. Sant’Anna Real-Time Systems Laboratory

INSTITUTE
OF COMMUNICATION,
INFORMATION
AND PERCEPTION .
TECHNOLOGIES /“

ié?a‘vfg?;&, Scuola Superiore e tw

S
s

]

Global Scheduling in
Multiprocessor Real-Time
Systems

Alessandra Melani

Global vs Partitioned scheduling

U Single shared queue instead of multiple dedicated queues

Global scheduling Partitioned scheduling

EEEEE

Bin-packing; + Uniprocessor
problem scheduling
problem

Well-known

NP-hard in the
strong sense;
various heuristics
adopted

15/04/2015

Pros and cons

[l Global scheduling Partitioned scheduling

v/ Automatic load balancing v/ Supported by automotive
industry (e.g., AUTOSAR)

/ Lower avg. response fime
v Simpler implementation 7 No migrafions
v/ Optimal schedulers exist / Isolafion between cores
v/ More efficient reclaiming 7 Mature scheduling
framework
® Migration costs ¥ Cannot exploit unused
¥ Inter-core synchronization capacity
o ® Rescheduling not
X Loss of cache affinity convenient
X Weak scheduling X NP-hard allocation

framework

Main (negative) results

U Weak theoretical framework .
o Unknown critical instant
o G-EDF is not optimal
o Any G-JLFP scheduler is not optimal

o Optimality only for implicit deadlines

o Many sufficient tests (most of them incomparable)

15/04/2015

Unknown critical instant

U Critical instant
Ll Job release time such that response-time is maximized

L Uniprocessor
O Livu & Layland: synchronous release sequence yields worst-
case response-times
1 Synchronous: all tasks release a job at time 0

[Assuming constrained deadlines and no deadline misses

L) Multiprocessors
L1 No general critical instant is known!
O It is not necessarily the synchronous release sequence...

Unknown critical instant

1 Synchronous periodic arrival of jobs is not a
critical instant for multiprocessors

ol il |
Synchronous periodic !
situation
C.D,T;
=112 P2 H_
7, =(1,1,3)
73 = (5,6,6) I ‘ l ‘ | i|‘
Pl [T
The second job of 14 is
delayed by one unit
P. w_

We need to find pessimistic situations to derive sufficient
schedulability tests

15/04/2015

15/04/2015

G-EDF is not optimal

“ h | |

o BN B
. Scheduled on

T3 processor 1

Scheduled on

Ty processor 2
Tg |
L Uniprocessors J Multiprocessors
0 EDFis optimal 0 G-EDF is not optimall

1 Key problem: sequentiality of tasks

[Two processors available for 1y,
but it can only use one

Any G-JLFP scheduler is not optimal

Two processors, three tasks, T; = 15, C; = 10

“ ——

. Scheduled on

Ty processor |
Scheduled on

T3 | processor 2

. Any job-level fixed-priority scheduler is not optimal

0 Synchronous release time

0 One of the three jobs is scheduled last under any JLFP policy

[Deadline miss unavoidable!

15/04/2015

G-JLDP required for optimality
0 ——

Scheduled on
G-J LFP LY processor 1
Scheduled on
x T3 | processor 2
T B d
G-JLDP - Scheduled on

Scheduled on
1:3 | processor 2

’
S , TZ — processor]
:
1
1
1
\
\
Ay
AY
AY
AY

Y Job priority changes!

U G-JLDP: Global Job Level Dynamic Priority; the priority of
each job may change over time

Proportionate fairness

o P-fair: notion of “fair share of processor”

O If a schedule is P-fair, no implicit deadline will be missed
— optimal algorithm

Basic principle:
O Timeline is divided into equal length slots

) Task period and execution time are mulfiples of the slot
size
O Each task receives amount of slots proportional to its
task utilization
Ci

0 If a task has utilization U = 2, then it will have been allocated U « t time

slots for execution in the interval [0, t]

15/04/2015

Proportionate fairness

Example:

a Cl=Cz=3;T1=T2=6(U1=U2=%)

O Quantum-based: C; € Z*, T; € Z*; scheduling decisions can only
occur at intfegers

U A task executes during a whole time slot or not execute at all in
that time slot

Proportionate fairness

C:
lag(t;,t) =t * (FL) — allocated(t;, t)

1

—_—

Error “Fluid” Real
execution: execution
should have ;
executedin n{0.6)

[0,£)

1 Goal: find an algorithm that minimizes max |lag (T, t)|

L1 Which are the values that lag(t;) can take?

Proportionate fairness

O Example:t={(T; =5, ¢, =2), (T, =7, C, =4)}, 1 processor

No task executesin [0,1)
Tq 2
lag(ty,1) =1+ (E) -0 +#0
Ty lag(ty,1) =1+ G) -0 =0
T H Task t; executesin [0,1) lag(t;,1) =0
1 B 2 . ibl
lag(ty,1) =1 * (E) —1 =0 is impossible
Ty lag(ty,1) =1+ (g) -0 +#0 af fime 1
Task T, executesin [0,1)
T 2
lag(t;, 1) =1+ (E) —0 #0
Ty H lag(tz,1)=1*(§)—1 #0

Proportionate fairness

O Example:t={(T, =4, ¢, =1), (T, =4, C,=1),(T3 =4, C;=1),(T, = 4, C, = 1)},
one processor

1 3
| i | i | lag(‘rl,l):l*(Z)—l ~2
T lag(t,,3) =3 LA
Zj i i Witw 2 =2"\1) 7" T
sl El N
-1 <lag(t;,t) <1seems

Ty | i | i to be the worst-case lag

T

15/04/2015

Proportionate fairness

0 Definition (P-fair schedule):
a schedule is P-fairif and only if Vt; and vV t: —1 < lag(t;,t) < 1

lag(t;, t)

+/-1

Execution domain of P-fair

Slope U;

Proportionate fairness

U Theorem

A P-fair schedule is optimal in the sense of feasibility for a set of

periodic tasks with implicit deadlines
- Proof

A schedule S is P-fair

=>-1<lag(t,t) <1

= —-1<lag(t;,kT;) <1

=>-1< kTi% — allocated(t;, kT;) < 1

= —1 < kC; — allocated(t;, kT;) < 1

= kC; — allocated(t;,kT;) =0

= kC; = allocated(t;, kT;)

= allocated(t;, (k +1)T;) — allocated(t;, kT;) = C;

= 1; executes C; time-units during [kT;, (k + 1)T;]

= 1; meets every deadline in periodic scheduling

15/04/2015

The algorithm PF

U How to generate a P-fair schedule?

U Execute all urgent tasks
U A task t; is urgent af time t if
lag(t;, t) > 0 and lag(t;, t + 1) = 0 if T; executes

U Do not execute tnegru tasks
U A task t; is thegru atf time t if
lag(t;,t) < 0 and lag(t;, t+ 1) < 0 if t; does not execute

) For the ofher tasks, execute the task that has the least t
such that lag(t;, t) >0

The algorithm PF

] Results

U The algorithm PF assigns priorities to tasks at every time slot
— Job-level dynamic priority (JLDP) scheduling policy

U Theorem: the schedule generated by algorithm PF is P-fair.
U Proof: [Baruah et al., ‘96]

15/04/2015

The algorithm PF

D EXOmple T= {(Tl = 5, Cl = 2), (TZ = 5, CZ = 3) }, one

processor
At fime 0, any of the two tasks
T | | | | | | may be scheduled
At fime 1: At fime 2 if T, executes:

lag(ty,1) =1 2 —1———3
= *x [— —
ag(ty, 5 5

lag(t, 1) =1)02
= | — | — = —
ag(ty, 5 5

lag(t,,2) =2 0 1 !
= | =) — = —
ag(tz, 5 5

T, is urgent at fime 11!

The algorithm PF

D EXOmple T= {(Tl = 5, Cl = 2), (TZ = 5, CZ = 3) }, one

processor
2 m
At fime 2: At fime 3 if T, executes:
2 1 2 1
lag(ty,2) =2 * < —1=—§ lag(ty,3) =3 * T —1=§

lag(ty,2) =2 AN
= | — | — = —
ag(ty, 5 5

T, is scheduled since it has the least t such that lag is positive

3 1
lag(t,,3) =3 * < —2=—§

15/04/2015

10

15/04/2015

The algorithm PF

D EXOmple T= {(Tl = 5, Cl = 2), (TZ = 5, CZ = 3) }, one
processor

. i [[]|

At time 3:

2
lag(t,3) = 3 + (g) -

1

5

3 1

= —) — 2 —_ ——

lag(t,,3) =3« (5> z

At fime 4 if t; executes:

lag(t,,4) = 4 2 2 2
= x| =] — = ——
a9\t 5 5

T, is scheduled since it has the least t such that lag is positive

The algorithm PF
D EXOmple T= {(Tl = 5, Cl = 2), (TZ = 5, CZ = 3) }, one
processor
* i | |||]
At fime 4: At fime 5 if T, executes:

2 2 3
lag(r1,4)=4*<§)—2=—§ lag(rz,5)=5*<§>—3=0
lag(t, 4) = 4 + (g) o é 1, is urgent at time 4!

...and so on...

11

Proportionate fairness

U Exact test of existence of a P-fair schedule:

n
ZUi <m
i=1

) Full processor utilization!

Disadvantages
O High number of preemptions
. High number of migrations

o Optimal only for implicit deadlines

(Other) negative results

o No optimal algorithm is known for constrained or
arbitrary deadline systems

. No optimal online algorithm is possible for arbitrary
collections of jobs [Leung and Whitehead]

O Even for sporadic task systems, optimality requires
clairvoyance [Fisher et al., 2009]

= Many sufficient schedulability tests exist, according to
different metrics of evaluation

We will see one of those in the next lecture ...

15/04/2015

12

15/04/2015

Taxonomy of multiprocessor
scheduling algorithms

Optimal

Uniprocessor

Multiprocessor

Not
EDF
anymore

Alessandra Melani
alessandra.melani

Oyl =
G~

13

