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R3TOS OVERVIEW AND
ARCHITECTURE

Enrico Rossi1

R3TOS IN A NUTSHELL

R3TOS is a Reliable Reconfigurable Real-Time 
Operating System. 

It ease the exploitation of online specialization 
offered by partially reconfigurable FPGAs, 
combining computation in space and time to 
obtain the best performance per transistor and 
unit of consumed energy.

It abstracts the FPGA’s hardware resources and 
allows to exploit them indifferently for carrying 
out computation and communication tasks in 
hardware at different times. 2

R3TOS

R3TOS IN A NUTSHELL

R3TOS creates a unified hardware-software
runtime execution environment, whereby a 
software-centric application developer can easily 
use the underlying hardware resources to benefit 
from increased computing speed compared to a 
conventional processor.
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SOFTWARE

FPGA’s HARDWARE

HIGHLIGHTS

R3TOS most important capabilities are:

 Real-Time: R3TOS gives the necessary support 
for exploiting the inherent predictability of 
pure hardware in order to achieve (soft) real-
time performance.

 Dependability: R3TOS gives the necessary 
support for exploiting the flexibility of 
FPGAs to build a system that can 
reconfigure its own resources in order to 
maintain the functionality in presence of 
faults and defects. 4

HIGHLIGHTS

 High-Performance: R3TOS gives the necessary 
support for exploiting the flexibility of 
FPGAs to load specialized circuits upon 
demand, each performing a specific type of 
computation.

 High-Level Programming: R3TOS provides 
the means to make the aforementioned 
capabilities easy-to-use without requiring 
any knowledge of low-level FPGA details.
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LIMITATIONS

The limitations associated to R3TOS mainly come 
from the reconfiguration bottleneck provoked by 
ICAP port that takes care of the hardware task 
allocation and inter-task communication:

 The configuration of an hardware task delays its 
execution by a non-negligible amount of 
time.

 The configuration of on-demand communication 
channels among the task adds a non-
negligible overhead, greater then establish a 
communication on a NoC or on a bus. 6
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R3TOS Hardware MicroKernel
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HARDWARE MICROKERNEL

The Hardware MicroKernel (HWuK) gives the 
support to the main CPU to deal with the 
hardware tasks serving as the substrate upon 
which the hardware-related services are built.

The main offered services are:
 Hardware task queues management;
 FPGA area management;
 Bitstream configuration, allocation

and relocation;
 Fault detection of the FPGA’s resources. 8

HARDWARE MICROKERNEL

The HWuK’s internal architecture is structured 
around the Xilinx PicoBlaze and has some other 
custom hardware blocks:

 Scheduler, expressly designed 
to schedule hardware tasks;

 Allocator that manages the FPGA 
resources;

 ICAP Controller that translates the high-level 
operations dictated by the Scheduler and 
Allocator into reconfiguration commands. 9

SOFTWARE MICROKERNEL

The main CPU is based on a Software MicroKernel
(SWuK) that provides the basic platform to 
execute application software routines which 
cannot be hardware accelerated or parallelized by 
computation specialization.

It is based on FreeRTOS so basically executes a 
program which is conceptually similar to a 
traditional RTOS but it is extended with extra 
functionality to interact with the HWuK.

10

SOFTWARE MICROKERNEL

The SWuK’s extra features consist of:
 Scheduling and Hardware task;
 Forwarding hardware tasks to the HWuK.

This main CPU is implemented using a Xilinx 
MicroBlaze plus additional communication 
peripheral (e.g. Ethernet, UART, ecc).

The POSIX-like API layer allows to interact with 
the FPGA’s hardware through high-level 
functions. 
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HWUK AND SWUK COMMUNICATION

The communication between HWuK and SwuK
occurs through a fixed, shared region of the main 
memory.

The HWuK cannot directly access the data 
segments of the tasks in the main memory and 
the mainCPU cannot access the hardware tasks 
in the FPGA, guaranteeing no interference. 12

Shared Memory

IDB/ODB

ODB/IDB
HWuK SWuK
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HARDWARE TASK TYPES

The term “Hardware Task” is used to indicate that 
the task relies on specific purpose custom
circuitry to perform computation.

 Data Stream Processing Tasks: typically 
these are High Bandwidth Communication 
tasks processing large amount of data in a 
short time.

 Hardware Acceleration Tasks: typically these 
are Low Bandwidth Communication tasks 
processing reduced amount of data in a large 
time. 13

HARDWARE TASK TYPES

A generic hardware task is composed by the logic
circuit plus a communication interface named 
TCL (Task Control Logic).

A TCL is made by two FIFO buffers and one 
hardware semaphore:

 The FIFOs are used to share
the data;

 The hardware semaphore is
used to regulate the access
to the hardware task. 14

TCL

ODB

HW
Sem

IDB

HARDWARE TASK ALLOCATION & 
RELOCATION

The FPGA can be seen as a field of programmable 
connections and each connection is mapped into a 
bitstream-memory.

Loading a specific configuration file (bitstream) in 
the memory would mean program the FPGA to 
implement a specific hardware circuit.

We can think to program only a portion of the 
memory in order to program only a part of the 
FPGA…
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HARDWARE TASK ALLOCATION & 
RELOCATION

We can think about this flow:

 Divide the reconfigurable application in tasks;

 Synthesize the hardware task together with a 
wrapping Task Control Logic (input and 
output buffers and an hardware semaphore);

 Obtain a single, relocable partial bitstream for 
each of the hardware tasks that can be directly 
loaded into the bitstream-memory. 16

HW TASK 1

HARDWARE/SOFTWARE TASK
COMMUNICATION

TCL (Task Control Logic) blocks attached to 
hardware (or software) tasks provide support for 
Synchronization, Communication and Data
Buffering.
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HARDWARE/SOFTWARE TASK
COMMUNICATION

In case of communication between HW and SW tasks, 
the principle is the same but the TCL of the 
software task is mapped in the program memory.

The hardware tasks are provided with a “ghost
software body” which include HWuK-related 
system calls with the objective of making them 
manageable in SWuK. 18

The TCL delivers the 
data to be processed 
from its IDB to the 
task and stores the 
results into the ODB.
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APPENDICE A: FPGA LOGIC ELEMENT

 One Configurable Logic Block contains two 
SLICE_M or a SLICE_L and a SLICE_M.

19

SLICE_L SLICE_M

R3TOS
Reliable Reconfigurable Real-Time Operating System

Marco Pagani

ROS Overview

● ROS (Reconfigurable operating system) is an operating 
system augmented with functions to manage 
reconfigurable hardware (FPGA)

● ROS hide complexity by offering a set of basic services, 
accessible through an API, to the application developer:
○ task switching
○ intertask communication
○ synchronization
○ etc ...

● Provides runtime support for both task management and 
reconfigurable hardware resource management.

R3TOS

● R3TOS creates a unified HW-SW runtime execution 
environment

● R3TOS main features:

○ Performance: support for exploiting the flexibility of 
FPGAs to load specialized circuits upon demand, 
each performing a specific type of computation

○ Soft real-time: exploiting predictability of pure 
hardware to achieve (soft) real-time performance (QoS)

○ Dependability: exploiting the flexibility of FPGAs to 
maintain functionality in the presence of permanent 
defects and spontaneous faults

Dynamic partial reconfiguration

Reconfigurable device support

● An FPGA is a non-homogeneous computing fabric
made of reconfigurable resources:

○ Logic cells (CLB)
○ Specific function blocks (BRAM / DSP /… ) 
○ Input/Output blocks (IOB)
○ Routing resources (Switch Matrix)
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Reconfigurable device support

● Dynamic Partial Reconfiguration (DPR) allows some 
portions of the FPGA to be reconfigured at  runtime while 
the rest continues to operate

● DRP is the enabling technology for reconfigurable 
computing

Reconfigurable device support

● When using DRP the FPGA is partitioned in:
○ Static region (remains unchanged, host static system)
○ Reconfigurable partitions (each can accommodate a 

set of reconfigurable modules in time-sharing)

Reconfigurable device support

● When using DRP the FPGA is partitioned in:
○ Static region (remains unchanged, host static system)
○ Reconfigurable partitions (each can accommodate a 

set of reconfigurable modules in time-sharing)

● Typically reconfigurable partitions are fixed in the area 
and organized as islands or slots

Reconfigurable device support

● A reconfigurable modules can be loaded on a 
reconfigurable partition by an embedded 
microprocessor (softcore) through the Internal 
Configuration Access Port (ICAP)

Reconfigurable device support

● Typically the static system contains a communication 
infrastructure that interconnects all reconfigurable 
partitions

Reconfigurable device support

● The static system might cross a reconfigurable partition
to carry out the routing 
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Reconfigurable device support

● The static system might cross a reconfigurable partition
to carry out the routing 

○ Therefore reconfigurable modules may include
information about the static routing

Reconfigurable device support

● The static system might cross a reconfigurable partition
to carry out the routing 

○ Therefore reconfigurable modules may include
information about the static routing

○ This prevents reconfigurable modules relocability
(not supported by Xilinx DPR flow)

R3TOS overview

Reconfigurable device model

● An FPGA can be modelled as a two layers architecture:

Reconfigurable device model

● An FPGA can be modelled as a two layers architecture:

○ functional layer: contains the physical resources used 
to perform computation

Reconfigurable device model

● An FPGA can be modelled as a two layers architecture:

○ functional layer: contains the physical resources used 
to perform computation

○ configuration layer: controls and contains the 
configuration of the functional layer
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Reconfigurable device model

● The ICAP port act as an interface between the 
configuration layer and the functional layer

Reconfigurable device model

● The ICAP port act as an interface between the 
configuration layer and the functional layer

● Theoretical bandwidth of 400 MB/s
○ reconfigurable module configuration time is 

proportional to the module size

R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:
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R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:

■ Dynamic communication infrastructure

■ Communications between modules through the 
configuration layer (ICAP virtual channels) or 
through shared functional resources (BRAM)

○ Reconfigurable region is organized as one single 
large reconfigurable partition
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R3TOS

● R3TOS approach to tackle those issues:

○ No static communication infrastructure:

■ Dynamic communication infrastructure

■ Communications between modules through the 
configuration layer (ICAP virtual channels) or 
through shared functional resources (BRAM)

○ Reconfigurable region is organized as one single 
large reconfigurable partition

■ Complete modules relocability

■ Simpler online allocation strategy

R3TOS

● in R3TOS the basic hardware unit for computation or 
communication: hardware tasks, are implemented as 
reconfigurable modules:

R3TOS

● in R3TOS the basic hardware unit for computation or 
communication: hardware tasks, are implemented as 
reconfigurable modules:

○ HW task logic is wrapped with an hardware container 
(TCL) to build a self contained, relocatable module, 
with a standard hardware interface for data exchange 
(IOB/ODB) and synchronization (HWS)

IDB ODBProcessing

HWS

Tasks classification

● R3TOS authors classify tasks, as logical entities, in two 
classes based on the communication requirements:

Tasks classification

● R3TOS authors classify tasks, as logical entities, in two 
classes based on the communication requirements:

○ High-Bandwidth Communication (HBC) tasks:
■ process a high amount of data within a relatively short

amount of time, i.e. communication dominates 
computation.

■ Data stream processing tasks

Tasks classification

● R3TOS authors classify tasks, as logical entities, in two 
classes based on the communication requirements:

○ High-Bandwidth Communication (HBC) tasks:
■ process a high amount of data within a relatively short

amount of time, i.e. communication dominates 
computation.

■ Data stream processing tasks

○ Low-Bandwidth Communication (LBC) tasks:
■ process a reduced amount of data within a relatively 

long amount of time, i.e. computation dominates 
communication.

■ Hardware acceleration tasks
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R3TOS API

● From the developer perspective R3TOS provide a POSIX-
like API to access the low-level services implemented by 
the HWuK (i.e., HAL) and to exploit FPGA resources

R3TOS API

● From the developer perspective R3TOS provide a POSIX-
like API to access the low-level services implemented by 
the HWuK (i.e., HAL) and to exploit FPGA resources

● HAL is wrapped with a software OS layer, the SWuK, 
which is executed on the main CPU

R3TOS

● The SWuK is a modified version of FreeRTOS

○ Scheduler has been modified to provide support for hardware 
tasks (preemption is disabled for hw tasks)

○ New ISRs to enable communication with the HWuK

R3TOS

● The SWuK is a modified version of FreeRTOS

○ Scheduler has been modified to provide support for hardware 
tasks (preemption is disabled for hw tasks)

○ New ISRs to enable communication with the HWuK

● SWuk and HWuK shares control information and task 
parameters through a shared memory (Task BRAM) with 
interrupt signaling

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a 
uniform way

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a 
uniform way

○ Hardware tasks have a “software body” to make them 
manageable in SWuK



11/05/2016

10

R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a 
uniform way

○ Hardware tasks have a “software body” to make them 
manageable in SWuK

○ The software body of an hardware task may also 
include SWuK system calls and regular software code
■ HW accelerated SW Task model… (LBC tasks)
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R3TOS
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R3TOS

● The R3TOS stack allow to manage HW and SW tasks in a 
uniform way

○ Hardware tasks have a “software body” to make them 
manageable in SWuK

○ The software body of an hardware task may also 
include SWuK system calls and regular software code
■ HW accelerated SW Task model… (LBC tasks)

● HW-SW application framework:

○ Hi-level SWuK software API: higher abstraction level, 
trade off with performances loss

○ Low-level HAL API: direct access to HWuk services, 
higher performance, lower abstraction

HW-SW inter-task communications

● Data are exchanged between HW and SW tasks through a 
fixed main memory region shared between the CPU and 
the HWuK and organized in the form of an ODB and an IDB

HW-SW inter-task communications

● Data are exchanged between HW and SW tasks through a 
fixed main memory region shared between the CPU and 
the HWuK and organized in the form of an ODB and an IDB
○ CPU to HW task: The data written by the CPU in the ODB is 

delivered by HWuK to the hardware task running on the FPGA
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HW-SW inter-task communications

● Data are exchanged between HW and SW tasks through a 
fixed main memory region shared between the CPU and 
the HWuK and organized in the form of an ODB and an IDB
○ CPU to HW task: The data written by the CPU in the ODB is 

delivered by HWuK to the hardware task running on the FPGA
○ HW task to CPU: The data written by HWuK in the IDB is relocated 

by the CPU to the data segment assigned to the corresponding 
software task in the main memory

Management of an HW task in SWuK - 1

void vTask_ID (void *pvParameters)
{

insert_task(task_ID,task_params);
wait_scheduling(task_ID);
wr_ODB(&input_data_base_addr, length);
wait_computing(task_ID);
rd_IDB(&output_results_base_addr, length);

}

Management of an HW task in SWuK - 2

● HW tasks (SW bodies) have the highest priority in SWuK
○ they are immediately set in execution by SWuK’s

scheduler

Management of an HW task in SWuK - 2

● HW tasks (SW bodies) have the highest priority in SWuK
○ they are immediately set in execution by SWuK’s

scheduler

● Immediately after a HW task is inserted into the HW task 
queue [insert_task()], it is blocked in the software level 
[wait_scheduling()] until the HWuK’s scheduler selects 
it to be executed on the FPGA

Management of an HW task in SWuK - 3

● When the HW task is scheduled by HWuK scheduler, and 
allocated by the allocator, the task is awakened in the 
software level

Management of an HW task in SWuK - 3

● When the HW task is scheduled by HWuK scheduler, and 
allocated by the allocator, the task is awakened in the 
software level

● After transferring the input data to the task’s ODB
[wr_ODB()], the task is blocked in the software level
[wait_computing()] and starts hardware computation
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Management of an HW task in SWuK - 4

● When the HW computation finishes, the software task is 
awakened and retrieves the computed results from the 
IDB [rd_IDB()]

Management of an HW task in SWuK - 4

● When the HW computation finishes, the software task is 
awakened and retrieves the computed results from the 
IDB [rd_IDB()]

● Task blocking and awakening mechanisms in the software 
level are based on binary semaphores provided by 
FreeRTOS

R3TOS hardware task model

Hardware task model

● An hardware task θi , executing on the FPGA, can be 
modelled in two domains: Area and Time

Hardware task model - Area domain

● Area domain: the task θi occupy a rectangular region of 

the FPGA defined by its width and height: hx,i , hy,i

○ The area of the entire FPGA is: Hx , Hy

Hardware task model - Area domain

● Area domain: the task θi occupy a rectangular region of 

the FPGA defined by its width and height: hx,i , hy,i

○ The area of the entire FPGA is: Hx , Hy

○ The internal architecture of the task depends on the 
location where it was originally synthesized
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Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi 

consist of five different phases:
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● Time domain: the complete model of a task θi 

consist of five different phases:

○ Set-up phase: tA,i

■ Task is configured on the FPGA

○ Input data delivery phase: tD,i

■ Fill the task IDB with input data

○ Execution phase: tE,i

■ Temporal isolation, hardware determinism: 
worst-case predictable timing behaviour

○ Synchronization phase: tS,i

■ Wait on the task’s HWS to detect computation 
completion

Hardware task model - Time domain - 1

● Time domain: the complete model of a task θi 

consist of five different phases:

○ Set-up phase: tA,i

■ Task is configured on the FPGA

○ Input data delivery phase: tD,i

■ Fill the task IDB with input data

○ Execution phase: tE,i

■ Temporal isolation, hardware determinism: 
worst-case predictable timing behaviour

○ Synchronization phase: tS,i

■ Wait on the task’s HWS to detect computation 
completion

○ Output result retrieval phase: tR,i

■ Read the result from ODB
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Hardware task model - Time domain - 2

● When two HW tasks: θj (producer),  θi (consumer)
communicate each other:

○ The output data retrieval phase of the producer task θj

(ODB read) is immediately followed by the input data 
delivery phase of the consumer task θi (IDB write)
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● When two HW tasks: θj (producer),  θi (consumer)
communicate each other:

○ The output data retrieval phase of the producer task θj

(ODB read) is immediately followed by the input data 
delivery phase of the consumer task θi (IDB write)

○ Those two phases are to be preceded by the set-up 
phase of the data consumer task θi

Hardware task model - Time domain - 2

● When two HW tasks: θj (producer),  θi (consumer)
communicate each other:

○ The output data retrieval phase of the producer task θj

(ODB read) is immediately followed by the input data 
delivery phase of the consumer task θi (IDB write)

○ Those two phases are to be preceded by the set-up 
phase of the data consumer task θi

○ The latter three phases are merged together with the 
synchronization phase of the data producer task θj to 
form a single ICAP access period for each task θi

Hardware task model - Time domain - 3

● Real-Time constraints in R3TOS for a task θi :

○ Relative deadline Di

■ Absolute deadline: di = Di + ri

Hardware task model - Time domain - 3

● Real-Time constraints in R3TOS for a task θi :

○ Relative deadline Di

■ Absolute deadline: di = Di + ri

○ Absolute set-up deadline d*i

■ Latest instant (delay) for a task to start the 
computation in order to meet its deadline

Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which 
communicate with other HW tasks and for those which 
deliver data to SW tasks
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Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which 
communicate with other HW tasks and for those which 
deliver data to SW tasks

○ The data retrieval phase is included in the model of the 
data consumer HW tasks used by HWuK
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Hardware task model - Time domain - 4

● Set-up deadlines are different for HW tasks which 
communicate with other HW tasks and for those which 
deliver data to SW tasks

○ The data retrieval phase is included in the model of the 
data consumer HW tasks used by HWuK

○ Not included in the model of data consumer SW tasks used 
by SWuK

■ The data retrieval operation of a data consumer SW 
task must be invoked from the data producer HW task
itself

● HW tasks that deliver data to the CPU are modelled as two 
separate tasks
○ Computing task
○ Communicating task (copy data to the CPU’s IDB)

Hardware task model - Time domain - 5

● Execution of two hardware tasks:
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Hardware task states

● An HW task goes through several states during its life cycle:
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● An HW task goes through several states during its life cycle:
○ Waiting state
○ Ready state

■ waiting to be scheduled and assigned to a set of resources on 
FPGA
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■ Active computation

Hardware task states

● An HW task goes through several states during its life cycle:
○ Waiting state
○ Ready state

■ waiting to be scheduled and assigned to a set of resources on 
FPGA

○ Setting-up state
■ Configured on the FPGA and provided with input data

○ Execution state
■ Active computation

○ Allocated state
■ remains configured in the FPGA after computation
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R3TOS scheduling and 
allocation

R3TOS scheduling and allocation

● HWuK services:
○ Scheduling (time domain)
○ Allocation (area domain)
○ Device Configuration

● Hardware Scheduling:
○ More overhead with respect to software scheduling

R3TOS scheduling and allocation

● Hardware Scheduling:
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■ Search for a location (allocation problem)
■ Modify the task bitstream (relocation)
■ Loading the bitstream through configuration port
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■ Loading the bitstream through configuration port

● Preemption is possible but context switchings are 
expensive:
○ Read back, store, and write the bitstream to restore 

context

R3TOS scheduling and allocation

● Hardware Scheduling:
○ More overhead with respect to software scheduling

■ Search for a location (allocation problem)
■ Modify the task bitstream (relocation)
■ Loading the bitstream through configuration port

● Preemption is possible but context switchings are 
expensive:
○ Read back, store, and write the bitstream to restore 

context

● FPGA: Real HW tasks concurrency
○ Bottleneck: ICAP accesses must be mutual exclusive

and sequential
○ Serialize ICAP accesses

R3TOS scheduling and allocation
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● FPGA scheduling and allocation in general:
○ 3D bin packing problem
○ 2 Area dimensions + 1 time dimension (DPR)

R3TOS scheduling and allocation

● R3TOS base scheduling algorithm:
○ Non-preemptive EDF
○ Online scheduling to cope with HW faults

R3TOS scheduling algorithms

● R3TOS base scheduling algorithm:
○ Non-preemptive EDF
○ Online scheduling to cope with HW faults

R3TOS scheduling algorithms

inputs:
R: list of ready hw tasks sorted by increasing allocation 
deadline (d* ‐ ticap)

MER: Free area information provided by the allocator 
(maximum empty rectangle)

procedure:
for (task i: R)

if (i fits in MER) {
allocate i;
return i;

}
return null;

● Finishing-Aware EDF (FAEDF)

○ Extension of NP-EDF
○ Look ahead: aware of the tasks finishing time
○ Compensate for the lack of preemption

R3TOS scheduling algorithms

● Finishing-Aware EDF (FAEDF)

R3TOS scheduling algorithms

procedure:
● NP‐EDF: try to allocate task i
● If unsuccessful (not enough resources) and real‐time 

constraints are “loose”
○ Scan the list of executing tasks
○ If find a task j that finish execution (L.A.), freeing 

resources, before task i allocation deadline (d* ‐ ticap)
■ set insertion flag
■ task i will be delayed

● If insertion flag is set
○ Scan ready tasks queue
○ If finds a task m that can finish its allocation before 

task i allocation deadline
■ Schedule task m

● NP-EDF example:

R3TOS scheduling algorithms

● At tSP,B θ2 cannot be allocated, not enough area

● θ3 is scheduled instead but this delays the subsequent allocation 
of θ2 too long, and, as a result, misses its deadline
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● FAEDF example:

R3TOS scheduling algorithms

● At tSP,B FAEDF finds out that θ2 can be allocated later using the 
resources that will be released by θ1

● The time until then is used to allocate θ4

● Allocation problem:
○ Where an hardware tasks should be allocated to 

reduce the external fragmentation in the FPGA’s 
reconfigurable partition 

R3TOS allocation algorithms

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC / 

EVC)
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R3TOS allocation algorithms

● The FPGA is modelled as a grid
● Scan the area (grid) of the FPGA in the horizontal 

direction (1D)
○ Count the consecutive number of available resources 

(not occupied or damaged)
● Scan the area (grid) of the FPGA in the vertical 

direction (2D)
○ Count consecutive available resources to find the 

greatest empty rectangle that can be formed at each 
position
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● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC / 

EVC)

R3TOS allocation algorithms

● The FPGA is modelled as a grid
● Scan the area (grid) of the FPGA in the horizontal 

direction (1D)
○ Count the consecutive number of available resources 

(not occupied or damaged)
● Scan the area (grid) of the FPGA in the vertical 

direction (2D)
○ Count consecutive available resources to find the 

greatest empty rectangle that can be formed at each 
position

● The process produces four matrices (URAM, ULAM, DRAM, 
DLAM) that represent, for each grid position, the 
widest empty rectangle which can be formed in each 
orientation (N, S, W, E)

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC / 

EVC)

R3TOS allocation algorithms

● The four matrices (URAM, ULAM, DRAM, and DLAM) are 
added to build the 2D Adjacency Matrix (2DAM)
○ The 2DAM values represent in what measure each 

position contributes to form adjacent pieces of 
empty area

● R3TOS allocation algorithms
○ Empty Area / Volume Compaction heuristics (EAC / 

EVC)

R3TOS allocation algorithms

● The four matrices (URAM, ULAM, DRAM, and DLAM) are 
added to build the 2D Adjacency Matrix (2DAM)
○ The 2DAM values represent in what measure each 

position contributes to form adjacent pieces of 
empty area

● EVC extends the area analysis to include the time 
domain (greatest execution time in the taskset)
○ Build 3D Adjacency Matrix (3DAM): temporal and 

spatial adjacency

● R3TOS allocation algorithms

○ At runtime, when task should be allocated, the set of 
feasible allocations are evaluated based on the values 
stored in the 2DAM (EAC) or in the 3DAM (EVC)
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● R3TOS allocation algorithms

○ At runtime, when task should be allocated, the set of 
feasible allocations are evaluated based on the values 
stored in the 2DAM (EAC) or in the 3DAM (EVC)

○ Unfeasible allocation are discarded

○ EAC and an EVC score is assigned to each feasible 
allocation

R3TOS allocation algorithms



11/05/2016

21

● R3TOS allocation algorithms

○ At runtime, when task should be allocated, the set of 
feasible allocations are evaluated based on the values 
stored in the 2DAM (EAC) or in the 3DAM (EVC)

○ Unfeasible allocation are discarded

○ EAC and an EVC score is assigned to each feasible 
allocation

○ The placement quality is (inversely) proportional to the 
EAC or EVC scores

R3TOS allocation algorithms

● Performance figures measured in the developed proof-of-concept 
R3TOS implementation (Xilinx Virtex-4 running at 100 MHz)

R3TOS performance evaluation


