
15/04/2015

1

Scuola Superiore Sant’Anna, Pisa

Giorgio Buttazzo

The transition

 On May 17th, 2004, Intel, the world’s largest chip maker,
canceled the development of the Tejas processor, the
successor of the Pentium4-style Prescott processor.

 On July 27th, 2006, Intel announced the official release of the
Core Duo processors family.

 Since then, all major chip producers decided to switch from
single core to multicore platforms.

 Such a phenomenon is known as the multicore revolution.

The reason why this happened has to do with a market
law, predicted by Gordon Moore, Intel's co-founder, in

1965, known as Moore's Law.

1 K
1970

10 K

100 K

1 M

10 M

100 M

1 G

10 G

1975 1980 1985 1990 1995 2000 2005 2010 2015

transistors

Moore’s Law

Number of transistors/chip doubles every 24 months

4004
8008

8080

8086

286

386

486
Pentium

Pentium 2

Pentium 3

Pentium 4

Titanium

Titanium 2

Dual core
Titanium 2

Gate reduction

1990 1995 2000 2005 2010 2015 2020 year

400

200

100

500

300

0

Gate length
(nm)

The Moore's Law was made possible by the
progressive reduction of transistor dimensions.

Benefits of size reduction
There are 2 main benefits of reducing transistor size:

1. a higher number of gates that can fit on a chip;

2. devices can operate at higher frequency.

In fact, if the distance between gates is reduced, signals have
to cover a shorter path, and the time for a state transition
decreases, allowing a higher clock speed.

Why did that happen?

At the launch of Pentium 4, Intel expected single core chips to
scale up to 10 GHz using gates below 90 nm. However, the
fastest Pentium 4 never exceeded 4 GHz.

However…

Power dissipation

The main reason is related to power dissipation in CMOS
integrated circuits, which is mainly due to two causes:

 Dynamic power (Pd) consumed during operation;

 Static power (Ps) consumed when the circuit is off.

Vin Vout

Vdd

CL

Inverter

Vin Vout

Vdd

Gnd

P-MOS

N-MOS

15/04/2015

2

IscVin Vout

Vdd

CL

P-MOS

N-MOS

Dynamic power

Dynamic power is mainly consumed
during logic state transitions to
charge and discharge the load
capacitance CL.

Isw

2
ddLd VfCP 

f = clock frequency

It can be expressed by:

Static power

Static power is due to a quantum
phenomenon where mobile charge
carriers (electrons or holes) tunnel
through an insulating region,
creating a leakage current Ilk Vin Vout

Vdd

CL

IlkIt is independent of the switching
activity and is always present if
the circuit is on.

lkdds IVP 

As devices scale down in size, gate oxide thicknesses
decreases, resulting in a larger leakage current.

Dynamic vs. static power

1990 1995 2000 2005 2010 2015 2020

N
o

rm
al

iz
ed

 p
o

w
er

Static Power
(leakage)

Dynamic
Power

year

Gate length (nm): 500 350 250 180 130 90 65 45 22

1

10-2

10-4

10-6

102

Static Power significant at 90 nm

Power and Heat

A side effect of power consumption is heat, which, if
not properly dissipated, can damage the chip.

If processor performance would have improved by
increasing the clock frequency, the chip temperature
would have reached levels beyond the capability of
current cooling systems.

lkddddL IVVfCP  2

Scaling down, both f and Ilk increased

Power density (W/cm2)

1000

100

10

1

0.1
72 76 80 84 88 92 96 00 04 08 Year

Heating problem

Pentium Tejas
cancelled!

Nuclear
Reactor

Clock speed limited to less than 4 GHz

4004
8008

8080
8085

8086
286

386

486

Pentium
P1

P2

P4

P3

Keeping Moore’s Law alive

The solution followed by the industry to keep the
Moore’s law alive was to

 use a higher number of slower logic gates,

 building parallel devices that work at lower clock
frequencies.

Switch to Multicore Systems!

In other words…

15/04/2015

3

1 K
1970

10 K

100 K

1 M

10 M

100 M

1 G

10 G

1975 1980 1985 1990 1995 2000 2005 2010 2015

10GHz

1 GHz

100 MHz

10 MHz

1 MHz

100 KHz

Keeping Moore’s Law alive

 # of transistors continued to increase according to Moore’s Law

 clock speed and performance experienced a saturation effect

Transistors

Clock speed

How to exploit multiple cores?

The efficient exploitation of multicore platforms poses
a number of new problems that are still being
addressed by the research community.

When porting a real-time application from a single
core to a multicore platform, the following key issues
have to be addressed:

 How to split the code into parallel segments that
can be executed simultaneously?

 How to allocate such segments to the different
cores?

 In a multicore system, sequential languages (as
C/C++) are no longer appropriate to specify
programs.

 In fact, a sequential language hides the intrinsic
concurrency that must be exploited to improve
the performance of the system.

To really exploit hardware redundancy,
most of the code has to be parallelized.

Expressing parallelism A big problem for industry

Parallelizing legacy code implies a tremendous cost
and effort for industries, mainly due to:

 re-design the application

 re-writing the source code

 updating the operating system

 writing new documentation

 testing the system

 software certification

To avoid such costs, the cheapest solution is to port the
software on a multicore platform, but run it on a single core,
disabling all the other cores.

A big problem for industry

However, due to the clock speed saturation effect, a
core in a multicore chip is slower than a single core:

If the application workload was already high, running the
application on a single core of a multicore chip creates an
overload condition.

To avoid such problems, avionic industries buy in advance
enough components for ensuring maintenance for 30 years!

Intel
Pentium 4
Prescott

Intel Core i7

Clock: 2.5 GHzClock: 3.8 GHz

ON OFF

OFF OFF

Other problems

In a single core system, concurrent tasks are
sequentially executed on the processor, hence the
access to physical resources is implicitly serialized
(e.g., two tasks can never cause a contention for a
simultaneous memory access).

Such conflicts not only introduce interference on
task execution but also increase the Worst-Case
Execution Time (WCET) of each tasks.

In a multicore platform, different tasks can run
simultaneously on different cores, hence several
conflicts can arise while accessing physical resources.

15/04/2015

4

19

The WCET issue

While this assumption is correct for single-core
chips, it is NOT true for multicore chips!

The fundamental assumption

Existing RT analysis assumes that the worst-case
execution time (WCET) of a task is constant when
it is executed alone or together with other tasks.

WCET in multicore

Number of active cores

0

2

4

6

N
o

rm
al

iz
ed

 W
C

E
T

1

3

5

1 2 3 4 5 6 7 8

Benchmark

Cache locked (255 pages)

Test by Lockheed Martin Space Systems on 8-core platform

competing with 1
core can double

the WCET

WCET can be 6
times larger

 Why WCET increases up to 6 times?

 Why WCET on 8 cores is lower than WCET on 7 cores?

 What does this mean for system development,
integration and certification?

Questions

Number of active cores

0

2

4

6

N
o

rm
al

iz
ed

 W
C

E
T

1

3

5

1 2 3 4 5 6 7 8

Benchmark
Cache locked (255 pages)

There are multiple reasons

The WCET increases because of the competition
among cores in using shared resources.

 Main memory

 Memory-bus

 Last-level cache

 I/O devices

In a single CPU, only one task can run at a time, so
applications cannot saturate memory and I/O bandwidth.

Competition creates extra delays

 waiting for other tasks to release
the resource

 waiting for accessing the resource

To better understand the interference causes, we need to
take a quick look at the modern computer architectures.

Types of Memory

There are typically three types of memory used in a computer:

Cache
(SRAM)

CPU

BUS

Primary
storage
(DRAM)

Secondary
storage
(Disk)

Primary Storage

It is referred to as main memory or internal memory, and is
directly accessible to the CPU.

It is volatile, which means that it loses its content if power is
removed.

Primary storage includes RAM (based on DRAM technology),
Cache and CPU registers (based on SRAM technology):

 DRAM (Dynamic random-access memory) requires to be
periodically, refreshed (re-read and re-written) otherwise it
would vanish.

 SRAM (Static random-access memory) never needs to be
refreshed as long as power is applied.

15/04/2015

5

Secondary Storage

Examples of secondary storage devices are:

 Hard Disk: based on magnetic technology

 CD ROM, DVD: based on optical technology

 Flash memory: can be electrically erased and
reprogrammed

It is referred to as external memory or auxiliary storage,
because it is not directly accessible by the CPU. The access is
mediated by I/O channels and data are transferred using
intermediate area in primary storage.

It is non volatile, that is, it retains the stored information even if
it is not constantly supplied with electric power.

Cache Memory

The cache is a local memory used by the CPU to reduce the
average time to access data from the main memory.

The cache is faster than the RAM, but more expensive, so
much smaller in size.

Most CPUs have different types of caches:

 Instruction Cache, to speed up executable instruction fetch

 Data Cache, to speed up data fetch and store

 Translation Lookaside Buffer (TLB), used to speed up
virtual-to-physical address translation for both executable
instructions and data.

Cache Levels

The data cache is usually hierarchically organized as a set
of levels: L1, L2, …

L2

L1I L1D

CPU

single CPU chip

instruction
cache

data
cache

L3

TLB

Access times

Logic
Unit

Registers

CPU

L1 Cache

L2 Cache

L3 Cache

Main Memory

Secondary
Storage Cache

Secondary Storage
(Disk)

1 ns

10 ns

20 ns

120 ns

50 s

12 ms

80 ns

capacitylatency

16 MB

1 MB

64 KB

1 KB

16 GB

1 TB

price per GB

$ 1000

$ 10

$ 0.1

x 100

x 100

Cache in multicore chips

In multicore architectures, the L3 cache is typically shared
among cores:

L3 (shared)

L1I L1D

Core 1

L2

TLB

L1I L1D

Core 2

L2

TLB

multicore chip

CRPD: delay introduced by high priority tasks that evict
cache lines containing data used in the future:

Cache related preemption delay

1

2

Cache

write A

A

write B

read A read A
cache
miss

cache
hit

B

Extra time is needed for
reading A, thus increasing
the WCET of 2.

15/04/2015

6

WCET

Task executing alone (or non preemptively) on a single CPU:

i

i

Task experiencing preemptions by higher priority tasks:

Ci
NP

Ci = Ci + CRPDNP
WCETi

 In multicore systems, L1 and L2
caches have the same problem
seen in single-core systems.

CRPD in multicore systems

L1I L1D

Core 2

L2

TLB

L1I L1D

Core 1

L2

TLB

L3

 L3 cache lines can also be
evicted by applications running
on different cores.

 We can partition the last level cache to simulate the cache
architecture of a single-core chip, but the size of each
partition becomes rather small.

Resource conflicts

When applications in different cores run concurrently and
access physical resources, several conflicts may occur:

Main
Memory

L3
Cache

L1
Cache Core 1

L1
Cache Core 2

L3
Cache

Core 1

Core 2

L2
Cache

L2
Cache

Multicore CPU1 Multicore CPU2

High penalty

In multicore systems task WCETs will be higher due to

 eviction on shared caches

 bus/network arbitration

Consequence on WCET

Alone
on single CPU

Concurrent
on single CPU

Concurrent
on multicore

i

i

i

 Interference depends on several factors, (such as
allocation, task flow, specific data inputs, task activation
times), all summing up and contributing to its randomness.

 When more cores are used, inter-core interferences
increase.

 However, the random nature of interference may introduce
deviations from the average case, which explain why the
WCET on 8 cores is less than WCET on 7 cores.

 The implication of this phenomenon is that worst-case
timing analysis, testing, and certification becomes extremely
complex!

Randomness of interference WCET distribution

High uncertainty

Execution times vary more, because interference depends on

 phase between cores (synchronization, scheduling)

 access pattern to shared resource (program paths)

 accessed memory locations (program state)

multicore

single core

Cmin

C

distribution

15/04/2015

7

Main Memory

Typical multicore platform

Dev.
1

Dev.
2

Dev.
3

Dev.
4

L1I L1D

Core 2

L2

TLB

L1I L1D

Core 1

L2

TLB

L3

L1I L1D

Core 2

L2

TLB

L1I L1D

Core 1

L2

TLB

L3

System Bus

Multicore CPU1 Multicore CPU2

Memory banks

Dev.
1

Dev.
2

Dev.
3

Dev.
4

L1I L1D

Core 2

L2

TLB

L1I L1D

Core 1

L2

TLB

L3

L1I L1D

Core 2

L2

TLB

L1I L1D

Core 1

L2

TLB

L3

System Bus

Bank
1

Bank
2

Bank
3

Bank
4

Main Memory

To reduce memory conflicts, the DRAM is divided into banks:

Main memory conflicts

Still, when cores concurrently access the main memory,
DRAM accesses have to be queued, causing a significant
slowdown:

L3

Memory Controller

Core 1 Core 2 Core 3 Core 4

Bank
1

Bank
2

Bank
3

Bank
4

Main Memory

A similar problem occurs when tasks running in different
cores request to access I/O devices at the same time:

I/O conflicts

System Bus

Core1 Core2 Core3 Core4

Dev
4

Dev
3

Dev
2

Dev
1

Test on Intel-Xeon

 Diffbank: Core0  Bank0, Core1-3  Bank 1-3

 Samebank: All cores  Bank0

Types of multicore systems

ARM’s MPCore STI’s Cell Processor

 4 identical ARMv6 cores  One Power Processor Element
 8 Synergistic Processing Element

15/04/2015

8

Expressing parallelism

Code parallelization can be done at different levels:

 Parallel programming languages

(e.g., Ada, Java, CAL).

 Code annotation.

The information on parallel code segments and their
dependencies is inserted in the source code of a
sequential language by means of special constructs
analyzed by a pre-compiler (e.g., OpenMP).

For instance, CAL [UC@Berkeley, 2003] is a
dataflow language.

 Algorithms are described by modular components
(actors), communicating through I/O ports:

 Actions read input tokens, modify the internal
state, and produce output tokens.

Internal state

Actions

Actor

Expressing parallelism

Expressing parallelism

OpenMP specifies parallel code by the pragma
directive.

In any case, a suitable task model is needed to
represent and analyze parallel applications.

#pragma omp parallel for
for (i=0; i<n; i++)

b[i] = a[i] / 2.0;

For instance, the following for statement is executed
as n parallel threads:

A sequential task can be efficiently represented by the
Liu & Layland model, described by 3 parameters:

(Ci, Ti, Di)

occurrencies

execution
time

Ci

min
Ci

max

WCET

Task model

Representing a parallel code requires more complex
structures like a graph:

Task model

Restrictions are needed
to simplify the analysis

Graph models

A Directed Acyclic Graphs (DAG) is a graph in which
links have a direction and there are not cycles:

Directed Acyclic Graphs

In a DAG this
connection is
forbidden

15/04/2015

9

Fork-Join graphs

Computation is view as a sequence of parallel phases
(fork nodes) followed by synchronization points (join
nodes):

 A join node is executed
only after all immediate
predecessors are
completed.

 After a fork node, all
immediate successors
must be executed (the
order does not matter).

Conditional graphs

They are graphs in which there are nodes that
express a conditional statement:

 Only one node among all immediate successors
must be executed, depending on the data:

switchif-then

And-Or Graphs

It is the most general graph representation where:

 OR nodes represent conditional statements ()

 AND nodes represent parallel computations ()

Application model

An application can be modeled as a set of tasks,
each described by a task graph:

A node represents a
sequential portion of
code that cannot be
further parallelized

A task graph specifies the maximum level of parallelism

Application
Task 1 Task n

 Arrival pattern

 Periodic (activations exactly separates by a period T)

 Sporadic (Minimum Interarrival Time T)

 Aperiodic (no interarrival bound exists)

 Is preemption allowed at arbitrary times?

 Is task migration allowed?

Task parameters:

{C1, C2, C3, C4, C5}, D, T

Assumptions and parameters

1

2

5

3

4

Task parameters:

{C1, C2, C3, C4, C5, C6}, D, T

Example

1

3

2 1

2

3

T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D

Interpretation on an unlimited
number of cores

15/04/2015

10

1

2

3

4

5

Required CPU bandwidth:
T
Cs

U =

Important factors

(Cs  D)  A is feasible on a single core

CiCs =

Sequential
Computation Time

(Volume):

(Cp > D)  A is not feasible in any number of cores

1

2

3

4

5

critical path

1

2

3

4

5

Cp D

Parallel
Computation time

Cp = length of a
critical path

Important factors

Performance issues

Assuming we are able to express the parallel structure
of our source code,

 How much performance can we gain by switching
from 1 core to m cores?

 How can we measure the performance
improvement?

It measures the relative performance improvement
achieved when executing a task on a new computing
platform, with respect to an old one.

Rold

Rnew

S =

Rold = response time on the old platform

Rnew = response time on the new platform

Speed-up factor

If the old architecture is a single core platform and
the new architecture is a platform with m cores (each
having the same speed as the single core one), the
speedup factor can be expressed as

S =
R1

Rm

R1 = response time on 1 processor

Rm = response time on m processors

Speed-up factor Speed-up factor

/m

1  



1  

S =
R1

Rm

1

1   + /m
=

 = fraction of parallel code

m = number of processors

1   + /m

Rm = L(1   + /m)

R1 = L

L = length of sequential code

15/04/2015

11

Speed-up factor

[Amdahl’s law]

m

1


0

1

m = 100
 = 0.5
S = 2

S (m,) 1
1   + /m

=

S()
 For largem:

m
S

 


1

1







 1

1
)(

m
S

m1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

2

4

6

8

10

12

14

16

18

20

S
 = 0.95

 = 0.9

 = 0.75
 = 0.5

Amdahl’s Law

Speed-up factor

Considerations

 Law of diminishing returns:

Each time a processor is added the gain is lower

 Performance/price rapidly fall down as m increases

 Considering communications costs, memory, bus
conflicts, and I/O bounds, the situation gets worse

 Parallel computing is only useful for

– limited numbers of processors, or

– highly parallel applications (high values of )

When MP is not suited

Applications having some of the following features
are not suited for running on a multicore platform:

 I/O bound tasks;

 Tasks composed by a series of pipeline
dependent calculations;

 Tasks that frequently exchange data;

 Tasks that contend for shared resources.

Other issues

 How to allocate and schedule concurrent tasks on a
multicore platform?

 How to analyze real-time applications to guarantee
timing constraints, taking into account
communication delays and interference?

 How to optimize resources (e.g., minimizing the
number of active cores under a set of constraints)?

 How to reduce interference?

 How to simplify software portability?

Multiprocessor models

 Identical

Processors are of the same type and have the same
speed. Each task has the same WCET on each processor.

 Uniform

Processors are of the same type but may have different
speeds. Task WCETs are smaller on faster processors.

 Heterogeneous

Processors can be of different type. The WCET of a task
depends on the processor type and the task itself.

15/04/2015

12

Identical processors

Processors are of the same type and speed. Tasks have the
same WCET on different processors.

P1 P2 P3

Task 1 Task 2

Uniform processors

Processors are of the same type but different speed. Task
WCETs are smaller on faster processors.

P1 P2 P3

Task 1 Task 2

speed = 1 speed = 2 speed = 3

Heterogeneous processors

Processors are of the different type. WCETs depend on both
the processor and the task itself.

P1 P2 P3

Task 1 Task 2

1 GHz
small cache
FPU

2 GHz
large cache
I/O coproc.

4 GHz
small cache
no FPU

