
11/05/2016

1

R3TOS OVERVIEW AND
ARCHITECTURE

Enrico Rossi1

R3TOS IN A NUTSHELL

R3TOS is a Reliable Reconfigurable Real-Time
Operating System.

It ease the exploitation of online specialization
offered by partially reconfigurable FPGAs,
combining computation in space and time to
obtain the best performance per transistor and
unit of consumed energy.

It abstracts the FPGA’s hardware resources and
allows to exploit them indifferently for carrying
out computation and communication tasks in
hardware at different times. 2

R3TOS

R3TOS IN A NUTSHELL

R3TOS creates a unified hardware-software
runtime execution environment, whereby a
software-centric application developer can easily
use the underlying hardware resources to benefit
from increased computing speed compared to a
conventional processor.

3

SOFTWARE

FPGA’s HARDWARE

HIGHLIGHTS

R3TOS most important capabilities are:

 Real-Time: R3TOS gives the necessary support
for exploiting the inherent predictability of
pure hardware in order to achieve (soft) real-
time performance.

 Dependability: R3TOS gives the necessary
support for exploiting the flexibility of
FPGAs to build a system that can
reconfigure its own resources in order to
maintain the functionality in presence of
faults and defects. 4

HIGHLIGHTS

 High-Performance: R3TOS gives the necessary
support for exploiting the flexibility of
FPGAs to load specialized circuits upon
demand, each performing a specific type of
computation.

 High-Level Programming: R3TOS provides
the means to make the aforementioned
capabilities easy-to-use without requiring
any knowledge of low-level FPGA details.

5

LIMITATIONS

The limitations associated to R3TOS mainly come
from the reconfiguration bottleneck provoked by
ICAP port that takes care of the hardware task
allocation and inter-task communication:

 The configuration of an hardware task delays its
execution by a non-negligible amount of
time.

 The configuration of on-demand communication
channels among the task adds a non-
negligible overhead, greater then establish a
communication on a NoC or on a bus. 6

11/05/2016

2

R3TOS Hardware MicroKernel

BLOCK DIAGRAM

7

Scheduler Allocator

ICAP
Controller

FPGA
Reconfig.

Pointers to
HW task’s
bitstream R3TOS Main CPU

R3TOS API

ICAP

FPGA
Static

HW task’s
bitstream

Hardware
Task’s

Data Segment

Software
Task’s

Data and
Code Segment

Kernel Extended Features

Scheduler
and

Allocator
Monitor

HARDWARE MICROKERNEL

The Hardware MicroKernel (HWuK) gives the
support to the main CPU to deal with the
hardware tasks serving as the substrate upon
which the hardware-related services are built.

The main offered services are:
 Hardware task queues management;
 FPGA area management;
 Bitstream configuration, allocation

and relocation;
 Fault detection of the FPGA’s resources. 8

HARDWARE MICROKERNEL

The HWuK’s internal architecture is structured
around the Xilinx PicoBlaze and has some other
custom hardware blocks:

 Scheduler, expressly designed
to schedule hardware tasks;

 Allocator that manages the FPGA
resources;

 ICAP Controller that translates the high-level
operations dictated by the Scheduler and
Allocator into reconfiguration commands. 9

SOFTWARE MICROKERNEL

The main CPU is based on a Software MicroKernel
(SWuK) that provides the basic platform to
execute application software routines which
cannot be hardware accelerated or parallelized by
computation specialization.

It is based on FreeRTOS so basically executes a
program which is conceptually similar to a
traditional RTOS but it is extended with extra
functionality to interact with the HWuK.

10

SOFTWARE MICROKERNEL

The SWuK’s extra features consist of:
 Scheduling and Hardware task;
 Forwarding hardware tasks to the HWuK.

This main CPU is implemented using a Xilinx
MicroBlaze plus additional communication
peripheral (e.g. Ethernet, UART, ecc).

The POSIX-like API layer allows to interact with
the FPGA’s hardware through high-level
functions.

11

HWUK AND SWUK COMMUNICATION

The communication between HWuK and SwuK
occurs through a fixed, shared region of the main
memory.

The HWuK cannot directly access the data
segments of the tasks in the main memory and
the mainCPU cannot access the hardware tasks
in the FPGA, guaranteeing no interference. 12

Shared Memory

IDB/ODB

ODB/IDB
HWuK SWuK

11/05/2016

3

HARDWARE TASK TYPES

The term “Hardware Task” is used to indicate that
the task relies on specific purpose custom
circuitry to perform computation.

 Data Stream Processing Tasks: typically
these are High Bandwidth Communication
tasks processing large amount of data in a
short time.

 Hardware Acceleration Tasks: typically these
are Low Bandwidth Communication tasks
processing reduced amount of data in a large
time. 13

HARDWARE TASK TYPES

A generic hardware task is composed by the logic
circuit plus a communication interface named
TCL (Task Control Logic).

A TCL is made by two FIFO buffers and one
hardware semaphore:

 The FIFOs are used to share
the data;

 The hardware semaphore is
used to regulate the access
to the hardware task. 14

TCL

ODB

HW
Sem

IDB

HARDWARE TASK ALLOCATION &
RELOCATION

The FPGA can be seen as a field of programmable
connections and each connection is mapped into a
bitstream-memory.

Loading a specific configuration file (bitstream) in
the memory would mean program the FPGA to
implement a specific hardware circuit.

We can think to program only a portion of the
memory in order to program only a part of the
FPGA…

15

HARDWARE TASK ALLOCATION &
RELOCATION

We can think about this flow:

 Divide the reconfigurable application in tasks;

 Synthesize the hardware task together with a
wrapping Task Control Logic (input and
output buffers and an hardware semaphore);

 Obtain a single, relocable partial bitstream for
each of the hardware tasks that can be directly
loaded into the bitstream-memory. 16

HW TASK 1

HARDWARE/SOFTWARE TASK
COMMUNICATION

TCL (Task Control Logic) blocks attached to
hardware (or software) tasks provide support for
Synchronization, Communication and Data
Buffering.

17

TCL

ODB

HW
Sem

Data to be
processed

HW
TASK

2

IDB

Results
Data to be
processed

HW

HARDWARE/SOFTWARE TASK
COMMUNICATION

In case of communication between HW and SW tasks,
the principle is the same but the TCL of the
software task is mapped in the program memory.

The hardware tasks are provided with a “ghost
software body” which include HWuK-related
system calls with the objective of making them
manageable in SWuK. 18

The TCL delivers the
data to be processed
from its IDB to the
task and stores the
results into the ODB.

11/05/2016

4

APPENDICE A: FPGA LOGIC ELEMENT

 One Configurable Logic Block contains two
SLICE_M or a SLICE_L and a SLICE_M.

19

SLICE_L SLICE_M

R3TOS
Reliable Reconfigurable Real-Time Operating System

Marco Pagani

ROS Overview

● ROS (Reconfigurable operating system) is an operating
system augmented with functions to manage
reconfigurable hardware (FPGA)

● ROS hide complexity by offering a set of basic services,
accessible through an API, to the application developer:
○ task switching
○ intertask communication
○ synchronization
○ etc ...

● Provides runtime support for both task management and
reconfigurable hardware resource management.

R3TOS

● R3TOS creates a unified HW-SW runtime execution
environment

● R3TOS main features:

○ Performance: support for exploiting the flexibility of
FPGAs to load specialized circuits upon demand,
each performing a specific type of computation

○ Soft real-time: exploiting predictability of pure
hardware to achieve (soft) real-time performance (QoS)

○ Dependability: exploiting the flexibility of FPGAs to
maintain functionality in the presence of permanent
defects and spontaneous faults

Dynamic partial reconfiguration

Reconfigurable device support

● An FPGA is a non-homogeneous computing fabric
made of reconfigurable resources:

○ Logic cells (CLB)
○ Specific function blocks (BRAM / DSP /…)
○ Input/Output blocks (IOB)
○ Routing resources (Switch Matrix)

11/05/2016

5

Reconfigurable device support

● Dynamic Partial Reconfiguration (DPR) allows some
portions of the FPGA to be reconfigured at runtime while
the rest continues to operate

● DRP is the enabling technology for reconfigurable
computing

Reconfigurable device support

● When using DRP the FPGA is partitioned in:
○ Static region (remains unchanged, host static system)
○ Reconfigurable partitions (each can accommodate a

set of reconfigurable modules in time-sharing)

Reconfigurable device support

● When using DRP the FPGA is partitioned in:
○ Static region (remains unchanged, host static system)
○ Reconfigurable partitions (each can accommodate a

set of reconfigurable modules in time-sharing)

● Typically reconfigurable partitions are fixed in the area
and organized as islands or slots

Reconfigurable device support

● A reconfigurable modules can be loaded on a
reconfigurable partition by an embedded
microprocessor (softcore) through the Internal
Configuration Access Port (ICAP)

Reconfigurable device support

● Typically the static system contains a communication
infrastructure that interconnects all reconfigurable
partitions

Reconfigurable device support

● The static system might cross a reconfigurable partition
to carry out the routing

11/05/2016

6

Reconfigurable device support

● The static system might cross a reconfigurable partition
to carry out the routing

○ Therefore reconfigurable modules may include
information about the static routing

Reconfigurable device support

● The static system might cross a reconfigurable partition
to carry out the routing

○ Therefore reconfigurable modules may include
information about the static routing

○ This prevents reconfigurable modules relocability
(not supported by Xilinx DPR flow)

R3TOS overview

Reconfigurable device model

● An FPGA can be modelled as a two layers architecture:

Reconfigurable device model

● An FPGA can be modelled as a two layers architecture:

○ functional layer: contains the physical resources used
to perform computation

Reconfigurable device model

● An FPGA can be modelled as a two layers architecture:

○ functional layer: contains the physical resources used
to perform computation

○ configuration layer: controls and contains the
configuration of the functional layer

11/05/2016

7

Reconfigurable device model

● The ICAP port act as an interface between the
configuration layer and the functional layer

Reconfigurable device model

● The ICAP port act as an interface between the
configuration layer and the functional layer

● Theoretical bandwidth of 400 MB/s
○ reconfigurable module configuration time is

proportional to the module size

R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:

R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:

■ Dynamic communication infrastructure

R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:

■ Dynamic communication infrastructure

■ Communications between modules through the
configuration layer (ICAP virtual channels) or
through shared functional resources (BRAM)

R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:

■ Dynamic communication infrastructure

■ Communications between modules through the
configuration layer (ICAP virtual channels) or
through shared functional resources (BRAM)

○ Reconfigurable region is organized as one single
large reconfigurable partition

11/05/2016

8

R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:

■ Dynamic communication infrastructure

■ Communications between modules through the
configuration layer (ICAP virtual channels) or
through shared functional resources (BRAM)

○ Reconfigurable region is organized as one single
large reconfigurable partition

■ Complete modules relocability

■ Simpler online allocation strategy

R3TOS

● in R3TOS the basic hardware unit for computation or
communication: hardware tasks, are implemented as
reconfigurable modules:

R3TOS

● in R3TOS the basic hardware unit for computation or
communication: hardware tasks, are implemented as
reconfigurable modules:

○ HW task logic is wrapped with an hardware container
(TCL) to build a self contained, relocatable module,
with a standard hardware interface for data exchange
(IOB/ODB) and synchronization (HWS)

IDB ODBProcessing

HWS

Tasks classification

● R3TOS authors classify tasks, as logical entities, in two
classes based on the communication requirements:

Tasks classification

● R3TOS authors classify tasks, as logical entities, in two
classes based on the communication requirements:

○ High-Bandwidth Communication (HBC) tasks:
■ process a high amount of data within a relatively short

amount of time, i.e. communication dominates
computation.

■ Data stream processing tasks

Tasks classification

● R3TOS authors classify tasks, as logical entities, in two
classes based on the communication requirements:

○ High-Bandwidth Communication (HBC) tasks:
■ process a high amount of data within a relatively short

amount of time, i.e. communication dominates
computation.

■ Data stream processing tasks

○ Low-Bandwidth Communication (LBC) tasks:
■ process a reduced amount of data within a relatively

long amount of time, i.e. computation dominates
communication.

■ Hardware acceleration tasks

11/05/2016

9

R3TOS API

● From the developer perspective R3TOS provide a POSIX-
like API to access the low-level services implemented by
the HWuK (i.e., HAL) and to exploit FPGA resources

R3TOS API

● From the developer perspective R3TOS provide a POSIX-
like API to access the low-level services implemented by
the HWuK (i.e., HAL) and to exploit FPGA resources

● HAL is wrapped with a software OS layer, the SWuK,
which is executed on the main CPU

R3TOS

● The SWuK is a modified version of FreeRTOS

○ Scheduler has been modified to provide support for hardware
tasks (preemption is disabled for hw tasks)

○ New ISRs to enable communication with the HWuK

R3TOS

● The SWuK is a modified version of FreeRTOS

○ Scheduler has been modified to provide support for hardware
tasks (preemption is disabled for hw tasks)

○ New ISRs to enable communication with the HWuK

● SWuk and HWuK shares control information and task
parameters through a shared memory (Task BRAM) with
interrupt signaling

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a
uniform way

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a
uniform way

○ Hardware tasks have a “software body” to make them
manageable in SWuK

11/05/2016

10

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a
uniform way

○ Hardware tasks have a “software body” to make them
manageable in SWuK

○ The software body of an hardware task may also
include SWuK system calls and regular software code
■ HW accelerated SW Task model… (LBC tasks)

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a
uniform way

○ Hardware tasks have a “software body” to make them
manageable in SWuK

○ The software body of an hardware task may also
include SWuK system calls and regular software code
■ HW accelerated SW Task model… (LBC tasks)

● HW-SW application framework:

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a
uniform way

○ Hardware tasks have a “software body” to make them
manageable in SWuK

○ The software body of an hardware task may also
include SWuK system calls and regular software code
■ HW accelerated SW Task model… (LBC tasks)

● HW-SW application framework:

○ Hi-level SWuK software API: higher abstraction level,
trade off with performances loss

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a
uniform way

○ Hardware tasks have a “software body” to make them
manageable in SWuK

○ The software body of an hardware task may also
include SWuK system calls and regular software code
■ HW accelerated SW Task model… (LBC tasks)

● HW-SW application framework:

○ Hi-level SWuK software API: higher abstraction level,
trade off with performances loss

○ Low-level HAL API: direct access to HWuk services,
higher performance, lower abstraction

HW-SW inter-task communications

● Data are exchanged between HW and SW tasks through a
fixed main memory region shared between the CPU and
the HWuK and organized in the form of an ODB and an IDB

HW-SW inter-task communications

● Data are exchanged between HW and SW tasks through a
fixed main memory region shared between the CPU and
the HWuK and organized in the form of an ODB and an IDB
○ CPU to HW task: The data written by the CPU in the ODB is

delivered by HWuK to the hardware task running on the FPGA

11/05/2016

11

HW-SW inter-task communications

● Data are exchanged between HW and SW tasks through a
fixed main memory region shared between the CPU and
the HWuK and organized in the form of an ODB and an IDB
○ CPU to HW task: The data written by the CPU in the ODB is

delivered by HWuK to the hardware task running on the FPGA
○ HW task to CPU: The data written by HWuK in the IDB is relocated

by the CPU to the data segment assigned to the corresponding
software task in the main memory

Management of an HW task in SWuK - 1

void vTask_ID (void *pvParameters)
{

insert_task(task_ID,task_params);
wait_scheduling(task_ID);
wr_ODB(&input_data_base_addr, length);
wait_computing(task_ID);
rd_IDB(&output_results_base_addr, length);

}

Management of an HW task in SWuK - 2

● HW tasks (SW bodies) have the highest priority in SWuK
○ they are immediately set in execution by SWuK’s

scheduler

Management of an HW task in SWuK - 2

● HW tasks (SW bodies) have the highest priority in SWuK
○ they are immediately set in execution by SWuK’s

scheduler

● Immediately after a HW task is inserted into the HW task
queue [insert_task()], it is blocked in the software level
[wait_scheduling()] until the HWuK’s scheduler selects
it to be executed on the FPGA

Management of an HW task in SWuK - 3

● When the HW task is scheduled by HWuK scheduler, and
allocated by the allocator, the task is awakened in the
software level

Management of an HW task in SWuK - 3

● When the HW task is scheduled by HWuK scheduler, and
allocated by the allocator, the task is awakened in the
software level

● After transferring the input data to the task’s ODB
[wr_ODB()], the task is blocked in the software level
[wait_computing()] and starts hardware computation

11/05/2016

12

Management of an HW task in SWuK - 4

● When the HW computation finishes, the software task is
awakened and retrieves the computed results from the
IDB [rd_IDB()]

Management of an HW task in SWuK - 4

● When the HW computation finishes, the software task is
awakened and retrieves the computed results from the
IDB [rd_IDB()]

● Task blocking and awakening mechanisms in the software
level are based on binary semaphores provided by
FreeRTOS

R3TOS hardware task model

Hardware task model

● An hardware task θi , executing on the FPGA, can be
modelled in two domains: Area and Time

Hardware task model - Area domain

● Area domain: the task θi occupy a rectangular region of

the FPGA defined by its width and height: hx,i , hy,i

○ The area of the entire FPGA is: Hx , Hy

Hardware task model - Area domain

● Area domain: the task θi occupy a rectangular region of

the FPGA defined by its width and height: hx,i , hy,i

○ The area of the entire FPGA is: Hx , Hy

○ The internal architecture of the task depends on the
location where it was originally synthesized

11/05/2016

13

Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi

consist of five different phases:

Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi

consist of five different phases:

○ Set-up phase: tA,i

■ Task is configured on the FPGA

Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi

consist of five different phases:

○ Set-up phase: tA,i

■ Task is configured on the FPGA

○ Input data delivery phase: tD,i

■ Fill the task IDB with input data

Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi

consist of five different phases:

○ Set-up phase: tA,i

■ Task is configured on the FPGA

○ Input data delivery phase: tD,i

■ Fill the task IDB with input data

○ Execution phase: tE,i

■ Temporal isolation, hardware determinism:
worst-case predictable timing behaviour

Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi

consist of five different phases:

○ Set-up phase: tA,i

■ Task is configured on the FPGA

○ Input data delivery phase: tD,i

■ Fill the task IDB with input data

○ Execution phase: tE,i

■ Temporal isolation, hardware determinism:
worst-case predictable timing behaviour

○ Synchronization phase: tS,i

■ Wait on the task’s HWS to detect computation
completion

Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi

consist of five different phases:

○ Set-up phase: tA,i

■ Task is configured on the FPGA

○ Input data delivery phase: tD,i

■ Fill the task IDB with input data

○ Execution phase: tE,i

■ Temporal isolation, hardware determinism:
worst-case predictable timing behaviour

○ Synchronization phase: tS,i

■ Wait on the task’s HWS to detect computation
completion

○ Output result retrieval phase: tR,i

■ Read the result from ODB

11/05/2016

14

Hardware task model - Time domain - 2

● When two HW tasks: θj (producer), θi (consumer)
communicate each other:

○ The output data retrieval phase of the producer task θj

(ODB read) is immediately followed by the input data
delivery phase of the consumer task θi (IDB write)

Hardware task model - Time domain - 2

● When two HW tasks: θj (producer), θi (consumer)
communicate each other:

○ The output data retrieval phase of the producer task θj

(ODB read) is immediately followed by the input data
delivery phase of the consumer task θi (IDB write)

○ Those two phases are to be preceded by the set-up
phase of the data consumer task θi

Hardware task model - Time domain - 2

● When two HW tasks: θj (producer), θi (consumer)
communicate each other:

○ The output data retrieval phase of the producer task θj

(ODB read) is immediately followed by the input data
delivery phase of the consumer task θi (IDB write)

○ Those two phases are to be preceded by the set-up
phase of the data consumer task θi

○ The latter three phases are merged together with the
synchronization phase of the data producer task θj to
form a single ICAP access period for each task θi

Hardware task model - Time domain - 3

● Real-Time constraints in R3TOS for a task θi :

○ Relative deadline Di

■ Absolute deadline: di = Di + ri

Hardware task model - Time domain - 3

● Real-Time constraints in R3TOS for a task θi :

○ Relative deadline Di

■ Absolute deadline: di = Di + ri

○ Absolute set-up deadline d*i

■ Latest instant (delay) for a task to start the
computation in order to meet its deadline

Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which
communicate with other HW tasks and for those which
deliver data to SW tasks

11/05/2016

15

Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which
communicate with other HW tasks and for those which
deliver data to SW tasks

○ The data retrieval phase is included in the model of the
data consumer HW tasks used by HWuK

Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which
communicate with other HW tasks and for those which
deliver data to SW tasks

○ The data retrieval phase is included in the model of the
data consumer HW tasks used by HWuK

○ Not included in the model of data consumer SW tasks used
by SWuK

Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which
communicate with other HW tasks and for those which
deliver data to SW tasks

○ The data retrieval phase is included in the model of the
data consumer HW tasks used by HWuK

○ Not included in the model of data consumer SW tasks used
by SWuK

■ The data retrieval operation of a data consumer SW
task must be invoked from the data producer HW task
itself

Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which
communicate with other HW tasks and for those which
deliver data to SW tasks

○ The data retrieval phase is included in the model of the
data consumer HW tasks used by HWuK

○ Not included in the model of data consumer SW tasks used
by SWuK

■ The data retrieval operation of a data consumer SW
task must be invoked from the data producer HW task
itself

● HW tasks that deliver data to the CPU are modelled as two
separate tasks

Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which
communicate with other HW tasks and for those which
deliver data to SW tasks

○ The data retrieval phase is included in the model of the
data consumer HW tasks used by HWuK

○ Not included in the model of data consumer SW tasks used
by SWuK

■ The data retrieval operation of a data consumer SW
task must be invoked from the data producer HW task
itself

● HW tasks that deliver data to the CPU are modelled as two
separate tasks
○ Computing task
○ Communicating task (copy data to the CPU’s IDB)

Hardware task model - Time domain - 5

● Execution of two hardware tasks:

11/05/2016

16

Hardware task states

● An HW task goes through several states during its life cycle:

Hardware task states

● An HW task goes through several states during its life cycle:
○ Waiting state

Hardware task states

● An HW task goes through several states during its life cycle:
○ Waiting state
○ Ready state

■ waiting to be scheduled and assigned to a set of resources on
FPGA

Hardware task states

● An HW task goes through several states during its life cycle:
○ Waiting state
○ Ready state

■ waiting to be scheduled and assigned to a set of resources on
FPGA

○ Setting-up state
■ Configured on the FPGA and provided with input data

Hardware task states

● An HW task goes through several states during its life cycle:
○ Waiting state
○ Ready state

■ waiting to be scheduled and assigned to a set of resources on
FPGA

○ Setting-up state
■ Configured on the FPGA and provided with input data

○ Execution state
■ Active computation

Hardware task states

● An HW task goes through several states during its life cycle:
○ Waiting state
○ Ready state

■ waiting to be scheduled and assigned to a set of resources on
FPGA

○ Setting-up state
■ Configured on the FPGA and provided with input data

○ Execution state
■ Active computation

○ Allocated state
■ remains configured in the FPGA after computation

11/05/2016

17

R3TOS scheduling and
allocation

R3TOS scheduling and allocation

● HWuK services:
○ Scheduling (time domain)
○ Allocation (area domain)
○ Device Configuration

● Hardware Scheduling:
○ More overhead with respect to software scheduling

R3TOS scheduling and allocation

● Hardware Scheduling:
○ More overhead with respect to software scheduling

■ Search for a location (allocation problem)
■ Modify the task bitstream (relocation)
■ Loading the bitstream through configuration port

R3TOS scheduling and allocation

● Hardware Scheduling:
○ More overhead with respect to software scheduling

■ Search for a location (allocation problem)
■ Modify the task bitstream (relocation)
■ Loading the bitstream through configuration port

● Preemption is possible but context switchings are
expensive:
○ Read back, store, and write the bitstream to restore

context

R3TOS scheduling and allocation

● Hardware Scheduling:
○ More overhead with respect to software scheduling

■ Search for a location (allocation problem)
■ Modify the task bitstream (relocation)
■ Loading the bitstream through configuration port

● Preemption is possible but context switchings are
expensive:
○ Read back, store, and write the bitstream to restore

context

● FPGA: Real HW tasks concurrency
○ Bottleneck: ICAP accesses must be mutual exclusive

and sequential
○ Serialize ICAP accesses

R3TOS scheduling and allocation

11/05/2016

18

● FPGA scheduling and allocation in general:
○ 3D bin packing problem
○ 2 Area dimensions + 1 time dimension (DPR)

R3TOS scheduling and allocation

● R3TOS base scheduling algorithm:
○ Non-preemptive EDF
○ Online scheduling to cope with HW faults

R3TOS scheduling algorithms

● R3TOS base scheduling algorithm:
○ Non-preemptive EDF
○ Online scheduling to cope with HW faults

R3TOS scheduling algorithms

inputs:
R: list of ready hw tasks sorted by increasing allocation
deadline (d* ‐ ticap)

MER: Free area information provided by the allocator
(maximum empty rectangle)

procedure:
for (task i: R)

if (i fits in MER) {
allocate i;
return i;

}
return null;

● Finishing-Aware EDF (FAEDF)

○ Extension of NP-EDF
○ Look ahead: aware of the tasks finishing time
○ Compensate for the lack of preemption

R3TOS scheduling algorithms

● Finishing-Aware EDF (FAEDF)

R3TOS scheduling algorithms

procedure:
● NP‐EDF: try to allocate task i
● If unsuccessful (not enough resources) and real‐time

constraints are “loose”
○ Scan the list of executing tasks
○ If find a task j that finish execution (L.A.), freeing

resources, before task i allocation deadline (d* ‐ ticap)
■ set insertion flag
■ task i will be delayed

● If insertion flag is set
○ Scan ready tasks queue
○ If finds a task m that can finish its allocation before

task i allocation deadline
■ Schedule task m

● NP-EDF example:

R3TOS scheduling algorithms

● At tSP,B θ2 cannot be allocated, not enough area

● θ3 is scheduled instead but this delays the subsequent allocation
of θ2 too long, and, as a result, misses its deadline

11/05/2016

19

● FAEDF example:

R3TOS scheduling algorithms

● At tSP,B FAEDF finds out that θ2 can be allocated later using the
resources that will be released by θ1

● The time until then is used to allocate θ4

● Allocation problem:
○ Where an hardware tasks should be allocated to

reduce the external fragmentation in the FPGA’s
reconfigurable partition

R3TOS allocation algorithms

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC /

EVC)

R3TOS allocation algorithms

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC /

EVC)

R3TOS allocation algorithms

● The FPGA is modelled as a grid

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC /

EVC)

R3TOS allocation algorithms

● The FPGA is modelled as a grid
● Scan the area (grid) of the FPGA in the horizontal

direction (1D)
○ Count the consecutive number of available resources

(not occupied or damaged)

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC /

EVC)

R3TOS allocation algorithms

● The FPGA is modelled as a grid
● Scan the area (grid) of the FPGA in the horizontal

direction (1D)
○ Count the consecutive number of available resources

(not occupied or damaged)
● Scan the area (grid) of the FPGA in the vertical

direction (2D)
○ Count consecutive available resources to find the

greatest empty rectangle that can be formed at each
position

11/05/2016

20

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC /

EVC)

R3TOS allocation algorithms

● The FPGA is modelled as a grid
● Scan the area (grid) of the FPGA in the horizontal

direction (1D)
○ Count the consecutive number of available resources

(not occupied or damaged)
● Scan the area (grid) of the FPGA in the vertical

direction (2D)
○ Count consecutive available resources to find the

greatest empty rectangle that can be formed at each
position

● The process produces four matrices (URAM, ULAM, DRAM,
DLAM) that represent, for each grid position, the
widest empty rectangle which can be formed in each
orientation (N, S, W, E)

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC /

EVC)

R3TOS allocation algorithms

● The four matrices (URAM, ULAM, DRAM, and DLAM) are
added to build the 2D Adjacency Matrix (2DAM)
○ The 2DAM values represent in what measure each

position contributes to form adjacent pieces of
empty area

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC /

EVC)

R3TOS allocation algorithms

● The four matrices (URAM, ULAM, DRAM, and DLAM) are
added to build the 2D Adjacency Matrix (2DAM)
○ The 2DAM values represent in what measure each

position contributes to form adjacent pieces of
empty area

● EVC extends the area analysis to include the time
domain (greatest execution time in the taskset)
○ Build 3D Adjacency Matrix (3DAM): temporal and

spatial adjacency

● R3TOS allocation algorithms

○ At runtime, when task should be allocated, the set of
feasible allocations are evaluated based on the values
stored in the 2DAM (EAC) or in the 3DAM (EVC)

R3TOS allocation algorithms

● R3TOS allocation algorithms

○ At runtime, when task should be allocated, the set of
feasible allocations are evaluated based on the values
stored in the 2DAM (EAC) or in the 3DAM (EVC)

○ Unfeasible allocation are discarded

R3TOS allocation algorithms

● R3TOS allocation algorithms

○ At runtime, when task should be allocated, the set of
feasible allocations are evaluated based on the values
stored in the 2DAM (EAC) or in the 3DAM (EVC)

○ Unfeasible allocation are discarded

○ EAC and an EVC score is assigned to each feasible
allocation

R3TOS allocation algorithms

11/05/2016

21

● R3TOS allocation algorithms

○ At runtime, when task should be allocated, the set of
feasible allocations are evaluated based on the values
stored in the 2DAM (EAC) or in the 3DAM (EVC)

○ Unfeasible allocation are discarded

○ EAC and an EVC score is assigned to each feasible
allocation

○ The placement quality is (inversely) proportional to the
EAC or EVC scores

R3TOS allocation algorithms

● Performance figures measured in the developed proof-of-concept
R3TOS implementation (Xilinx Virtex-4 running at 100 MHz)

R3TOS performance evaluation

