
21/04/2016

1

1

Semi-partitioned
multiprocessor

scheduling

Alessandra Melani

2

Traditional classification

 Multiprocessor scheduling
schemes, two orthogonal
classification criteria [1]:

1. Prioritization scheme
 Fixed
 Job-static
 Job-dynamic

2. Migration scheme
 Fully partitioned
 Migration at job boundary
 Fully migrative

[1] Carpenter et al., “A Categorization of Real-Time Multiprocessor Scheduling Problems and Algorithms”, 2004

3

Traditional classification

 Utilization bound ܷࣛܤ of algorithm ࣛ
 Threshold such that if ܷ ൏ ࣛܤܷ , then

the system is guaranteed to be
schedulable by ࣛ

 If ܷ the system is not ,ࣛܤܷ
necessarily unschedulable by ࣛ

 High utilization bounds only in the
top-right

 P-fair: 100% system utilization

 All partitioned scheduling algorithms have a utilization
bound of 50% or less

4

Partitioned scheduling UB

 All partitioned scheduling algorithms have a utilization
bound of 50% or less

 ݉ processors, ݊ ൌ ݉ 1 tasks, with ܶ ൌ 1 and ܥ ൌ 0.5 ε

 Since ݊ ݉, one processor is assigned 2 tasks, hence
its utilization will be at least 1 2ε 1

τଵ τଶ τଷ τସ τହ τିଵ

τ

ଵܲ ଶܲ ଷܲ ସܲ ହܲ ܲ

…

5

Semi-partitioned scheduling

 In this system there is plenty of
idle time, but cannot be exploited
by any partitioned scheduling
strategy

 But, ideally, we would like to have high ܷܤ without too
many preemptions, migrations and globally shared data
structures ⟹	semi-partitioned scheduling

τଵ τଶ τଷ τସ τହ τିଵ

τ

ଵܲ ଶܲ ଷܲ ସܲ ହܲ ܲ

…

 By allowing task migrations, we could achieve 100%
system utilization

 Find a balance point between partitioned and global
scheduling

6

Semi-partitioned scheduling

 Before run-time, we need to establish:

 Which tasks are partitioned and which are allowed to migrate

 Processor(s) where each task executes

 Precise logic controlling task migrations

 By design, partitioning is favored and migrations are
disfavored:

 Produce a partitioned system, if possible

 “Most” tasks are partitioned, “few” migrate

 Migration limited between few processors

21/04/2016

2

7

Approaches to semi-partitioning

1. Slot-based / server-based approaches

 High-level repeating schedule for servers, mapped on the
processors

 High ܷܤs (75%-100%), at least theoretically

2. Timed Job migration-based approaches

 Migration at predetermined time offsets from task arrival

 s of 72%-75% at mostܤܷ

 In practice: fewer preemptions/migrations

8

Slot-based semi-partitioning

 Time divided into intervals called time-slots

 A high-level schedule is generated for one time-slot

 The pattern repeats in subsequent ones

 The time-slot on each processor is subdivided into time
reserves (a simple form of server) for one or more tasks

Within each reserve: EDF scheduling

 Example: EKG-Periodic [2]

[2] B. Andersson, E. Tovar, “Multiprocessor Scheduling with Few Preemptions”, RTCSA 2006

9

EKG-Periodic

 Stands for “EDF with task splitting and K processors in a
Group”

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

 Task assignment: processors are filled one by one, “splitting”
tasks as necessary

 At most ݉ െ 1 split tasks in the system

 Split tasks use two adjacent processors each

10

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

11

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

12

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

21/04/2016

3

13

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

14

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

15

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

16

Task assignment illustrated

 For periodic, implicit deadline (ܦ	 ൌ 	ܶ) tasks

 ܤܷ = 100%

ܷ ൌ 1

17

EKG-P: observations

 Observation 1: The deadline of a job always coincides with
the arrival of the next job by the same task

 Since tasks are periodic and implicit-deadline

 Observation 2: We can calculate in advance the time of the
next task arrival in the system

 Since tasks are periodic and all arrive at t=0

 Key idea: Between any two successive arrivals (not
necessarily by the same task), split tasks execute
proportionally to their utilizations

 “Relaxed” proportional fairness ⟹ split task deadlines met

 But: split tasks should execute on one processor at a time

18

EKG-P: between successive arrivals

 Slot length equal to interval between consecutive job arrivals
(not necessarily by the same task)

 At run-time, reserves for split tasks on different processors
are temporally non-overlapping by design

21/04/2016

4

19

EKG-P: the mirroring trick

 Allows saving some preemption costs

20

EKG: limitations

 By design, it cannot handle sporadic tasks

 Time slot length computed as time interval between consecutive
job arrivals

 With sporadic arrivals, this information is unknown / unpredictable

When two successive task arrivals occur too close in time,
rapid context-switching for little execution occurs

 Both aspects remedied by EKG-Sporadic [3], at the cost of
some utilization loss
 Processors can no longer be filled up to 100%

[3] B. Andersson, K. Bletsas, “Sporadic Multiprocessor Scheduling with Few Preemptions”, ECRTS 2008

21

EKG-Sporadic

 Fixed-length time-slots: ܵ ൌ 	 ்

ఋ

 Integer parameter ߜ controls migration frequency

 Similar task assignment as EKG-P, with one difference:

 Heavy tasks, with ܷ ܲܧܵ ൌ 4 ߜ ߜ 1 െ ߜ െ 1, get their own

processor

 Remaining light tasks assigned on next available processor
whose utilization is ൏ ܲܧܵ

 Each processor is filled by light tasks up to ܵܲܧ; not up to 100% as
before (tasks can arrive at “unfavorable” times)

 ܤܷ configurable between 65% and ~100% (at the cost of
more preemptions and migrations)

22

Reserve inflation

 Reserves must be “inflated” to compensate for potentially
unfavorable arrival phasing

ܷ ൌ
7
14

ൌ 0.5

τ gets 6 units of budget at every slot

23

Utilization bound of EKG-S

 Reserve inflation brings a utilization penalty, but it is the
price of flexibility to handle sporadic tasks

 The resulting ܷܤ is ܵܲܧ

 ~65% for δ ൌ 1; ~100% for δ ⟶ ∞

 Utilization penalty is reduced by higher ߜ (shorter time slots)
but at a cost of more frequent migrations

24

Timed job migration semi-partitioning

 Objective: fewer preemptions / migrations with respect to
timeslot-based semi-partitioning

 Tasks assigned to processors according to a given heuristic
 If remaining capacity is not enough to accept the full share of the

task, the task is decided to be “migratory” (“split” into more than
one processor)

ࢊࢋ࢞ࢌ

࣎
ା࣎

ଵܲ ଶܲ ଷܲ ସܲ

ࢊࢋ࢞ࢌ
ࢊࢋ࢞ࢌ

ࢊࢋ࢞ࢌ

࣎
࣎

࣎

ା࣎

ା࣎

ା࣎
ା࣎

21/04/2016

5

25

Timed job migration semi-partitioning

 A “split” task starts executing on one processor and migrates
to one or more other processors at pre-determined time
offsets measured from its arrival

 Always the same processors and always the same offsets, for all
jobs by the same task

 The split task can be modelled as separate sub-tasks, with
precedence constraints and intermediate deadlines

26

Sub-task parameters

 Different heuristics can be devised for task splitting according
to these principles

 Sub-task parameters: ܥ and ܦ

 These heuristics, along with other aspects (e.g., bin-packing)
affect the average-case performance but also the utilization
bound that can be proven for the algorithm

 Examples: EDF-WM [4], C=D [5]

[4] S. Kato, N. Yamasaki, Y. Ishikawa, “Semi-partitioned scheduling of sporadic task systems on multiprocessors”, ECRTS 2009

[5] A. Burns, R. Davis, P. Wang, F. Zheng, “Partitioned EDF Scheduling for Multiprocessors using a C=D scheme”, RTSJ 48(1), 2011

27

EDF-WM

 Stands for “EDF with Windowed Migration”

 Handles sporadic tasks

 Assigns tasks integrally (partitioning) by default

 It only splits a task when its partitioning fails

 Dominates Partitioned EDF

 Attempts to split in as few pieces as possible

 Starting from ݇	 ൌ 	2, 3, … until success (or failure at ݇	 	݉)

 Defining characteristic: sub-tasks of split task have equal
relative deadlines ܦ/݇

28

EDF-WM: details

 The WCET of each sub-task (except the last one) is
determined according to sensitivity analysis

 Maximum value that does not render the processor unschedulable,
according to exact EDF schedulability test (dbf-based)

 This calculation needs to be repeated when trying a new
value of ݇ (number of pieces) because the sub-task relative
deadlines change

29

EDF-WM: algorithm

 ݇	 ൌ 	2 (number of sub-tasks, initialization)

 For each processor calculate maximum execution time ܥ for
sub-task

 Consider processors by decreasing ܥ calculated above
(without loss of generality ܲ to ܲାିଵ)

 Can we split ߬ in ݇ sub-tasks (߬
ሺଵሻ to ߬

ሺሻ) with ܦ ൌ ݇/ܦ and
ܶ ൌ ܶ such that

 ܥ
ሺଵሻ ൌ max value such that ܲ remains schedulable AND

 ܥ
ሺଶሻ ൌ max value such that ܲାଵ remains schedulable AND

 …

 ܥ
ሺሻ ൌ ܥ െ ∑ ܥ

ሺሻିଵ
ୀଵ and ܲାିଵ remains schedulable?

 If yes, split like this, else increment ݇ and repeat

30

C=D scheduling algorithm

 Different sub-task formation heuristic

 Each sub-task (except perhaps the last one) has its ܥ equal
to its ܦ
 Equivalent to running at maximum priority (non-preemptively)

 Efficient at use of remaining processor utilization

 Provides the maximum possible time on the next processor for the
task to complete the remainder of its computation time

 Zero-laxity sub-task runs continuously until migration

21/04/2016

6

31

Comparison of EDF-WM and C=D

 ܥ
ଵ ൌ max such that its processor

remains schedulable, with ܦ
ଵ ൌ ,݇/ܦ

ܶ
ଵ ൌ ܶ

 …
 ܥ

ିଵ ൌ max such that its processor
remains schedulable, with ܦ

ିଵ ൌ
/݇, ܶܦ

ିଵ ൌ ܶ

 ܥ
 ൌ ܥ െ ሺ∑ ܥ

ିଵ
ୀଵ ሻ, ܦ

 ൌ ,݇/ܦ

ܶ
 ൌ ܶ

 ܥ
ଵ ൌ max such that its processor

remains schedulable, with ܦ
ଵ ൌ ܥ

ଵ,

ܶ
ଵ ൌ ܶ

 …
 ܥ

ିଵ ൌ max such that its processor
remains schedulable, with ܦ

ିଵ ൌ
ܥ
ିଵ, ܶ

ିଵ ൌ ܶ

 ܥ
 ൌ ܥ െ ሺ∑ ܥ

ିଵ
ୀଵ ሻ, ܦ

 ൌ ܦ െ

ሺ∑ ܦ
ିଵ

ୀଵ ሻ, ܶ
 ൌ ܶ

If the ݇th piece is not schedulable attempt splitting the task to ݇ 1 pieces,
with the task parameters described (respectively, under each algorithm) as
above

32

C=D assignment splitting strategies

 Various strategies, some can be combined

 Continuous: fills up a processor, then split a task between
that processor and the next one

 Preselection: partitioning as many tasks as possible, then
split remaining tasks

 Interleaved: split a task into zero-laxity sub-task and rump
sub-task; throw rump sub-task back into bucket of
unassigned tasks

 At most one zero-laxity sub-task per processor!

 Other tasks are scheduled as background workload under
EDF on their respective processors

33

Utilization bound of C=D

 Good performance but none of those variant is easy to
reason about, in terms of ܷܤ

 Simpler, “clustered” variant with at most ݉/2 split tasks has
been devised for that purpose

34

Utilization bound of C=D

 ܤܷ of Clustered C=D is 13/18	ሺൌ 72.22%ሻ

 Average case performance close to that of original variants

 Over all possible task assignment splitting strategies, it has
been shown that the ܷܤ of C=D cannot exceed 75%

35

Conclusions

 Semi-partitioned scheduling establishes a balance point
between partitioned and global scheduling

 Time-slot based semi-partitioning

 Repeating schedule for servers
 Theoretically high sܤܷ (75% െ 100%)

 Timed-job-migration semi-partitioning

 Efficient to implement
 Preemption- and migration-light
 Competitive in terms of performance with slot-based

semi-partitioning

36

Thank you!
Alessandra Melani
alessandra.melani@sssup.it

