
21/04/2016

1

1

Semi-partitioned
multiprocessor

scheduling

Alessandra Melani

2

Traditional classification

 Multiprocessor scheduling
schemes, two orthogonal
classification criteria [1]:

1. Prioritization scheme
 Fixed
 Job-static
 Job-dynamic

2. Migration scheme
 Fully partitioned
 Migration at job boundary
 Fully migrative

[1] Carpenter et al., “A Categorization of Real-Time Multiprocessor Scheduling Problems and Algorithms”, 2004

3

Traditional classification

 Utilization bound ܷࣛܤ of algorithm ࣛ
 Threshold such that if ܷ ൏ ࣛܤܷ , then

the system is guaranteed to be
schedulable by ࣛ

 If ܷ ൐ the system is not ,ࣛܤܷ
necessarily unschedulable by ࣛ

 High utilization bounds only in the
top-right

 P-fair: 100% system utilization

 All partitioned scheduling algorithms have a utilization
bound of 50% or less

4

Partitioned scheduling UB

 All partitioned scheduling algorithms have a utilization
bound of 50% or less

 ݉ processors, ݊ ൌ ݉ ൅ 1 tasks, with ௜ܶ ൌ 1 and ܥ௜ ൌ 0.5 ൅ ε

 Since ݊ ൐ ݉, one processor is assigned ൒ 2 tasks, hence
its utilization will be at least 1 ൅ 2ε ൐ 1

τଵ τଶ τଷ τସ τହ τ௡ିଵ

τ௡

ଵܲ ଶܲ ଷܲ ସܲ ହܲ ௠ܲ

…

5

Semi-partitioned scheduling

 In this system there is plenty of
idle time, but cannot be exploited
by any partitioned scheduling
strategy

 But, ideally, we would like to have high ܷܤ without too
many preemptions, migrations and globally shared data
structures ⟹	semi-partitioned scheduling

τଵ τଶ τଷ τସ τହ τ௡ିଵ

τ௡

ଵܲ ଶܲ ଷܲ ସܲ ହܲ ௠ܲ

…

 By allowing task migrations, we could achieve 100%
system utilization

 Find a balance point between partitioned and global
scheduling

6

Semi-partitioned scheduling

 Before run-time, we need to establish:

 Which tasks are partitioned and which are allowed to migrate

 Processor(s) where each task executes

 Precise logic controlling task migrations

 By design, partitioning is favored and migrations are
disfavored:

 Produce a partitioned system, if possible

 “Most” tasks are partitioned, “few” migrate

 Migration limited between few processors

21/04/2016

2

7

Approaches to semi-partitioning

1. Slot-based / server-based approaches

 High-level repeating schedule for servers, mapped on the
processors

 High ܷܤs (75%-100%), at least theoretically

2. Timed Job migration-based approaches

 Migration at predetermined time offsets from task arrival

 s of 72%-75% at mostܤܷ

 In practice: fewer preemptions/migrations

8

Slot-based semi-partitioning

 Time divided into intervals called time-slots

 A high-level schedule is generated for one time-slot

 The pattern repeats in subsequent ones

 The time-slot on each processor is subdivided into time
reserves (a simple form of server) for one or more tasks

Within each reserve: EDF scheduling

 Example: EKG-Periodic [2]

[2] B. Andersson, E. Tovar, “Multiprocessor Scheduling with Few Preemptions”, RTCSA 2006

9

EKG-Periodic

 Stands for “EDF with task splitting and K processors in a
Group”

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

 Task assignment: processors are filled one by one, “splitting”
tasks as necessary

 At most ݉ െ 1 split tasks in the system

 Split tasks use two adjacent processors each

10

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

11

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

12

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

21/04/2016

3

13

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

14

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

15

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

16

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

17

EKG-P: observations

 Observation 1: The deadline of a job always coincides with
the arrival of the next job by the same task

 Since tasks are periodic and implicit-deadline

 Observation 2: We can calculate in advance the time of the
next task arrival in the system

 Since tasks are periodic and all arrive at t=0

 Key idea: Between any two successive arrivals (not
necessarily by the same task), split tasks execute
proportionally to their utilizations

 “Relaxed” proportional fairness ⟹ split task deadlines met

 But: split tasks should execute on one processor at a time

18

EKG-P: between successive arrivals

 Slot length equal to interval between consecutive job arrivals
(not necessarily by the same task)

 At run-time, reserves for split tasks on different processors
are temporally non-overlapping by design

21/04/2016

4

19

EKG-P: the mirroring trick

 Allows saving some preemption costs

20

EKG: limitations

 By design, it cannot handle sporadic tasks

 Time slot length computed as time interval between consecutive
job arrivals

 With sporadic arrivals, this information is unknown / unpredictable

When two successive task arrivals occur too close in time,
rapid context-switching for little execution occurs

 Both aspects remedied by EKG-Sporadic [3], at the cost of
some utilization loss
 Processors can no longer be filled up to 100%

[3] B. Andersson, K. Bletsas, “Sporadic Multiprocessor Scheduling with Few Preemptions”, ECRTS 2008

21

EKG-Sporadic

 Fixed-length time-slots: ܵ ൌ 	 ்೘೔೙

ఋ

 Integer parameter ߜ controls migration frequency

 Similar task assignment as EKG-P, with one difference:

 Heavy tasks, with ௜ܷ ൐ ܲܧܵ ൌ 4 ߜ ߜ ൅ 1 െ ߜ െ 1, get their own

processor

 Remaining light tasks assigned on next available processor
whose utilization is ൏ ܲܧܵ

 Each processor is filled by light tasks up to ܵܲܧ; not up to 100% as
before (tasks can arrive at “unfavorable” times)

 ܤܷ configurable between 65% and ~100% (at the cost of
more preemptions and migrations)

22

Reserve inflation

 Reserves must be “inflated” to compensate for potentially
unfavorable arrival phasing

௜ܷ ൌ
7
14

ൌ 0.5

τ௜ gets 6 units of budget at every slot

23

Utilization bound of EKG-S

 Reserve inflation brings a utilization penalty, but it is the
price of flexibility to handle sporadic tasks

 The resulting ܷܤ is ܵܲܧ

 ~65% for δ ൌ 1; ~100% for δ ⟶ ൅∞

 Utilization penalty is reduced by higher ߜ (shorter time slots)
but at a cost of more frequent migrations

24

Timed job migration semi-partitioning

 Objective: fewer preemptions / migrations with respect to
timeslot-based semi-partitioning

 Tasks assigned to processors according to a given heuristic
 If remaining capacity is not enough to accept the full share of the

task, the task is decided to be “migratory” (“split” into more than
one processor)

ࢊࢋ࢞࢏ࢌ

࢑࣎
ା૛࢑࣎

ଵܲ ଶܲ ଷܲ ସܲ

ࢊࢋ࢞࢏ࢌ
ࢊࢋ࢞࢏ࢌ

ࢊࢋ࢞࢏ࢌ

࢑࣎
࢑࣎

࢑࣎

ା૚࢑࣎

ା૚࢑࣎

ା૛࢑࣎
ା૛࢑࣎

21/04/2016

5

25

Timed job migration semi-partitioning

 A “split” task starts executing on one processor and migrates
to one or more other processors at pre-determined time
offsets measured from its arrival

 Always the same processors and always the same offsets, for all
jobs by the same task

 The split task can be modelled as separate sub-tasks, with
precedence constraints and intermediate deadlines

26

Sub-task parameters

 Different heuristics can be devised for task splitting according
to these principles

 Sub-task parameters: ܥ௜ and ܦ௜

 These heuristics, along with other aspects (e.g., bin-packing)
affect the average-case performance but also the utilization
bound that can be proven for the algorithm

 Examples: EDF-WM [4], C=D [5]

[4] S. Kato, N. Yamasaki, Y. Ishikawa, “Semi-partitioned scheduling of sporadic task systems on multiprocessors”, ECRTS 2009

[5] A. Burns, R. Davis, P. Wang, F. Zheng, “Partitioned EDF Scheduling for Multiprocessors using a C=D scheme”, RTSJ 48(1), 2011

27

EDF-WM

 Stands for “EDF with Windowed Migration”

 Handles sporadic tasks

 Assigns tasks integrally (partitioning) by default

 It only splits a task when its partitioning fails

 Dominates Partitioned EDF

 Attempts to split in as few pieces as possible

 Starting from ݇	 ൌ 	2, 3, … until success (or failure at ݇	 ൐ 	݉)

 Defining characteristic: sub-tasks of split task have equal
relative deadlines ܦ௜/݇

28

EDF-WM: details

 The WCET of each sub-task (except the last one) is
determined according to sensitivity analysis

 Maximum value that does not render the processor unschedulable,
according to exact EDF schedulability test (dbf-based)

 This calculation needs to be repeated when trying a new
value of ݇ (number of pieces) because the sub-task relative
deadlines change

29

EDF-WM: algorithm

 ݇	 ൌ 	2 (number of sub-tasks, initialization)

 For each processor calculate maximum execution time ܥ for
sub-task

 Consider processors by decreasing ܥ calculated above
(without loss of generality ௣ܲ to ௣ܲା௞ିଵ)

 Can we split ߬௜ in ݇ sub-tasks (߬௜
ሺଵሻ to ߬௜

ሺ௞ሻ) with ܦ ൌ ݇/௜ܦ and
ܶ ൌ ௜ܶ such that

 ௜ܥ
ሺଵሻ ൌ max value such that ௣ܲ remains schedulable AND

 ௜ܥ
ሺଶሻ ൌ max value such that ௣ܲାଵ remains schedulable AND

 …

 ௜ܥ
ሺ௞ሻ ൌ ௜ܥ െ ∑ ௜ܥ

ሺ௝ሻ௞ିଵ
௝ୀଵ and ௣ܲା௞ିଵ remains schedulable?

 If yes, split like this, else increment ݇ and repeat

30

C=D scheduling algorithm

 Different sub-task formation heuristic

 Each sub-task (except perhaps the last one) has its ܥ equal
to its ܦ
 Equivalent to running at maximum priority (non-preemptively)

 Efficient at use of remaining processor utilization

 Provides the maximum possible time on the next processor for the
task to complete the remainder of its computation time

 Zero-laxity sub-task runs continuously until migration

21/04/2016

6

31

Comparison of EDF-WM and C=D

 ௜ܥ
ଵ ൌ max such that its processor

remains schedulable, with ܦ௜
ଵ ൌ ,݇/௜ܦ

௜ܶ
ଵ ൌ ௜ܶ

 …
 ௜ܥ

௞ିଵ ൌ max such that its processor
remains schedulable, with ܦ௜

௞ିଵ ൌ
௜/݇, ௜ܶܦ

௞ିଵ ൌ ௜ܶ

 ௜ܥ
௞ ൌ ௜ܥ െ ሺ∑ ௜ܥ

௝௞ିଵ
௝ୀଵ ሻ, ܦ௜

௞ ൌ ,݇/௜ܦ

௜ܶ
௞ ൌ ௜ܶ

 ௜ܥ
ଵ ൌ max such that its processor

remains schedulable, with ܦ௜
ଵ ൌ ௜ܥ

ଵ,

௜ܶ
ଵ ൌ ௜ܶ

 …
 ௜ܥ

௞ିଵ ൌ max such that its processor
remains schedulable, with ܦ௜

௞ିଵ ൌ
௜ܥ
௞ିଵ, ௜ܶ

௞ିଵ ൌ ௜ܶ

 ௜ܥ
௞ ൌ ௜ܥ െ ሺ∑ ௜ܥ

௝௞ିଵ
௝ୀଵ ሻ, ܦ௜

௞ ൌ ௜ܦ െ

ሺ∑ ௜ܦ
௝௞ିଵ

௝ୀଵ ሻ, ௜ܶ
௞ ൌ ௜ܶ

If the ݇th piece is not schedulable attempt splitting the task to ݇ ൅ 1 pieces,
with the task parameters described (respectively, under each algorithm) as
above

32

C=D assignment splitting strategies

 Various strategies, some can be combined

 Continuous: fills up a processor, then split a task between
that processor and the next one

 Preselection: partitioning as many tasks as possible, then
split remaining tasks

 Interleaved: split a task into zero-laxity sub-task and rump
sub-task; throw rump sub-task back into bucket of
unassigned tasks

 At most one zero-laxity sub-task per processor!

 Other tasks are scheduled as background workload under
EDF on their respective processors

33

Utilization bound of C=D

 Good performance but none of those variant is easy to
reason about, in terms of ܷܤ

 Simpler, “clustered” variant with at most ݉/2 split tasks has
been devised for that purpose

34

Utilization bound of C=D

 ܤܷ of Clustered C=D is 13/18	ሺൌ 72.22%ሻ

 Average case performance close to that of original variants

 Over all possible task assignment splitting strategies, it has
been shown that the ܷܤ of C=D cannot exceed 75%

35

Conclusions

 Semi-partitioned scheduling establishes a balance point
between partitioned and global scheduling

 Time-slot based semi-partitioning

 Repeating schedule for servers
 Theoretically high sܤܷ (75% െ 100%)

 Timed-job-migration semi-partitioning

 Efficient to implement
 Preemption- and migration-light
 Competitive in terms of performance with slot-based

semi-partitioning

36

Thank you!
Alessandra Melani
alessandra.melani@sssup.it

