programmed

cooking

open

minute

start

tick[timer_exp]

minute

ready

H*

close

A Macho Hello World 

top

operational

idle stop

The TOPSTATE has 
the same role as the 
context class

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute

A Macho Hello World 

top

operational

idle stop

The BOX struct 
wraps local variables 
and local (utility) 
functions

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute

A Macho Hello World 

top

operational

idle stop

All state classes 
(including context) 
must use this macro 
to be identified as a 
state.

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute



2

A Macho Hello World 

top

operational

idle stop

The context class 
declares all events 
handlers

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute

A Macho Hello World 

top

operational

idle stop

Init action defining 
the initial actions.

It is optional !?!

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute

A Macho Hello World 

top

operational

idle stop

Each state is a 
substate of the 
context (TOP) or 
some other state

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute

A Macho Hello World 

top

operational

idle stop

The class methods 
define the actions 
and the state 
transitions (here to a 
history state)

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute

A Macho Hello World 

top

operational

idle stop

The class methods 
define the actions 
(including init, entry, 
exit) and the state 
transitions (here to a 
regular state)

disabled

programmed

cooking

open

H*

close
minute

start

tick[timer_exp]

minute

What is needed 

The class library as such does not need to be installed. Just 
include the header file Macho.hpp and add the file Macho.cpp 
to your make file or project definition.

Prerequisite is a C++ compiler with support for templates.



3

Representing states

• The starting point is the "State" design pattern. 
• The essence of the pattern is to represent states by 

classes. State transitions are performed by instantiating 
objects of these classes.

• In contrast to the pattern discussed in the previous 
lesson, where all state classes are instantiatied statically 
as part of the context class.p

• From this perspective the constructors and destructors of 
state classes can take the role of entry and exit actions. 

• Object attributes represent state variables. 
• Events are dispatched by calling methods on state 

objects which implement the guards, actions and 
transitions of states.

Representing hierarchy

• Substates must be able to take over the event handling 
logic of superstates, redefining it where necessary. There 
exists a mechanism in C++ allowing redefinition of 
behaviour on the level of methods: polymorphism through 
class inheritance.

Representing hierarchy

• However, modeling the substate/superstate relation with 
class inheritance is problematic: 

– the use of constructors and destructors as entry and exit 
actions is not possible anymore, 

– neither is keeping state variables in objects.

• The reason is that base classes are constituent parts of• The reason is that base classes are constituent parts of 
deriving classes, meaning object construction or destruction 
will trigger all involved class constructors or destructors and 
initialize or destroy all data members.

• This may be against the semantics of entry/exit actions and 
state variables, where a transition between sibling substates 
should not trigger superstate entry/exit actions nor destroy 
superstate state variables.

Representing hierarchy

• The solution is to use explicit methods for state entry and 
exit, being called in the correct sequence on state transitions.

– The framework takes care of calling them in the right order
• State variables are kept in separate state specific data 

structures which have a life cycle consistent with the 
hierarchy of states.

State Definition

• Macho machines are embedded within a single Top 
state

• The top state's interface defines the machine's event 
protocol: only the public virtual methods of the top state 
can be event handlers.

• The top state is defined by the macro TOPSTATE

• The top state has a typedef alias TOP that is available to 
all states of the machine.

• All states are in reality substates (of top state or some 
other states)!

State Definition

• Regular states and superstates are defined using the 
SUBSTATE macro

• The macro parameters are the substate's name and theThe macro parameters are the substate s name and the 
name of its superstate. 

• A typedef alias SUPER will point to the superstate within 
the substate class. 



4

Machine creation

• A state machine is created by Instantiating a machine 
object 

• Machine is a template class in the MACHO namespace. 
Its template parameter is the top state of the machine.p p p

• The top state is immediately entered and initialized upon 
machine creation

State Definition

• The macro STATE(state_name) must be invoked in 
every state body:

• The macro parameter is the state name. The purpose of 
the macro is to automatically generate a few definitions 
(a constructor for instance). 

• Every state class must be instantiable (including the top 
state). This means states must not have pure virtual 
methods!

Macro internals

• Macros TOPSTATE, SUBSTATE, STATE

State Variables

• State variables store information maintained in the scope of the 
associated state and accessible to any of its substates.

• Top state variables are accessible to all states of a machine.

• State variables are contained in a data type named Box (the 
name Box is mandatory) nested into the state class.

• The box definition must be before the use of the STATE macro.
• The box type must be default constructable (has a default 

constructor).
– Apart from this the box type can be any C++ type. (even a typedef)

States with persistent data

• A box is created before its state is entered (before the call to 
entry) and by default destroyed after the state is left (after the 
call to exit). By marking a state class with the PERSISTENT 
macro, you can override this default behaviour and have boxes 
survive state transitions:

• Persistent boxes are created once at first entry of their state 
and exist for as long as the state machine instance itself exists.

Accessing the state data

• A state's box is accessed by calling the method box, 
which returns a reference to the state's box object:

• Superstate boxes are available by qualifying the box 
method with the superstate's name:



5

Entry, exit, init

entry
exit: ex1
init

entry
exit: ex2
init

entry:en1
exit: 
init: in1

entry: en2
exit
init

Sequence 
of calls:

ex4();
ex3();
ex2();
ex1();
(*) 
en1();

in3() {
…
setState<S24>();
}

entry: en3
exit
init: in3

entry: en4
exit
init: in4

entry: 
exit: ex3
init

entry:
exit: ex4
init

en1();
en2();
en3();
in3();
en4();
in4();

Init is only called at the end of the chain, for the destination 
state

But init can also initiate a state transition to a substate (entry 
and exit cannot!), triggering another entry and another init.

…
setState<S23>();
…

}

Entry, exit, init

entry
exit: ex1
init

entry
exit: ex2
init

entry:en1
exit: 
init: in1

entry: en2
exit
init

Sequence 
of calls:

ex4();
ex3();
ex2();
ex1();
(*) 
en1();

in3() {
…
setState<S24>();

entry: en3
exit
init: in3

entry: en4
exit
init: in4

entry: 
exit: ex3
init

entry:
exit: ex4
init

en1();
en2();
en3();
in3();
en4();
in4();

(*) Macho transitions don’t have actions!

You must program guards and actions by hand

Warning, there is practically no means of having the 
action between exit and entry

}

…
setState<S23>();
…

Entry, exit, init: calling order

entry
exit: ex1
init

entry
exit: ex2
init

entry:en1
exit: 
init: in1

entry: en2
exit
init

Sequence 
of calls:

ex4();
ex3();
ex2();
ex1();
(*) 
en1();
en2();
3()

entry: en3
exit
init: in3

entry: en4
exit
init: in4

entry: 
exit: ex3
init

entry:
exit: ex4
init

en3();
in3();
en4();
in4();

The methods entry and exit of a state are called upon transitioning into or out of it. 

• First the exit action of the current state is called and then those of its 
superstates (in bottom up order), 

• Then entry actions of superstates of the new state are called, top down from the 
first superstate that is not also a superstate of the previous state. 

Entry, exit, init: use

Transitions (event handlers)

All of them are 
handled by 
programming an 
event handler

With a 
setState<>()

on event: action

while: action

Without a 
setState

Not easy to 
program

Simple event 
handler

Handlers refer 
to individual 
events!

Internal and external transition

S1 S1

void onEvent()
{
…

action();
…
}

void onEvent()
{
…

action();
setState<S1>();

…
}



6

Event handlers

• The set of events handled by a state machine is simply 
defined defined by its top state public interface
– Events are called like their even handler methods

– No name conventions enforced (but a reasonable choice to call 
these functions event_XXX() )

• Event handlers are simple C++ methods and may have 
arbitrary parameters and a return valuearbitrary parameters and a return value

Event handlers

• The top state event handlers define the default 
behaviour for the whole state machine. 

• If there is no meaningful implementation for an event 
handler at top level, the handler could either
– be implemented empty: no reaction to event is then default.

– signal some error (for example with assert(false)): not handling 
the event will be a runtime errorthe event will be a runtime error.

State transitions

• State transitions are made by calling the method setState
• The template parameter to setState is the new state.
• The transition takes place AFTER the control flow leaves the 

event handler. Functions can be executed after calling setState. 
• It is not allowed to call setState multiple times with different 

states in a single event handler run

• setState can take up to six parameters of arbitrary type:
• The arguments provided to setState are used to invoke an init 

method of the target state with matching signature:

State alias objects

• When a state is entered, an object is instantiated for it.
• There is another option for creating a state object, through an 

object of Alias type
– Possibly with initialization arguments

• Alias objects can be stored, reused and passed as parameters 
for a state transitionfor a state transition

• … or instantiated at transition time

Reflection (static queries)

• The FSM instance can be obtained by using the method 
machine().

• The top state box can be obtained by calling the box 
method of Machine

Reflection (static queries)

• The structure of the FSM (state relationships) can be 
detected at runtime.

• For example, it is possible to check if one state is 
parent/child of another

• Or to check for state equality



7

Dynamic queries

• An alias to the current state of a given machine can be 
obtained by calling the method currentState

• The current state of a machine can be checked (against 
an alias state) byan alias state) by

• The method isCurrent returns true if the given machine 
object is in the specified state or any of its substates at 
that moment.

• StateA::alias() == m.currentState() checks if 
the machine is exactly in StateA. 

History states

• MACHO handles both History and Deephistory

• History for a state is enabled by invoking the macro 
HISTORY or DEEPHISTORY in the state definition: 

• Remember that all the variables in the Box will be 
destroyed and recreated unless PERSISTENT is used 

History states

• The history of a state can be the target of a state 
transition: 

• Entry actions of all involved states will be invoked with a• Entry actions of all involved states will be invoked, with a 
final call to the parameterless init method of the actual 
history state. If no history information is available 
(because the state has not been entered yet or history 
was not enabled), Super itself is the target of the 
transition. 

Inspecting history

• The history at some given point can be inspected by 
setting up an Alias state to the current history. If there is 
no history, the Super State itself is returned 

• A special Alias can be used to get an updated snapshot 
(as if it were a pointer) to the history of a given state.

Clearing history

• A state's history for a particular machine instance can be 
cleared by calling the state's static method clearHistory 
with the machine object as argument: 

• This statement resets history information for Super 
inside machine m, without affecting substate history 
however (use clearHistoryDeep for this). 

Event Dispatch

• The simplest way to dispatch events (synchronously) to 
a state machine is by calling event handlers through the 
machine object's arrow operator, a technique commonly 
found with C++ smart pointers: 

• The other option is to call the dispacth method of the 
machine and pass an IEvent object to it



8

Event Dispatch

• The Event function takes as arguments a pointer-to-
member to an event handler and all arguments needed 
to invoke that event handler. Of course the event 
parameters must be consistent with the event handler's 
signature.

• The result of an Event call is a pointer to an object with 
the interface IEvent<T> created on the heap (with T 
being the top state of the state machine to dispatch to). 
This pointer can then be queued for later asynchronous 
dispatching:

Event Dispatch

• Event objects can also be dispatched inside an event 
handler: 

• The event object is dispatched after the control flow has 
left the event handler, and after a possible state 
transition has been performed. 
– Run-to-completion
– Event managed in the destination state

• Only one event can be dispatched inside an event 
handler

• It is not possible to dispatch events in entry, exit or init

Event Dispatch

• The following are the same …

=

Example: Revised ATM keypad

init key1 key2
KEY_NUM/push_key(key_val)

KEY_NUM/push_key(key_val)

KEY_NUM/push_key(key_val)

KEY_CANCEL/pop_key() KEY_CANCEL/pop_key() KEY_ENTER/error_short_pin()

Top

Initial

H

key3

key4

key5

KEY_NUM/push_key(key_val)

KEY_NUM/push_key(key_val)

SendPin

KEY_CANCEL/pop_key()

KEY_CANCEL/pop_key()

KEY_CANCEL/pop_key()

KEY_ENTER/send_pin()

MSG_ACCEPT/accept_pin()
MSG_REJECT/

rejectt_pin()

KEY_CLEAR/clear_pin()

Accepting

KEY_CLEAR/clear_pin()

• sldemo_autotrans


