Giorgio Buttazzo g.buttazzo@sssup.it Letis Real-Time Systems Laboratory Scuola Superiore Sant'Anna

How to increase lifetime?

Considering the limited progress of batteries, the only hope to increase system lifetime is to reduce energy consumption by proper power management.

- In real life, and also in embedded systems, a lot of energy is wasted due to bad power management.
- Research work is needed to <u>optimize resource</u> <u>usage</u> and reduce waste.

Petis

Power model

To take different components into account, power consumption can be modeled as follows [Martin & Siewiorek, 2001]:

$$P(s) = K_3 s^3 + K_2 s^2 + K_1 s + K_0$$

- K₃ expresses the weight of the power components that vary with both voltage and frequency.
- captures the nonlinearity of DC-DC regulators in the range of the output voltage.
- is related to the hardware components that can only vary the clock frequency (but not the voltage).
- represents the power consumed by the components that are not affected by the processor speed.

Retis

Normalized speed

To make the analysis more general, instead of using the absolute clock frequencies, f₁, f₂, ..., f_m it is better to use a normalized speed $s \in [0,1]$:

Retis

WCET scaling

 CC_i = number of clock cycles required by τ_i

C_i = task computation time

$$C_i(s) = \frac{CC_i}{s} = \frac{C_i^1}{s}$$

$$C_i^1 = C_i(s=1) = CC_i$$

is the shortest execution time achievable at the maximum speed

Retis

Notation

When dealing with processors with variable speed, often the schedule is represented in a bi-dimensional diagram, where time is on the x-axis and normalized speed is on the y-axis.

For instance, the following schedule represents 3 jobs of a periodic task τ_i with period T_i = 6 and WCET at the maximum speed $C_i(1) = 1$, executed at three decreasing speeds:

WCET scaling

In practice, several operations are performed on I/O devices and memory units that do not share the clock with the CPU.

⇒ For instance, hard disk operations mostly depend on the bus clock frequency, the hard disk read/write speed, and the interference caused by other tasks accessing the bus.

Hence, a more realistic model for the task WCET is:

$$C_i(s) = C_i^{fix} + \frac{C_i^{\text{var}}}{s}$$

Retis

WCET scaling

Note, however, that

$$C_i(s) = C_i^{fix} + \frac{C_i^{var}}{s}$$
 it is more precise, but it complicates the analysis

$$C_i(s) = \frac{C_i^1}{s}$$

 $C_i(s) = \frac{C_i^1}{s}$ it is safe, because it represents an upper bound of the previous model

In fact, since
$$C_i^1 = C_i(1) = C_i^{fix} + C_i^{var}$$

we have:
$$\frac{C_i^{fix}}{s} + \frac{C_i^{var}}{s} \ge C_i^{fix} + \frac{C_i^{var}}{s}$$
 for any $s \le 1$

for any
$$s \le 1$$

The energy saving problem

In general, we always have that:

scaling up ⇒ shorter execution, higher power consumption scaling down ⇒ longer execution, lower power consumption

But we are interested in consuming less energy, not less power.

When a processor is active at speed s for a time t,

- the consumed power is P(s)
- \triangleright the consumed energy is $E(s) = P(s) \cdot t$

Retis

Utilization scaling

Note that, if using the simplified model $C(s) = C^1/s$:

$$U(s) = \sum_{i=1}^{n} \frac{C_{i}(s)}{T_{i}} = \sum_{i=1}^{n} \frac{C_{i}^{1}}{sT_{i}} = \frac{U^{1}}{s}$$

where:
$$U^1 = \sum_{i=1}^n \frac{C_i^1}{T_i}$$

is the task set utilization at $s_{\text{max}} = 1$

Retis

Energy per cycle

Since C_i is a function of the speed, the energy consumed for executing a task τ_i at speed s is:

$$E_i(s) = P(s) \cdot C_i(s)$$

For example, if we consider $C_i(s) = \frac{CC_i}{s}$

we have:
$$E_i(s) = P(s) \frac{CC_i}{s}$$

Therefore, what we actually need to minimize is the

Energy per cycle:
$$E_c(s) = \frac{P(s)}{s}$$

Retis

The energy saving problem

What is the best processor speed s that guarantees the application feasibility minimizes energy consumption?

For example, it is better to execute a task as fast as possible for a short time, or as slow as possible for long time?

Retis

Optimal speed

The speed that minimizes the energy per cycle is called optimal speed (or energy efficient speed) s*.

$$P(s) = K_3 s^3 + K_2 s^2 + K_1 s + K_0$$

$$E_c(s) = \frac{P(s)}{s}$$

$$E_c(s) = \frac{P(s)}{s}$$
 $E_c(s) = K_3 s^2 + K_2 s + K_1 + \frac{K_0}{s}$

The value of the optimal speed depends on the specific architecture (i.e., the specific values of K₀, K₁, K₂, K₃).

