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Context

More a more devices are powered by battery:
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Required features:
High performance

Long lifetime

Contrasting objectives

High
Performance

Long
Lifetime

The problem is not trivial, because performance and 
lifetime have opposite energy requirements:

High speed

High power

Low energy

Low power

power power?
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How to increase lifetime?

Considering the limited progress of batteries, the only
hope to increase system lifetime is to reduce energy
consumption by proper power management.

 In real life, and also in embedded systems, a lot of

5

 In real life, and also in embedded systems, a lot of
energy is wasted due to bad power management.

 Research work is needed to optimize resource
usage and reduce waste.

Same problem in data centers
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Consumption in data centers
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How to reduce?

• Outside air economizers
• Expand temperature setpoints
• Efficient cooling equipment

• Efficient hardware
O ti i d di t ib ti

Space
Cooling
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• Optimized distribution
• Efficient voltage regulators

Electrical
Losses

Servers

• Virtualization
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Virtualization and Virtualization and 
Power efficiency
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Power model

Power dissipation in CMOS integrated circuits is mainly due
to two causes:

 Dynamic power (Pd) consumed during operation;

 Static power (Ps) consumed when the circuit is off.

Vin Vout

Vdd

CL

Inverter

Vin Vout

Vdd

Gnd

P-MOS

N-MOS

IscVin Vout

Vdd

P-MOS

Dynamic power

Dynamic power has two components:

1. Switching power Psw
consumed during logic state 
change (1  0) to charge 
the load capacitance CL.

Isw

CL
N-MOS
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IscVin Vout

Vdd

P-MOS

Dynamic power

Dynamic power has two components:

1. Switching power Psw
consumed during logic state 
change (1  0) to charge 
the load capacitance CL.

CL
N-MOS

Note that during transition
(0  1) the capacitance is 
discharged through the N-MOS.

2
ddLsw VfCP 

f = clock frequency

The switching power 
can be expressed by:

V V

Vdd

Dynamic power

I

2. Short circuit power Psc
consumed for a very short time, during 
the ramp time of the input signal, when 
input is at threshold voltage and both 
PMOS and NMOS are ON. 

Vin Vout

CL

Isc

Hence, the total dynamic 
power is dominated by 
the switching power:

2
ddLscswd VfCPPP 

scddsc IVP 

Static power

Static power Ps
is due to a quantum phenomenon 
where mobile charge carriers 
(electrons or holes) tunnel through 
an insulating region, creating a 
leakage current Ilk

Vin Vout

Vdd

lk
CL

Ilk

 Static power consumption is independent of the 
switching activity is always present if the circuit is on.

 As devices scale down in size, gate oxide thicknesses 
decreases, resulting in larger leakage current.

lkdds IVP 
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In summary

 The dynamic power consumption increases with
the supply voltage and with the clock frequency:

 M th l lt l ff t th

2
ddLd VfCP 

 Moreover, the supply voltage also affects the
circuit delay (hence the max clock frequency):

2)( tdd

dd

VV

V
D


 Vt = threshold 

voltage

Note that D decreases for higher Vdd and lower Vt
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 Hence, the dynamic power consumed by a system
can be controlled by scaling the clock frequency
and the voltage at which the processor operates:

Long lifetime short lifetime

Dynamic Volt./Freq. scaling

Vdd

dynamic
power

fmax

low performance high performance

Dynamic Power Management

 On the other hand, static power can be controlled
by turning the CPU off, or putting it in a sleep state:

Vdd
The overhead to go sleep is the Break even time (Be):
the deeper the sleep state, the longer the overhead.

Be(a,s) =  as + saactive

OFF

SLEEP2

SLEEP1

t
active-to-sleep
overhead (as)

sleep-to-active
overhead (sa)

e( ) as saac ve

sleep1

sleep2

OFF

Minimizing energy

In real-time systems, the problem is to minimize
energy consumption still guaranteeing a desired level
of performance (schedule feasibility).

V

power

fmax

performance

Vmin

Low-power features

To exploit such a possibility, modern processors are
designed to

 work under different operating modes, each characterized
by a power consumption P, voltage V and clock frequency f:
(P1, V1, f1), (P2, V2, f2), …, (Pm, Vm, fm)

 Switching between two modes j-k is characterized by a
power consumption Pjk and time overhead jk

 have different low-power states, each characterized by a
specific power consumption and transition overheads:

S1(P1, 1as, 1sa), … SL(PL, Las, Lsa)

Energy-saving methods

DVFS: Dynamic Voltage and Frequency Scaling

The consumed energy is varied by acting on the 
supply voltage and clock frequency:

time
Power

P(100 MHz)

P(50 MHz)

timeP(sleep)

reduced speedfull speed

Energy-saving methods

DPM: Dynamic Power Management

The consumed energy is varied by exploiting the 
inactive low-power states of the processor:

time
Power

timeP(sleep)

P(100 MHz)

P(50 MHz)

full speed sleep sleepfull
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Energy-saving methods

Hybrid: DVFS + DPM

The consumed energy is varied by exploiting 
both techniques in different time intervals:

time
Power

timeP(sleep)

P(100 MHz)

P(50 MHz)

full speed DPM DPMDVFS

Normalized speed

To make the analysis more general, instead of
using the absolute clock frequencies, f1, f2, …, fm
it is better to use a normalized speed s  [0,1]:

f s

mf

f
s 

f

s

fmf1 f2 f3

sm = 1
s3

s2

s1

Notation

When dealing with processors with variable speed, often the
schedule is represented in a bi-dimensional diagram, where
time is on the x-axis and normalized speed is on the y-axis.

For instance, the following schedule represents 3 jobs of a
periodic task i with period Ti = 6 and WCET at the maximum
speed Ci(1) = 1, executed at three decreasing speeds:speed Ci(1) 1, executed at three decreasing speeds:

i speed

time

1

0.5

s = 1 s = 0.5 s = 0.25

0
2 8 14 20

Power model

To take different components into account, power consumption
can be modeled as follows [Martin & Siewiorek, 2001]:

01
2

2
3

3)( KsKsKsKsP 

K3 expresses the weight of the power components that vary3 p g p p y
with both voltage and frequency.

K2 captures the nonlinearity of DC-DC regulators in the range
of the output voltage.

K1 is related to the hardware components that can only vary
the clock frequency (but not the voltage).

K0 represents the power consumed by the components that
are not affected by the processor speed.

WCET scaling

CCi = number of clock cycles required by i

Ci =  task computation time

CCC
sC ii

1

)( 
Ci(s)

speed

ss
sCi )( 

iii CCsCC  )1(1

where

is the shortest execution 
time achievable at the 
maximum speed

s1 s2 s3

Ci(s1)

Ci(s2)

Ci(s3)

WCET scaling

In practice, several operations are performed on I/O devices
and memory units that do not share the clock with the CPU.

 For instance, hard disk operations mostly depend on the
bus clock frequency, the hard disk read/write speed, and
the interference caused by other tasks accessing the bus.

s

C
CsC ifix

ii

var

)( 

Hence, a more realistic model for the task WCET is:
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WCET scaling

Note, however, that

s

C
CsC ifix

ii

var

)(  it is more precise, but it 
complicates the analysis

C
sC i

i

1

)(  it is safe, because it represents an 
b d f th i d lsi )(

upper bound of the previous model

In fact, since var1 )1( i
fix

iii CCCC 

we have:
s

C
C

s

C

s

C ifix
i

i
fix

i
varvar

 for any s  1

Utilization scaling

Note that, if using the simplified model C(s) = C1/s:

s

U

sT

C

T

sC
sU

n

i i

i
n

i i

i
1

1

1

1

)(
)(  







n

i i

i

T

C
U

1

1
1where:

is the task set 
utilization at smax = 1

s

U(s)

smin smax = 1

U1

Um

The energy saving problem

For example, it is better to execute a task as fast as possible
f h t ti l ibl f l ti ?

What is the best processor speed s that
guarantees the application feasibility and
minimizes energy consumption?

for a short time, or as slow as possible for long time?

i speed

time

1

0.5

s = 1 s = 0.5 s = 0.25

0
2 8 14 20

The energy saving problem

In general, we always have that:

scaling up  shorter execution, higher power consumption

scaling down  longer execution, lower power consumption

B t i t t d i i lBut we are interested in consuming less energy,
not less power.

When a processor is active at speed s for a time t,

 the consumed power is P(s)

 the consumed energy is  E(s) = P(s)  t

Energy per cycle

Since Ci is a function of the speed, the energy
consumed for executing a task i at speed s is:

)()()( sCsPsE ii 

CC
sC i

i )(For example, if we consider

Therefore, what we actually need to minimize is the

s

sP
sEc

)(
)( Energy per cycle:

s

CC
sPsE i

i )()( 

si )(p ,

we have:

Optimal speed

The speed that minimizes the energy per cycle is
called optimal speed (or energy efficient speed) s*.

01
2

2
3

3)( KsKsKsKsP 

The value of the optimal speed depends on the specific
architecture (i.e., the specific values of K0, K1, K2, K3).

s

sP
sEc

)(
)( 

s

K
KsKsKsEc

0
12

2
3)( 
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Examples

P1(s) = 0.9 s + 0.1 P3(s) = 0.5 s3 + 0.1
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Architecture 1

Ec1(s)

Ec1(s) = 0.9 + 0.1/sP1(s) = 0.9 s + 0.1
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In this architecture, energy is minimized
by running at the maximum speed.
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Ec2(s) = 0.5 s + 0.3P2(s) = 0.5 s2 + 0.3 s

In this architecture, energy is minimized
by running at the minimum speed.

Architecture 2
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Ec3(s) = 0.5 s2 + 0.1/sP3(s) = 0.5 s3 + 0.1

In this architecture, energy is minimized
by running at an intermediate speed.

Architecture 3
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Summary

Ec3(s) = 0.5 s2 + 0.1/s

Ec1(s)

Ec1(s) = 0.9 + 0.1/s Ec2(s) = 0.5 s + 0.3
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Observations

The energy-aware strategy depends on the 
specific architecture.

Further energy saving can be achieved by gy g y
exploiting low-power states.
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Problem 1

What to do if the task set is not feasible at s*?

Possible solutions

1. Select a higher speed sH as the smallest speed sH > s*g p H p H

Then apply DPM to exploit extra idle times.

2. Compress task utilizations (e.g., by applying elastic
scheduling) so that the task set is feasible at s*

cy
cl

e

Not feasible

Problem 1

Elastic compression

Speed
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sH

What to do if s* is not available on the platform?
This only applies to type-3 architectures

Possible solutions

1 Select a higher speed s as the smallest speed s > s*

Problem 2

1. Select a higher speed sH as the smallest speed sH > s

Then apply DPM to exploit the extra idle times.

2. Alternate execution between two adjacent speeds (sL, sH)

to approximate s*
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Problem 2
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alternate

PWM-like  execution

s
1

0.75

Suppose that only two speeds are available (sL = 0.25, sH = 1),
but the optimal speed minimizing energy is s* = 0.5.

t

0.50

0.25

LH

LLHH
eq QQ

QsQs
s






QH QL

PWM-like  execution

s
1

0.75

Given (sL, sH), how to find (QL, QH) that produce seq?

t

0.50

0.25

P

QPsQs
s HLHH

eq

)( 


QH QL

P
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PWM-like  execution

L
H

LH
HLHH

eq s
P

Q
ss

P

QPsQs
s 


 )(

)(

Given (sL, sH), how to find (QL, QH) that produce seq?









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
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LH

Leq
H ss

ss
PQ

PWM-like  execution

s
1

0.75

0.50

Considering transition overhead:

QH QL

Further details on:
• E. Bini, G. Buttazzo, G. Lipari, "Minimizing CPU energy in real-time systems with

discrete speed management", ACM Trans. on Embedded Computing Systems, 8(4), 2009.

t

0.25

LH

HLLLLHHH
eq QQ

oQsoQs
s





)()(

oHLoLH

Supply function

sbf(t)

seq (QH + QL)

t
omax QL – oHL QH – oLHomin

sL (QL – oHL)

Example 1

Suppose that the CPU has
the following five modes of
operation:

Mode Power (mW)

ACTIVE (s = 1) 100

ACTIVE (s = 0.75) 60

ACTIVE (s = 0.5) 30

ACTIVE (s = 0.25) 15

SLEEP 4
And consider the following 
application: SLEEP 4application:

1

2

S = 1

40 80

120600

1010 10

3030

U1 =  1/4 + 1/2  =  0.75

101
1 C

301
2 C
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Example 1

Note that:
s

U

sT

C

T

sC
sU

n

i i

i
n

i i

i
1

1

1

1

)(
)(  



For the feasibility (under EDF), it must be: 1)(
1


s

U
sU

75.01  UsHence, it must be:

Therefore, the only feasible speeds for the given
application are s = 1 and s = 0.75.

Executing at s = 1

P (mW)

1

2

40 80

120600

1010 10

3030

S = 1

t

100

80

20

60

40

T

E = 100 T
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P (mW)

1

2

40 80

120600

1010 10

3030

S = 1

Exploiting the sleep state

100

80

20

60

40

E = (1000.75 + 40.25)T = 76 T

100 100

44
t

T

S = 0.75
1 1313 13

1

2

40 80

120600

1010 10

3030

S = 1

Executing at s = 0.75

120600

40 80

2 4040

20

60

40

P (mW) 60

E = 60 T

t
T

1

2

12 24

36180

3
S = 1

Example 2

33

6 6

U1 =  1/4 + 1/3  =  0.583 Mode Power (mW)

ACTIVE (s = 1) 100

ACTIVE (s = 0.75) 60

ACTIVE (s = 0.5) 30

ACTIVE (s = 0.25) 15

SLEEP 4

s  U1 =  0.583

In this case, it must be:

Therefore, the feasible speeds that guarantee the
feasibility of the application are s = 1 and s = 0.75.

S = 0.75

0

1

2

4

Executing at s = 0.75

12 24

4 4

8 8

3618

20

60

40

P (mW) 60

E = 60 T

t
T

78.0
9

7

75.0

12/7
)(
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
s

U
sU

S = 0.75

0

1

2

4

s = 0.75  +  sleep state

12 24

4 4

8 8

3618

20

60

40

P (mW)

t
TE = [60U + 4(1-U)]T = 47.56 T

Break even time

Considering the overheads involved in transitions, the
minimum interval that justifies a transition to a low-power state
is called Break-even time.

If a and a are the time overheads required to perform a
complete transition from an active state a to a sleep state 
and back the Break even time is given by:and back, the Break-even time is given by:

Be(a,) = a + a

a a

time

P(a)

P()
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S = 0.75

0

1

2

4

s = 0.75  +  sleep state

12 24

4 4

8 8

3618

if B 2

20

60

40

P (mW)

t
T

E = [60U + 4(1-U) + 2(Be/T)(60-4)]T  = 53.78 T

if  Be = 2

Compacting idle times

To minimize the transition overhead and better exploit sleep
states, it is better to switch for long time intervals, rather then
switching several times for short intervals.

[Bambagini et al., SIES 2013]
proposed a technique to prolong idle intervals by delaying
t t ti h ibl i bl ki t lstart times as much as possible, using blocking tolerance.

1

2
10 20

15 300

10 20

blocking tolerance

15 300

blocking tolerance

S = 0.75
1 4

Idle time from the scheduler

12 24

4 4

So, instead of executing tasks according to the scheduler,
tasks are delayed to make idle times as large as possible.

0

2

20

60

40

P (mW)

t
T

8 8

3618

E = [60U + 4(1-U) + 2(Be/T)(60-4)]T  = 53.78 T

S = 0.75
1 4

Compacted idle times

12 24

4 4

So, instead of executing tasks according to the scheduler,
tasks are delayed to make idle times as large as possible.

0

2

20

60

40

P (mW)

t
T

8 8

3618

E = [60U + 4(1-U) + (Be/T)(60-4)]T  = 50.67 T

Task harmonizing

[Rowe et al., TII-6(3), 2010]
merge idle intervals by a virtual sleep task sleep with
period TH (harmonizing period).
Jobs become eligible at the next nearest activation of sleep.

Be = 5

0 5 10 15 20 25 30 35 40 45 50 55 60

Tsleep = 10

0 5 10 15 20 25 30 35 40 45 50 55 60

Exploiting early completions

Since mostly jobs execute much less than their WCET, the
saved execution can be exploited to further reduce the speed or
prolong sleep intervals (depending on the architecture).

If (s* < 1)

If (s* = 1)
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Early completions on DVFS

1

2

S = 0.75

40 80

120600

(10/40)

(30/60) 40 40

131313

120600

40 80

1

2

(10/40)

(30/60)

S = 0.75 S = 0.5 S = 0.33

S = 0.75S = 0.75

13 20 30

2334

1

2

S = 1

40 80

120600

(10/40)

(30/60) 30 30

101010

10 20

Early completions on DPM

1

2

S = 1

40 80

120600

(10/40)

(30/60) 20 30

10105

45


