
1

Hypervisors
Introduction

Credits:

 P. Chaganti – Xen Virtualization – A practical handbook

 D. Chisnall – The definitive guide to Xen Hypervisor

 G. Kesden – Lect. 25 CS 15-440

 G. Heiser – UNSW/NICTA/OKL

Introduction

 Virtualization is a technique of partitioning the
resources of a single computing platform into
multiple segregated, virtualized, execution
environments.

 Each environment runs independently of the
other, thus allowing multiple operating systems to
run on the same hardware.

Introduction

 The concept of virtualization already present in
every-day computing…

 Most modern operating systems contain a
simplified system of virtualization;

 Each running process is able to act as if it is the
only thing running. The CPUs and memory are
virtualized.

Introduction

 Virtualization of the CPU: If a process tries to
consume all of the CPU, a modern operating
system will preempt it and allow other processes
to execute;

 Virtualization of the memory: a running process
typically has its own virtual address space that
the operating system maps to physical memory to
give the process the illusion that it is the only user
of RAM.

Introduction

 Each execution environment is called a guest and
the computing platform on which they execute is
called the host.

 The software enabling these multiple execution
environments is commonly referred to as
Hypervisor or Virtual Machine Monitor (VMM).

 The Hypervisor runs on the host and acts as a
bridge between the host and the guests;

2

Mixed OS Environment

Figure: G. Kesden

Hardware

Hypervisor

Linux Red Hat Solaris 10 XP Vista Mac OS

VM3 VM4 VM5VM1 VM2

 Multiple VMs can be implemented on a single
hardware platform to provide individuals or user
groups with their own OS environments

Hardware

Hypervisor

Mixed OS Environment

Figure: G. Kesden

Linux Red Hat Solaris 10 XP Vista Mac OS

VM3 VM4 VM5VM1 VM2

 Virtualization implies a two-level hierarchical
scheduling framework

Local
Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

Global Scheduler

Benefits of Virtualization

• A virtualized system
can be (dynamically
or statically) re-
configured for
changing needs

• A single hardware
platform can support
multiple operating
systems concurrently

• Virtualization helps
isolate the effects of a
failure to the VM
where the failure
occurred

• A system VM provides
a sandbox that
isolates one system
environment from
other environments

Multiple
Secure

Environment

Failure
Isolation

Better
System

Utilization

Mixed‐OS
Environment

Figure: G. Kesden

Virtualization Properties

•Fault Isolation

•Software Isolation

•Performance Isolation
(accomplished through
scheduling and resource
allocation)

Isolation

•All VM state can be captured
into a file (i.e., you can
operate on VM by operating
on file– cp, rm)

•Complexity is proportional to
virtual HW model and
independent of guest
software configuration

Encapsulation

•All guest actions go through
the virtualizing software
which can inspect, modify,
and deny operations

•Security

Interposition
1 2 3

Figure: G. Kesden

Methodologies

Three main methodologies used for providing
virtualization:

 System Emulation – All the hardware resources
are emulated.

 The guest operating system can be run without any
modification;

 It can use the hardware resources through the
hardware emulation layer;

 The VMM executes the CPU instructions that need
more privileges than are available in the user space.

Methodologies

 Paravirtualization – No hardware emulation.

 The operating system that runs on a guest needs to be
a modified version that is aware of the fact that it is
running inside a hypervisor;

 Lower number of privileged CPU instructions that need
to be executed;

 Higher performance w.r.t emulation, closer to native
speed.

3

Methodologies

 OS Level Virtualization – Each guest is isolated
and runs in a secure environment.

 Only multiple instances of guests that run the same
operating systems as the host;

 Close to sandboxes;

 Low run-time overhead.

 E.g., FreeBSD Jails, Solaris Zones

Types of Hypervisor

 Gerald J. Popek and Robert P. Goldberg – “Formal
Requirements for Virtualizable Third Generation
Architectures”, 1974

 Type 1: native (bare-metal) hypervisors

 The Hypervisor runs directly on the host's hardware to control
the hardware and to manage guest operating systems.

 E.g., Xen, VMWare ESXi, Microsoft Hyper-V

 Type 2: hosted hypervisors

 These hypervisors run on a conventional operating system just
as other computer programs do.

 E.g., VMWare Workstation, VirtualBox

Types of Hypervisor

Hardware

Hypervisor

OS OS OS

Hardware

Hypervisor

OS OS OS

OS

Type-1
(bare-metal)

Type-2
(hosted)

Implementation

“Trap and Emulate”

 Raise of an exception (trap) when the guest
executes a privileged instruction (e.g., accessing
a physical resources);

 The exception handler is used to invoke the
hypervisor code.

Figure: G. Heiser

Implementation

“Trap and Emulate”

Popek and Goldberg, 1974

“For any conventional third-generation computer, an
effective VMM may be constructed if the set of
sensitive instructions for that computer is a subset of
the set of privileged instructions.”

Figure: G. Heiser

Implementation

“Trap and Emulate”

Popek and Goldberg, 1974 – In other words…

It is sufficient that all the instructions that could affect
the correct functioning of the VMM (sensitive
instructions) always trap and pass control to the
VMM.

Figure: G. Heiser

4

Implementation

“Trap and Emulate”

Most common architectures are not virtualizable
according to definition of Popek and Goldberg

 x86 – lots of unvirtualizable features

 E.g., PUSH of PSW (Processor State Word) is not privileged

 MIPS – mostly virtualizable, but…

 Kernel registers k0,k1 (needed to save/restore state) are user-
accessible

 ARM – mostly virtualizable but…

 Some instructions are undefined in user-mode

Implementation

Impure Virtualization

Change the Guest OS code replacing sensitive
instructions

 Paravirtualization – by trapping code (hypercalls)

 Binary translation - In-line code emulation

Hypercall

Embedded Systems

 Virtualization historically used for easier sharing
of expensive mainframes.

 Gone out of fashion in 80’s and resurrected in
recent years for improved isolation in modern
computing systems.

 Why virtualization for Embedded Systems?

Embedded Systems

License Separation

 System composed of Linux + proprietary SW
(not open-source)

 VMs can be used to isolate
Linux

Embedded Systems

Software-Architecture Abstraction

 Support for product series: same software
running on different hardware;

 Decoupling from the real hardware.

 Benefits

 Time-to-market;

 Engineering cost.

Embedded Systems

Certification Issues

 Encapsulation of a safety-critical subsystem that
can be certified independently of the other
subsystems running on the same platform

5

Embedded Systems

Security

 Protection against exploits;

 E.g., software attacked by UI exploits

 It is possible to compromise
the core SW from an attack of
the UI SW

 Virtualization protects this kind
of attacks ensuring a
separation into different VMs

Embedded Systems

Automotive Case-Study

 Proliferation of ECUs: more than doubled in 10
years

Embedded Systems

Automotive Case-Study

 Trend: Integration in fewer, more powerful, ECUs

Embedded Systems

Automotive Case-Study

 Thanks to virtualization it is possible to re-use a
complete legacy ECU software

An Overview on
The Xen Hypervisor

The Xen Hypervisor

 What is Xen?

“Xen is an open-source paravirtualization technology
that provides a platform for running multiple operating
systems in parallel on one physical hardware resource”

 Originally developed in 2003 at the University of
Cambridge Computer Laboratory

6

The Xen Hypervisor The Xen Hypervisor

 Xen refers to each virtual machine that runs on a
system as a domain.

 When Xen boots up, it first starts the hypervisor,
which is responsible for starting a domain named
Domain0 (dom0) in which a specific host
operating system runs.

The Xen Hypervisor

 Domain0 is a privileged domain that can access
the hardware resources and can manage all the
other domain (e.g., create, destroy, save, restore,
etc.)

The Xen Hypervisor

 An Unprivileged Domain (domU) guest is more
restricted.

 Typically not allowed to perform hypercalls that
directly access to the hardware.

 Not able to manage other domains or the
hypervisor configuration

The Xen Hypervisor

 Xen is based on para-virtualization

 Requires modification of the guest OS

 Insertion of hypercalls to replace privileged
instructions;

 Time virtualization

 …

The Xen Hypervisor

Hardware-assisted virtualization

 Newer processors have a set of instructions that
makes virtualization easier

 x86: Intel VT-x and AMD Pacifica (AMD-V)

 The CPU provides traps for certain privileged
instructions;

 Enable Guest OSes to be run without
paravirtualization modifications (e.g., old OSes like
Windows XP)

7

The Xen Hypervisor

 Domain Xen

 Hypercall (synchronous)

 Xen Domain

 Asynchronous Event Mechanism (AEM) that replaces
device interrupts

Xen

dom0 domU domU

Hypercall AEM

The Xen Hypervisor

 The Xen hypervisor is the basic abstraction layer
of software that sits directly on the hardware
below any operating systems.

 It is responsible for CPU scheduling (VCPU to
CPU assignment) and memory partitioning of the
various virtual machines running on the hardware
device.

The Xen Hypervisor

 Xen currently supports 4 VCPU schedulers

 Credit

 Credit2

 RTDS

 ARINC 653

Proportional Fair Share
(e.g.,Weighted Round‐Robin)

Global EDF with Reservation Servers

Fixed Time Slices

The Xen Hypervisor

 Xen does not provide any device driver.

 It has no direct knowledge of networking, external
storage devices, video, or any other common I/O
functions found on a computing system.

How does the I/O work in Xen?

The Xen Hypervisor

I/O in Xen

 dom0 is a privileged domain that can access all
the hardware in the system

 The OS running on dom0 has the device drivers
and performs I/O operations on behalf of
unprivileged guest domains (domU);

 Shared memory is used for the communication
between a domU and dom0

The Xen Hypervisor

8

Thank you!
Alessandro Biondi
alessandro.biondi@sssup.it

