21/04/2016

Traditional classification
h)s: e O erias j Eetlé‘ O Multiprocessor scheduling degrea
¢/ Sant’Anna Real-Time Systems Laboratory SChemeS two orthogonal fully partitioned job-level partitioned fully migrative
classification criteria [1]: panonedtLE ' “'":;"F
1. Prioritization scheme
H H = Fixed
Semi-partitioned - Job-static ot | oy | e
It = Job-dynamic
mu Iprocessor 2. Migration scheme
Sched u | i ng * Fully partitioned pariioned DM alobal DM
= Migration at job boundary
= Fully migrative
Alessandra Melani [1] Carpenter et al., “A C of Real-Time Problems and Algorithms”, 2004

Traditional classification Partitioned scheduling UB
U Utilization bound UB,4 of algorithm A U All partitioned scheduling algorithms have a utilization
= Threshold such that if U < UB, then rpars bound of 50% or less
the system is guaranteed to be § 0 m processors, n = m + 1 tasks, with T; = 1 and C; = 0.5 + ¢
schedulable by A 2
* U > UBg, the system is not i p— 0 Since n > m, one processor is assigned > 2 tasks, hence
necessarily unschedulable by A i its utilization will be at least 1 + 2& > 1
g parssonad oM gobsi oM
i

P, P P. P, P, P,
[High utilization bounds only in the = 2 2 - - -
top-right
= P-fair: 100% system utilization
U All partitioned scheduling algorithms have a utilization .
bound of 50% or less

Semi-partitioned scheduling Semi-partitioned scheduling

Py P, P3 P, P P [Before run-time, we need to establish:

= Which tasks are partitioned and which are allowed to migrate
= Processor(s) where each task executes

U In this system there is plenty of
idle time, but cannot be exploited
by any partitioned scheduling

strategy B = Precise logic controlling task migrations
0 By allowing task migrations, we could achieve 100%
system utilization U By design, partitioning is favored and migrations are
)))) disfavored:
0 But, ideally, we would_llke _to have high UB without too « Produce a partitioned system, if possible
many preempnons_, m'gr_""_t'onsda”dhg'é’ﬂ?‘”y shared data = “Most” tasks are partitioned, “few” migrate
structures = semi-partitioned scheduling = Migration limited between few processors

U Find a balance point between partitioned and global
scheduling

21/04/2016

Approaches to semi-partitioning

1. Slot-based / server-based approaches
= High-level repeating schedule for servers, mapped on the
processors
= High UBs (75%-100%), at least theoretically

2. Timed Job migration-based approaches
= Migration at predetermined time offsets from task arrival
= UBs of 72%-75% at most
= In practice: fewer preemptions/migrations

Slot-based semi-partitioning

U Time divided into intervals called time-slots
U A high-level schedule is generated for one time-slot
U The pattern repeats in subsequent ones

U The time-slot on each processor is subdivided into time
reserves (a simple form of server) for one or more tasks

[Within each reserve: EDF scheduling

U Example: EKG-Periodic [2]

[2] B. Andersson, E. Tovar, “ with Few ions”, RTCSA 2006

EKG-Periodic

[Stands for “EDF with task splitting and K processors in a
Group”

[For periodic, implicit deadline (D = T) tasks
[UB = 100%

[Task assignment: processors are filled one by one, “splitting”
tasks as necessary
= At most m — 1 split tasks in the system
= Split tasks use two adjacent processors each

Task assignment illustrated

1 For periodic, implicit deadline (D = T) tasks
0 UB =100%

Py P: Ps P4

Task assignment illustrated

[For periodic, implicit deadline (D = T) tasks
0 UB =100%

P2 Py Py

Task assignment illustrated

1 For periodic, implicit deadline (D = T) tasks
0 UB =100%

Py P: Ps P4

21/04/2016

Task assignment illustrated

[For periodic, implicit deadline (D = T) tasks
1 UB = 100%

Task assignment illustrated

U For periodic, implicit deadline (D = T) tasks
0 UB = 100%

3

T2

T

a
Py Pz Py Py

Task assignment illustrated

[For periodic, implicit deadline (D = T) tasks
0 UB =100%

P2 Py Py

Task assignment illustrated

1 For periodic, implicit deadline (D = T) tasks

U UB =100%
U=1 |- |
NS
T3 | EQ
— T4
0 L.[id
Py P: P

EKG-P: observations

[Observation 1: The deadline of a job always coincides with
the arrival of the next job by the same task

= Since tasks are periodic and implicit-deadline

] Observation 2: We can calculate in advance the time of the
next task arrival in the system
= Since tasks are periodic and all arrive at t=0

[Key idea: Between any two successive arrivals (not
necessarily by the same task), split tasks execute
proportionally to their utilizations
= “Relaxed” proportional fairness = split task deadlines met
= But: split tasks should execute on one processor at a time

EKG-P: between successive arrivals

[Slot length equal to interval between consecutive job arrivals
(not necessarily by the same task)

[At run-time, reserves for split tasks on different processors
are temporally non-overlapping by design

Py ¢ onspit tasts only | ——wlength = (CfTe)*(tei-t) "
———*=length= [C,"[Tx)*(hﬂ,;k)} (Co/T) (e 1-t)

P, [1 |Jt‘)r‘—\u“w st ool | e length = (C, /T,)*(te k))
——+ length = (G,"T,)"(te1-t), (CyTy) (ber-te)

Py

task 1, (split between P, and Py)

t
t et task 1, (split between P; and Ps)

21/04/2016

EKG-P: the mirroring trick

[Allows saving some preemption costs

without mimpring.
P | [
P: .. il
Py o I I
t
t [Wz bes [
rp—
P | |
Pro [I N
Py |RA
t [[taa

EKG: limitations

U By design, it cannot handle sporadic tasks

= Time slot length computed as time interval between consecutive
job arrivals

= With sporadic arrivals, this information is unknown / unpredictable

J When two successive task arrivals occur too close in time,
rapid context-switching for little execution occurs

[Both aspects remedied by EKG-Sporadic [3], at the cost of

some utilization loss
= Processors can no longer be filled up to 100%

[3] B. Andersson, K. Bletsas, “Sporadic Multi with Few ", ECRTS 2008

EKG-Sporadic

[Fixed-length time-slots: § = T”{;—i"

= Integer parameter § controls migration frequency

[Similar task assignment as EKG-P, with one difference:

= Heavy tasks, with U; > SEP = 4 (\/6(6 +1)— 6) — 1, get their own
processor

= Remaining light tasks assigned on next available processor
whose utilization is < SEP

= Each processor is filled by light tasks up to SEP; not up to 100% as
before (tasks can arrive at “unfavorable” times)

[UB configurable between 65% and ~100% (at the cost of
more preemptions and migrations)

Reserve inflation

[Reserves must be “inflated” to compensate for potentially
unfavorable arrival phasing

. with inflation:
without infiation: » — arival wideadine
- a1t . ¥ e T e 4.4(
s Sz ——s
—afoe i o 45325 :
- Cj Ej |:|D m |
P ;
i . Port 1 | |
o 5*S 428 H H
h s 1+25
U; = 7 0.5
Y14 '

T; gets 6 units of budget at every slot

Utilization bound of EKG-S

[Reserve inflation brings a utilization penalty, but it is the
price of flexibility to handle sporadic tasks

= The resulting UB is SEP
= ~65% for § = 1; ~100% for § — +oo

[Utilization penalty is reduced by higher § (shorter time slots)
but at a cost of more frequent migrations

i]
12 3 4 6 8 7 8 8 WM W EE M

Timed job migration semi-partitioning

] Objective: fewer preemptions / migrations with respect to
timeslot-based semi-partitioning

[Tasks assigned to processors according to a given heuristic
= If remaining capacity is not enough to accept the full share of the
task, the task is decided to be “migratory” (“split” into more than

one processor)

21/04/2016

Timed job migration semi-partitioning

[A“split” task starts executing on one processor and migrates
to one or more other processors at pre-determined time
offsets measured from its arrival
= Always the same processors and always the same offsets, for all

jobs by the same task
= The split task can be modelled as separate sub-tasks, with
precedence constraints and intermediate deadlines

o

-—— D B —e— 0’ —s

: ﬁ\g A,

N

Sub-task parameters

U Different heuristics can be devised for task splitting according
to these principles

= Sub-task parameters: C; and D;

[These heuristics, along with other aspects (e.g., bin-packing)
affect the average-case performance but also the utilization
bound that can be proven for the algorithm

1 Examples: EDF-WM [4], C=D [5]

[4]'S. Kato, N. Yamasaki, Y. Ishikawa, “Semi-partitioned scheduling of sporadic task systems on multiprocessors”, ECRTS 2009

[5]A. Burns, R. Davis, P. Wang, F. Zheng, *Partitioned EDF Scheduling for Multiprocessors using a C=D scheme’, RTSJ 48(1), 2011

EDF-WM

[Stands for “EDF with Windowed Migration”
= Handles sporadic tasks

[Assigns tasks integrally (partitioning) by default
[It only splits a task when its partitioning fails
= Dominates Partitioned EDF

[Attempts to split in as few pieces as possible
= Starting from k = 2,3, ... until success (or failure at k > m)

[Defining characteristic: sub-tasks of split task have equal
relative deadlines D;/k

EDF-WM: details

[The WCET of each sub-task (except the last one) is
determined according to sensitivity analysis

= Maximum value that does not render the processor unschedulable,
according to exact EDF schedulability test (dbf-based)

[This calculation needs to be repeated when trying a new
value of k (number of pieces) because the sub-task relative
deadlines change

EDF-WM: algorithm

[k = 2 (number of sub-tasks, initialization)
[For each processor calculate maximum execution time C for
sub-task

[Consider processors by decreasing C calculated above
(without loss of generality P, to Pp4j—1)

[Can we split z; in k sub-tasks (ri(l) to rl.(k)) with D = D;/k and
T = T; such that
- Ci(l) = max value such that P, remains schedulable AND
= Ci(z) = max value such that P, ,, remains schedulable AND

= M= - (E}"} Cim) and Py, remains schedulable?

O If yes, split like this, else increment k and repeat

C=D scheduling algorithm

1 Different sub-task formation heuristic

[Each sub-task (except perhaps the last one) has its € equal
toits D

= Equivalent to running at maximum priority (non-preemptively)
U Efficient at use of remaining processor utilization

= Provides the maximum possible time on the next processor for the
task to complete the remainder of its computation time

[Zero-laxity sub-task runs continuously until migration

21/04/2016

Comparison of EDF-WM and C=D

0 ¢} = max such that its processor 0 ¢} = max such that its processor
remains schedulable, with D! = D;/k, remains schedulable, with D} = ¢},
TH=T, TH=T,

a.. Q

0 ¢F~' = max such that its processor [¢/~! = max such that its processor
remains schedulable, with DF~' = remains schedulable, with Df~! =

Di/k, T =T, LT =T
QO ¢f = ¢ - @t ¢, bf = ik, 0 ck=c-@Efeh of = b~
=T, G, =1

If the k' piece is not schedulable attempt splitting the task to k + 1 pieces,
with the task parameters described (respectively, under each algorithm) as
above

C=D assignment splitting strategies

U Various strategies, some can be combined

= Continuous: fills up a processor, then split a task between
that processor and the next one

= Preselection: partitioning as many tasks as possible, then
split remaining tasks

= Interleaved: split a task into zero-laxity sub-task and rump
sub-task; throw rump sub-task back into bucket of
unassigned tasks

[At most one zero-laxity sub-task per processor!

U Other tasks are scheduled as background workload under
EDF on their respective processors

Utilization bound of C=D

[Good performance but none of those variant is easy to
reason about, in terms of UB

[Simpler, “clustered” variant with at most m/2 split tasks has
been devised for that purpose

Utilization bound of C=D

U UB of Clustered C=D is 13/18 (= 72.22%)
[Average case performance close to that of original variants

[Over all possible task assignment splitting strategies, it has
been shown that the UB of C=D cannot exceed 75%

Conclusions

[Semi-partitioned scheduling establishes a balance point
between partitioned and global scheduling

U Time-slot based semi-partitioning
= Repeating schedule for servers
= Theoretically high UBs (75% — 100%)

0 Timed-job-migration semi-partitioning

= Efficient to implement

= Preemption- and migration-light

= Competitive in terms of performance with slot-based
semi-partitioning

Alessandra Melani
alessandra.melani@ss

