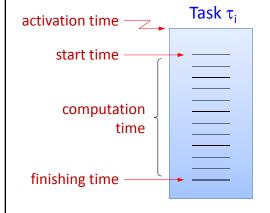
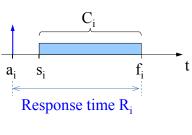
A brief summary of main results for Uniprocessor Real-Time Systems

Sequen

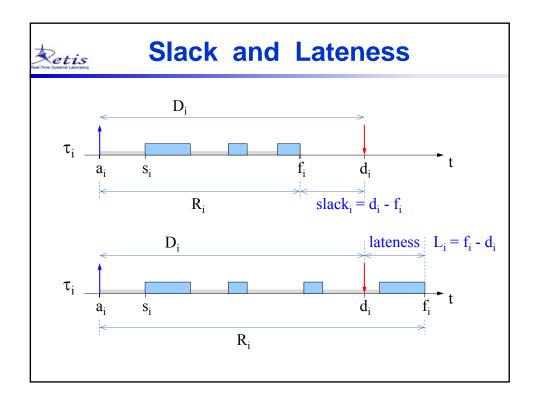
Task model

Sequence of instructions that in the absence of other activities is continuously executed by the processor until completion.



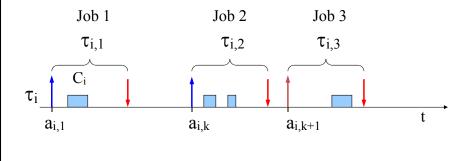


Real-Time Task It is a task characterized by a timing constraint on its response time, called deadline: relative deadline D_i response time R_i A real-time task τ_i is said to be feasible if it completes within its absolute deadline, that is, if $f_i \leq d_i$, o equivalently, if $R_i \leq D_i$



Tasks and jobs

A task running several times on different input data generates a sequence of instances (jobs):



etis Resi-Time Systems Laboratory

Activation modes

> Time driven

The task is automatically activated by the operating system at predefined time instants.

> Event driven

The task is activated at an event arrival or by explicitly invocating a system call.

Types of tasks

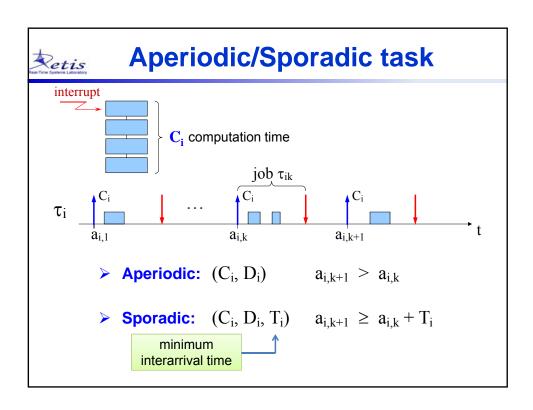
> Aperiodic

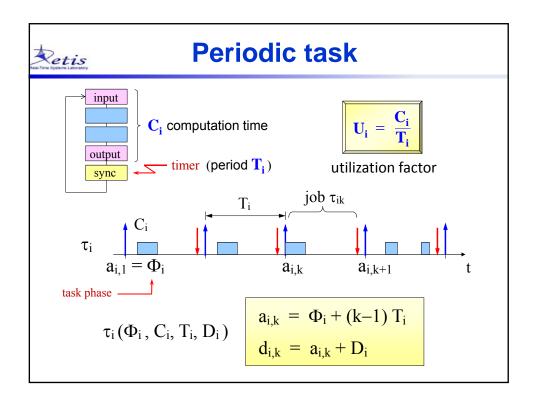
Activated by events. Task activation times are <u>unknown</u> and <u>unbounded</u>.

> Sporadic

> Periodic

Activated by a timer. Task activation times are known and bounded: Consecutive jobs are separated by a constant interval (period).





Assumptions

> Implicit deadlines

$$\forall i \quad D_i = T_i$$

Constrained deadlines

$$\forall i \quad D_i \leq T_i$$

> Arbitrary deadlines

Deadlines can be less than, greater than, or equal to periods

Analysis under fixed priority

Let $\Gamma = {\tau_1, ..., \tau_n}$ be a set of n periodic tasks.

Implicit deadlines

Utilization-based test [Liu & Layland, 1973]

$$\sum_{i=1}^n U_i \leq n \left(2^{1/n} - 1\right)$$

only sufficient

Hyperbolic Bound [Bini - Buttazzo², 2001]

$$\prod_{i=1}^{n} \left(U_i + 1 \right) \le 2$$

only sufficient

11

Analysis under fixed priority

Constrained deadlines

Response Time Analysis [Audsley et al., 1993]

$$\forall i \quad R_i \leq D_i$$

necessary and sufficient

Iterative solution:

$$\begin{cases} R_i^{(0)} = \sum_{k=1}^{i} C_k \\ R_i^{(s)} = C_i + \sum_{k=1}^{i-1} \left[\frac{R_i^{(s-1)}}{T_k} \right] C_k \end{cases}$$

iterate while

$$R_i^{(s)} > R_i^{(s-1)}$$

Retis

Analysis under EDF

Constrained deadlines

Processor Demand [Baruah et al., 1990]

$$\forall t \in \mathcal{D} \quad dbf(t) \leq t$$

and

dbf(t) is called demand bound function and denotes the computation time of tasks with deadlines $\leq t$

$$dbf(t) = \sum_{i=1}^{n} \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor C_k$$

 ${\mathscr D}$ is the set of points where the test has to be performed

$$\mathcal{D} = \{d_k \mid d_k \le L_b\} \qquad L_b = \max\{D_{max}, \min\{D_{max}, \min\{D_{max}$$

$$\mathcal{D} = \left\{ d_k \mid d_k \leq L_b \right\} \qquad L_b = \max \left\{ D_{\max}, \min(\mathbf{H}, \mathbf{L}^*) \right\}$$

$$H = lcm(T_l, \dots, T_n) \qquad L^* = \frac{\sum_{i=1}^n (T_i - D_i) U_i}{1 - U}$$

Detis.

EDF example

task	C_{i}	T_{i}	$\mathbf{D_i}$	$T_i - D_i$	U_{i}
τ_1	1	4	2	2	1/4
τ_2	3	6	5	1	1/2
τ_3	2	14	9	5	1/7

$$U = \frac{1}{4} + \frac{1}{2} + \frac{1}{7} = \frac{25}{28}$$

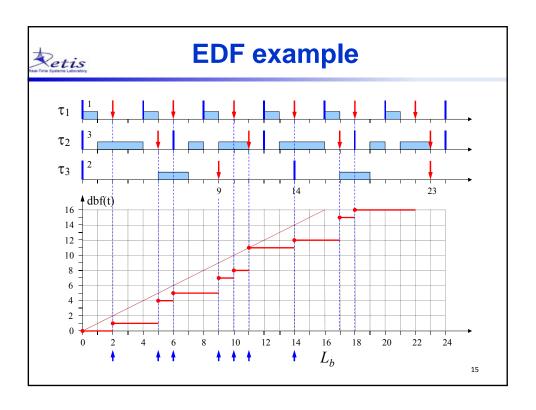
$$H = 4.3.7 = 84$$

$$H = 4.3.7 = 84$$

$$L^* = \frac{\sum_{i=1}^{n} (T_i - D_i) U_i}{1 - U} = \frac{\frac{2}{4} + \frac{1}{2} + \frac{5}{7}}{\frac{3}{28}} = \frac{12}{7} \cdot \frac{28}{3} = 16$$

$$D_{max} = 9$$
 $L_b = max(9, min(84,16)) = 16$

$$\mathcal{D} = \{d_k \mid d_k \le L_b\} = \{2, 5, 6, 9, 10, 11, 14\}$$



Workload Analysis under FP

Arbitrary deadlines

Workload Analysis [Lehoczky et al., 1989]

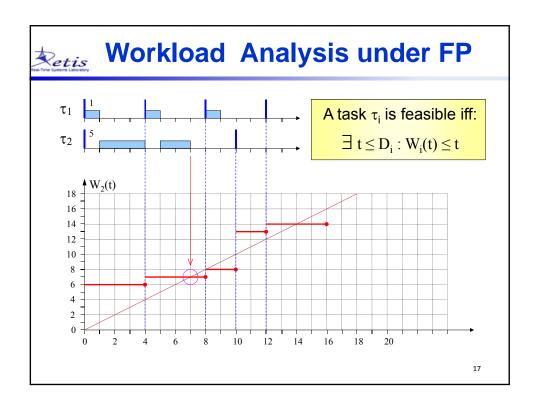
$$\forall i \ \exists t \in A_i \ W_i(t) \le t$$

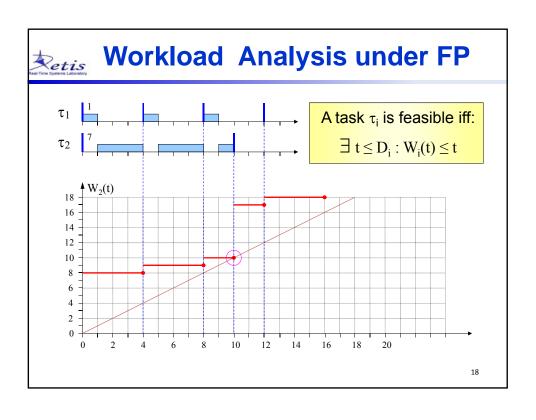
necessary and sufficient

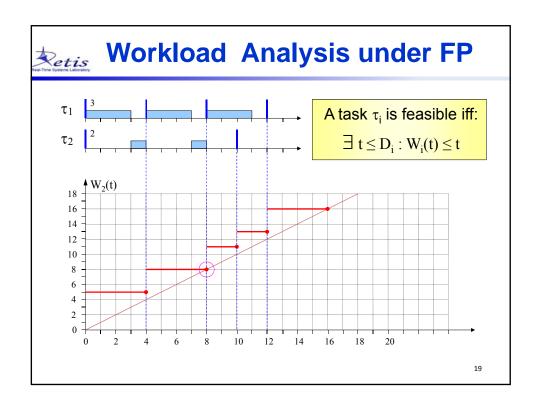
 $ightharpoonup W_i\left(t
ight)$ is called **workload** in (0,t] at priority level P_i and denotes the computation time requested in (0,t] by tasks with priority higher than or equal to P_i

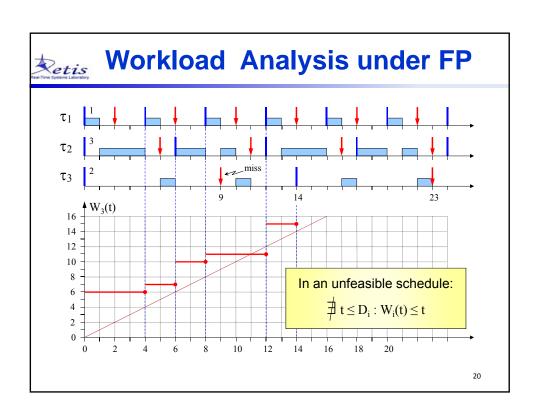
$$W_i(t) = C_i + \sum_{k=1}^{i-1} \left[\frac{t}{T_k} \right] C_k$$

 $ightharpoonup A_i$ is the set of points where the test has to be performed, equal to the activation times $\leq D_i$, including D_i









Workload Analysis under FP

Theorem [Lehoczky-Sha-Ding, 1989]

A task set is feasible under fixed priorities iff:

$$\forall i = 1...n \quad \exists t \leq D_i : W_i(t) \leq t$$

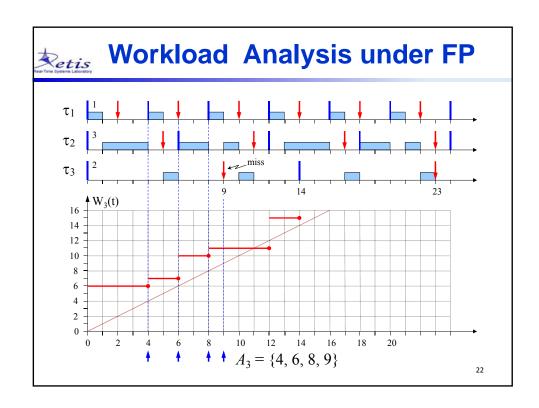
Problem

How many points need to be tested?

When checking τ_i feasibility, we need to verify $W(t) \leq t$ for D_i and for all release times $r_{hk} \leq D_i$ of jobs τ_{hk} with priority $P_h \geq P_i$, that is, for all t in A_i :

$$A_i = \left\{ r_{hk} \mid r_{hk} = kT_h, \ h = 1...i, \ k = 1... \left\lfloor \frac{T_i}{T_h} \right\rfloor \right\} \cup \left\{ D_i \right\}$$

2:



Workload Analysis under FP

Theorem [Bini-Buttazzo, 2002]

$$\bigwedge$$
 AND \bigvee OR

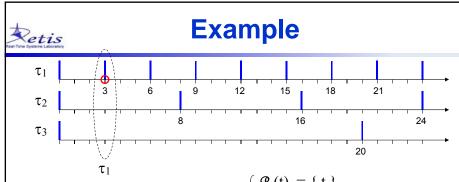
A task set is feasible under fixed priorities iff:

$$\bigwedge_{i=1...n} \bigvee_{t \in \mathcal{G}_{i-1}(D_i)} W_i(t) \leq t$$

Where $\mathcal{G}_{i}(t)$ is defined by:

$$\begin{cases} \mathcal{P}_0(t) = \{ t \} \\ \mathcal{P}_i(t) = \mathcal{P}_{i-1} \left[\left\lfloor \frac{t}{T_i} \right\rfloor T_i \right] \cup \mathcal{P}_{i-1}(t) \end{cases}$$

2

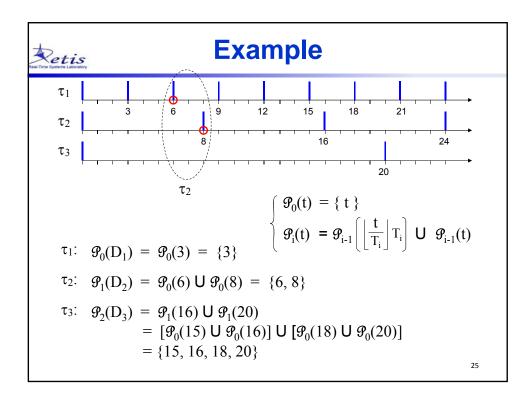


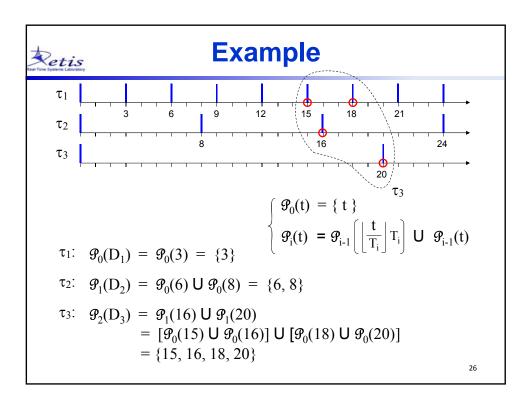
$$\begin{cases} \mathcal{P}_0(t) = \{ t \} \\ \mathcal{P}_i(t) = \mathcal{P}_{i-1} \left[\left\lfloor \frac{t}{T_i} \right\rfloor T_i \right] \cup \mathcal{P}_{i-1}(t) \end{cases}$$

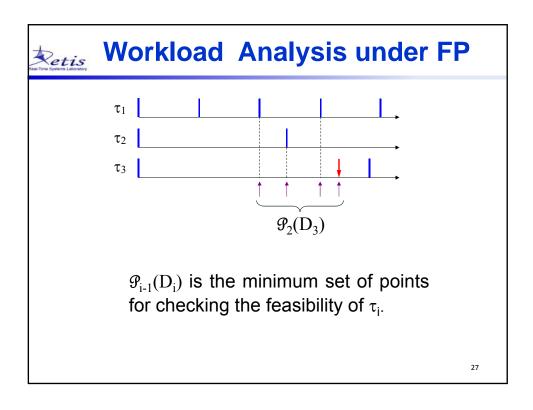
$$\tau_1$$
: $\mathcal{G}_0(D_1) = \mathcal{G}_0(3) = \{3\}$

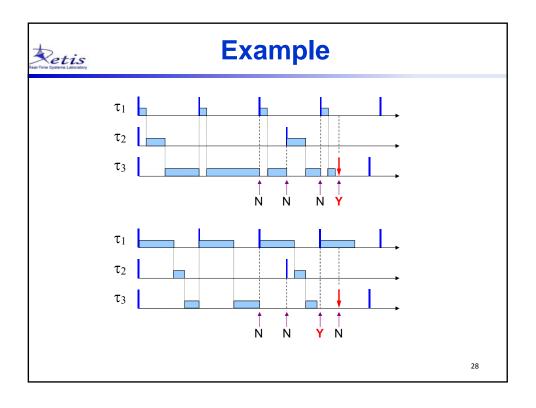
$$\tau_2{:} \quad \textbf{\mathcal{G}}_1(D_2) \ = \ \textbf{\mathcal{G}}_0(6) \ \textbf{U} \ \textbf{\mathcal{G}}_0(8) \ = \ \{6,\,8\}$$

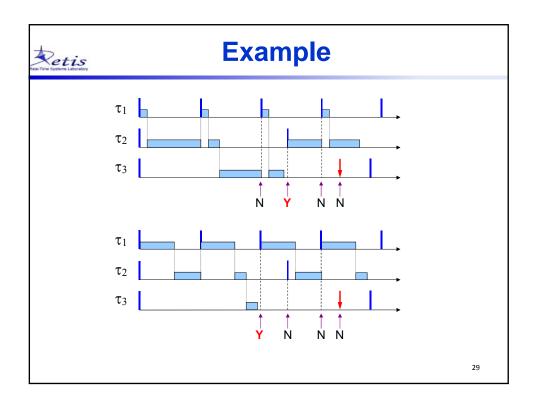
$$\begin{array}{ll} \tau_3 \colon & {\mathcal G}_2(D_3) \, = \, {\mathcal G}_1(16) \; {\sf U} \; {\mathcal G}_1(20) \\ & = \, [{\mathcal G}_0(15) \; {\sf U} \; {\mathcal G}_0(16)] \; {\sf U} \; [{\mathcal G}_0(18) \; {\sf U} \; {\mathcal G}_0(20)] \\ & = \{15, \, 16, \, 18, \, 20\} \end{array}$$

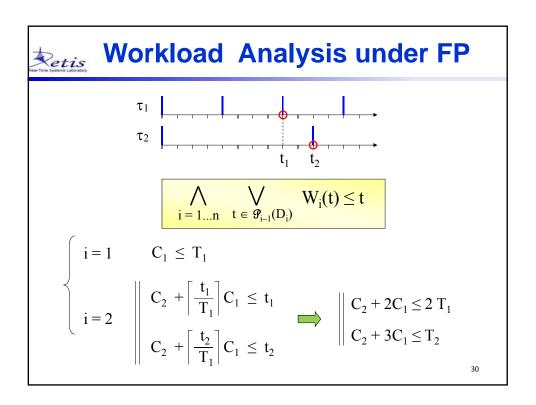


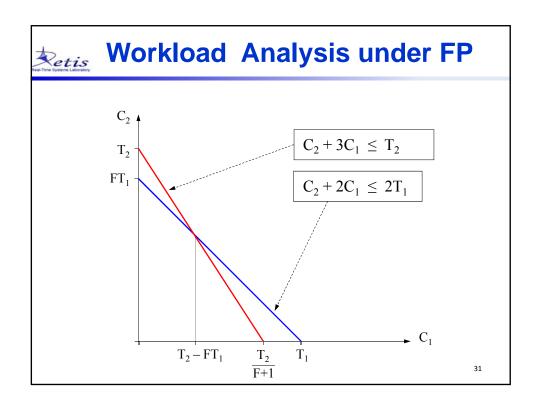


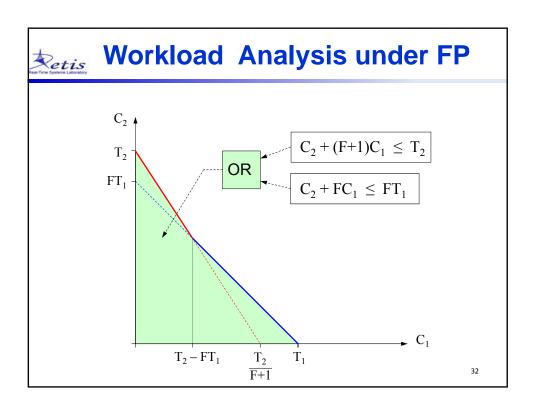












etis esi-Tirne Systems Laboratory

Analysis summary

Under EDF (Processor Demand Criterion):

$$\forall t \in \mathcal{D} \quad dbf(t) \leq t$$

$$dbf(t) = \sum_{i=1}^{n} \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor C_k$$

Under Fixed Priorities (Workload Analysis):

$$\forall i = 1,...,n \quad \exists \ t \in A_i : W_i(t) \leq t$$

$$W_i(t) = C_i + \sum_{k=1}^{i-1} \left[\frac{t}{T_k} \right] C_k$$