

Pros and cons

- Global scheduling
 - ✓ Automatic load balancing
 - ✓ Lower avg. response time
 - ✓ Simpler implementation
 - ✓ Optimal schedulers exist
 - ✓ More efficient reclaiming
 - ✗ Migration costs
 - ✗ Inter-core synchronization
 - X Loss of cache affinity
 - Weak scheduling framework

- Partitioned scheduling
 - ✓ Supported by automotive industry (e.g., AUTOSAR)
 - √ No migrations
 - √ Isolation between cores
 - Mature scheduling framework
 - Cannot exploit unused capacity
 - Rescheduling not convenient
 - × NP-hard allocation

Main (negative) results

■ Weak theoretical framework

- Unknown critical instant
- ☐ G-EDF is not optimal
- ☐ Any G-JLFP scheduler is not optimal
- Optimality only for implicit deadlines
- ☐ Many sufficient tests (most of them incomparable)

Unknown critical instant

- Critical instant
 - ☐ Job release time such that response-time is maximized
- Uniprocessor
 - ☐ Liu & Layland: synchronous release sequence yields worstcase response-times
 - □ Synchronous: all tasks release a job at time 0
 - Assuming constrained deadlines and no deadline misses
- Multiprocessors
 - No general critical instant is known!
 - ☐ It is not necessarily the synchronous release sequence...

Unknown critical instant

Synchronous periodic arrival of jobs is not a critical instant for multiprocessors

 $\frac{C_{i}, D_{i}, T_{i}}{\tau_{1} = (1, 1, 2)}$ $\tau_{2} = (1, 1, 3)$ $\tau_{3} = (5, 6, 6)$ Synchronous periodic situation

The second job of τ_1 is delayed by one unit

We need to find pessimistic situations to derive *sufficient* schedulability tests

- □ P-fair: notion of "fair share of processor"
- ☐ If a schedule is P-fair, no **implicit** deadline will be missed → **optimal** algorithm

Basic principle:

- ☐ Timeline is divided into equal length slots
- Task period and execution time are multiples of the slot size
- Each task receives amount of slots proportional to its task utilization
 - ☐ If a task has utilization $U = \frac{C_i}{T_i}$, then it will have been allocated U * t time slots for execution in the interval [0,t]

Example:

- $C_1 = C_2 = 3$; $T_1 = T_2 = 6$ $(U_1 = U_2 = \frac{1}{2})$
 - au_1
 - τ_2
- Quantum-based: $C_i \in \mathbb{Z}^+$, $T_i \in \mathbb{Z}^+$; scheduling decisions can only occur at integers
- A task executes during a whole time slot or not execute at all in that time slot

11

Proportionate fairness

$$lag(\tau_i,t) = t * \left(\frac{C_i}{T_i}\right) - allocated(\tau_i,t)$$
 Error "Fluid" Real execution: should have executed in
$$[0,t)$$

- □ Goal: find an algorithm that minimizes $\max_{t} |lag(\tau_i, t)|$
- \square Which are the values that $lag(\tau_i)$ can take?

□ Example: $\tau = \{(T_1 = 5, C_1 = 2), (T_2 = 7, C_2 = 4)\}$, 1 processor

No task executes in [0,1)

$$\tau_2$$

 $lag(\tau_1, 1) = 1 * \left(\frac{2}{5}\right) - 0 \neq 0$ $lag(\tau_2, 1) = 1 * (\frac{4}{7}) - 0 \neq 0$

$$\tau_1$$
 \uparrow
 \downarrow
 \downarrow
 \downarrow
 \downarrow

Task τ_1 executes in [0,1)

$$lag(\tau_1, 1) = 1 * (\frac{2}{5}) - 1 \neq 0$$

 $lag(\tau_2, 1) = 1 * (\frac{4}{7}) - 0 \neq 0$

 $lag(\tau_i, 1) = 0$ is impossible at time 1

$$\tau_1$$
 τ_2

Task τ_2 executes in [0,1)

$$lag(\tau_1, 1) = 1 * \left(\frac{2}{5}\right) - 0 \neq 0$$

$$lag(\tau_2, 1) = 1 * \left(\frac{4}{7}\right) - 1 \neq 0$$

Proportionate fairness

Example: $\tau = \{(T_1 = 4, C_1 = 1), (T_2 = 4, C_2 = 1), (T_3 = 4, C_3 = 1), (T_2 = 4, C_2 = 1)\},$ one processor

$$lag(\tau_1, 1) = 1 * \left(\frac{1}{4}\right) - 1 = -\frac{3}{4}$$

$$lag(\tau_4, 3) = 3 * (\frac{1}{4}) - 0 = \frac{3}{4}$$

 $-1 < lag(\tau_i, t) < 1$ seems to be the worst-case lag

Definition (P-fair schedule):

a schedule is P-fair if and only if $\forall \tau_i$ and $\forall t$: $-1 < lag(\tau_i, t) < 1$

15

Proportionate fairness

Theorem

A P-fair schedule is optimal in the sense of feasibility for a set of periodic tasks with implicit deadlines

Proof

A schedule S is P-fair

- $\Rightarrow -1 < lag(\tau_i, t) < 1$
- $\Rightarrow -1 < lag(\tau_i, kT_i) < 1$
- $\Rightarrow -1 < kT_i \frac{c_i}{T_i} allocated(\tau_i, kT_i) < 1$
- $\Rightarrow -1 < kC_i allocated(\tau_i, kT_i) < 1$
- $\Rightarrow kC_i allocated(\tau_i, kT_i) = 0$
- $\Rightarrow kC_i = allocated(\tau_i, kT_i)$
- \Rightarrow allocated $(\tau_i, (k+1)T_i) allocated(\tau_i, kT_i) = C_i$
- $\Rightarrow \tau_i$ executes C_i time-units during $[kT_i, (k+1)T_i]$
- $\Rightarrow \tau_i$ meets every deadline in periodic scheduling

The algorithm PF

- How to generate a P-fair schedule?
 - Execute all *urgent* tasks
 - \square A task τ_i is urgent at time t if $lag(\tau_i, t) > 0$ and $lag(\tau_i, t+1) \ge 0$ if τ_i executes
 - Do not execute *tnegru* tasks
 - ightharpoonup A task au_i is tnegru at time t if $lag(au_i,t)<0$ and $lag(au_i,t+1)\leq 0$ if au_i does not execute
 - \square For the other tasks, execute the task that has the least t such that $lag(\tau_i,t)>0$

The algorithm PF

- Results
 - ☐ The algorithm PF assigns priorities to tasks at every time slot
 → Job-level dynamic priority (JLDP) scheduling policy
 - ☐ Theorem: the schedule generated by algorithm PF is P-fair.
 - □ Proof: [Baruah et al., '96]

The algorithm PF

 \square Example: τ = {($T_1 = 5, C_1 = 2$), ($T_2 = 5, C_2 = 3$)}, one processor

At time 0, any of the two tasks may be scheduled

At time 2 if τ_2 executes:

$$lag(\tau_2, 2) = 2 * \left(\frac{3}{5}\right) - 1 = \frac{1}{5}$$

The algorithm PF

 \square Example: τ = {($T_1 = 5, C_1 = 2$), ($T_2 = 5, C_2 = 3$)}, one processor

At time 2:

$$lag(\tau_1, 2) = 2 * \left(\frac{2}{5}\right) - 1 = -\frac{1}{5}$$

$$lag(\tau_1, 3) = 3 * \left(\frac{2}{5}\right) - 1 = \frac{1}{5}$$

$$lag(\tau_2, 2) = 2 * \left(\frac{3}{5}\right) - 1 = \frac{1}{5}$$

$$lag(\tau_2, 3) = 3 * \left(\frac{3}{5}\right) - 2 = -\frac{1}{5}$$

At time 3 if τ_2 executes:

$$lag(\tau_1, 3) = 3 * \left(\frac{2}{5}\right) - 1 = \frac{1}{5}$$

 $lag(\tau_2, 3) = 3 * \left(\frac{3}{5}\right) - 2 = -\frac{1}{5}$

 au_2 is scheduled since it has the least t such that lag is positive

The algorithm PF

 \square Example: τ = {($T_1 = 5, C_1 = 2$), ($T_2 = 5, C_2 = 3$)}, one processor

At time 3:

At time 3: At time 4 if
$$\tau_1$$
 executes:
$$lag(\tau_1,3) = 3*\left(\frac{2}{5}\right) - 1 = \frac{1}{5} \qquad \qquad lag(\tau_1,4) = 4*\left(\frac{2}{5}\right) - 2 = -\frac{2}{5}$$
$$lag(\tau_2,3) = 3*\left(\frac{3}{5}\right) - 2 = -\frac{1}{5}$$

At time 4 if τ_1 executes:

$$lag(\tau_1, 4) = 4 * \left(\frac{2}{5}\right) - 2 = -\frac{2}{5}$$

 τ_1 is scheduled since it has the least t such that lag is positive

The algorithm PF

processor

At time 4:

At time 4: At time 5 if
$$\tau_2$$
 executes: $lag(\tau_1, 4) = 4 * \left(\frac{2}{5}\right) - 2 = -\frac{2}{5}$ $lag(\tau_2, 5) = 5 * \left(\frac{3}{5}\right) - 3 = 0$ $lag(\tau_2, 4) = 4 * \left(\frac{3}{5}\right) - 2 = \frac{2}{5}$ τ_2 is urgent at time 4!!

At time 5 if τ_2 executes:

$$lag(\tau_2, 5) = 5 * \left(\frac{3}{5}\right) - 3 = 0$$

...and so on...

■ Exact test of existence of a P-fair schedule:

$$\sum_{i=1}^{n} U_i \le m$$

☐ Full processor utilization!

Disadvantages

- ☐ High number of preemptions
- ☐ High number of migrations
- Optimal only for implicit deadlines

(Other) negative results

- No optimal algorithm is known for constrained or arbitrary deadline systems
- No optimal online algorithm is possible for arbitrary collections of jobs [Leung and Whitehead]
- Even for sporadic task systems, optimality requires clairvoyance [Fisher et al., 2009]
- ⇒ Many <u>sufficient</u> schedulability tests exist, according to different metrics of evaluation

We will see one of those in the next lecture ...

