
15/04/2015

1

1

Global Scheduling in
Multiprocessor Real-Time

Systems

Alessandra Melani

2

Global vs Partitioned scheduling
 Single shared queue instead of multiple dedicated queues

  





Global scheduling Partitioned scheduling











Bin-packing
problem

Uniprocessor
scheduling

problem

+

NP-hard in the
strong sense;

various heuristics
adopted

Well-known

3

Pros and cons

Global scheduling
Automatic load balancing

Lower avg. response time

Simpler implementation

Optimal schedulers exist

More efficient reclaiming

Migration costs

Inter-core synchronization

Loss of cache affinity

Weak scheduling
framework

 Partitioned scheduling
Supported by automotive
industry (e.g., AUTOSAR)

No migrations

Isolation between cores

Mature scheduling
framework
Cannot exploit unused
capacity
Rescheduling not
convenient
NP-hard allocation

4

Main (negative) results

Weak theoretical framework

 Unknown critical instant

 G-EDF is not optimal

 Any G-JLFP scheduler is not optimal

 Optimality only for implicit deadlines

 Many sufficient tests (most of them incomparable)

5

Unknown critical instant

Critical instant
 Job release time such that response-time is maximized

 Uniprocessor
 Liu & Layland: synchronous release sequence yields worst-

case response-times
 Synchronous: all tasks release a job at time 0

 Assuming constrained deadlines and no deadline misses

Multiprocessors
 No general critical instant is known!

 It is not necessarily the synchronous release sequence…

6

Unknown critical instant

 Synchronous periodic arrival of jobs is not a
critical instant for multiprocessors

Synchronous periodic
situation

The second job of τଵ is
delayed by one unit

We need to find pessimistic situations to derive sufficient
schedulability tests

૚࣎ ൌ ૚, ૚, ૛
૛࣎ ൌ ሺ૚, ૚, ૜ሻ
૜࣎ ൌ ሺ૞, ૟, ૟ሻ

ଵܲ

ଶܲ

ଵܲ

ଶܲ

,࢏࡯ ,࢏ࡰ ࢏ࢀ

15/04/2015

2

7

G-EDF is not optimal

 Uniprocessors
 EDF is optimal

 Multiprocessors
 G-EDF is not optimal

 Key problem: sequentiality of tasks

 Two processors available for τଵ,
but it can only use one

τଵ

τଶ

τଷ

τସ

τହ

Scheduled on
processor 1

Scheduled on
processor 2

8

Any G-JLFP scheduler is not optimal

 Any job-level fixed-priority scheduler is not optimal
 Synchronous release time

 One of the three jobs is scheduled last under any JLFP policy

 Deadline miss unavoidable!

τଵ

τଶ

τଷ

Scheduled on
processor 1

Scheduled on
processor 2

Two processors, three tasks, ௜ܶ ൌ ௜ܥ ,15 ൌ 10

9

G-JLDP required for optimality

Job priority changes!

τଵ
τଶ

τଷ

Scheduled on
processor 1

Scheduled on
processor 2

τଵ
τଶ

τଷ

Scheduled on
processor 1

Scheduled on
processor 2

G-JLFP

G-JLDP

 G-JLDP: Global Job Level Dynamic Priority; the priority of
each job may change over time

10

Proportionate fairness

 P-fair: notion of “fair share of processor”

 If a schedule is P-fair, no implicit deadline will be missed
→	optimal algorithm

Basic principle:

 Timeline is divided into equal length slots

 Task period and execution time are multiples of the slot
size

 Each task receives amount of slots proportional to its
task utilization
 If a task has utilization ܷ ൌ

஼೔
்೔

, then it will have been allocated ܷ ∗ ݐ time
slots for execution in the interval ሾ0, ሿݐ

11

Proportionate fairness
Example:

 ଵܥ ൌ ଶܥ ൌ 3;	 ଵܶ ൌ ଶܶ ൌ 6	ሺ ଵܷ ൌ ଶܷ ൌ
ଵ

ଶ
ሻ

 Quantum-based: ܥ௜ ∈ 	Ժା, ௜ܶ ∈ 	 Ժା; scheduling decisions can only
occur at integers

 A task executes during a whole time slot or not execute at all in
that time slot

τଵ

τଶ

12

Proportionate fairness

݈ܽ݃ τ௜, ݐ ൌ ݐ ∗
௜ܥ
௜ܶ
െ ,ሺτ௜݀݁ݐܽܿ݋݈݈ܽ ሻݐ

 Goal: find an algorithm that minimizes max
௧
|݈ܽ݃ሺτ௜, |ሻݐ

 Which are the values that ݈ܽ݃ሺτ௜ሻ can take?

Error “Fluid”
execution:

should have
executed in

ሾ0, ሻݐ

Real
execution

in ሾ0, ሻݐ

15/04/2015

3

13

Proportionate fairness

τଵ

τଶ

τଵ

τଶ

τଵ

τଶ

 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 7, ଶܥ ൌ 4 , 1 processor

No task executes in ሾ0,1ሻ
݈ܽ݃ τଵ, 1 ൌ 1 ∗ ଶ

ହ
െ 0	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∗ ସ

଻
െ 0	 ് 0

Task τଵ executes in ሾ0,1ሻ
݈ܽ݃ τଵ, 1 ൌ 1 ∗ ଶ

ହ
െ 1	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∗ ସ

଻
െ 0	 ് 0

Task τଶ executes in ሾ0,1ሻ
݈ܽ݃ τଵ, 1 ൌ 1 ∗ ଶ

ହ
െ 0	 ് 0

݈ܽ݃ τଶ, 1 ൌ 1 ∗ ସ

଻
െ 1	 ് 0

݈ܽ݃ τ௜, 1 ൌ 0
is impossible

at time 1

14

Proportionate fairness

 Example: τ ൌ ଵܶ ൌ 4, ଵܥ ൌ 1 , ଶܶ ൌ 4, ଶܥ ൌ 1 , ଷܶ ൌ 4, ଷܥ ൌ 1 , ଶܶ ൌ 4, ଶܥ ൌ 1 ,
one processor

			݈ܽ݃ τଵ, 1 ൌ 1 ∗
1
4

െ 1 ൌ െ
3
4

݈ܽ݃ τସ, 3 ൌ 3 ∗
1
4

െ 0 ൌ
3
4

τଵ

τଶ

τଷ

τସ
െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1 seems
to be the worst-case lag

15

 Definition (P-fair schedule):
a schedule is P-fair if and only if ∀	τ௜ and ∀	ݐ: െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1

Proportionate fairness

൅/െ	1

Execution domain of P-fair

ݐ

݈ܽ݃ሺτ௜, ሻݐ

Slope ௜ܷ

16

Proportionate fairness
 Theorem

A P-fair schedule is optimal in the sense of feasibility for a set of
periodic tasks with implicit deadlines

 Proof
A schedule ܵ is P-fair
⇒ െ1 ൏ ݈ܽ݃ τ௜, ݐ ൏ 1

⇒ െ1 ൏ ݈ܽ݃ τ௜, ݇ ௜ܶ ൏ 1

⇒ െ1 ൏ ݇ ௜ܶ
஼೔
்೔
	െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൏ 1

⇒ െ1 ൏ ௜ܥ݇ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൏ 1
⇒ ௜ܥ݇ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൌ 0

⇒ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ሺ݇ ൅1ሻ ௜ܶ െ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ ൌ ௜ܥ

⇒ ௜ܥ݇ ൌ ݀݁ݐܽܿ݋݈݈ܽ τ௜, ݇ ௜ܶ

⇒ τ௜ executes ܥ௜ time-units during ݇ ௜ܶ, ݇ ൅ 1 ௜ܶ

⇒ τ௜ meets every deadline in periodic scheduling

17

The algorithm PF
 How to generate a P-fair schedule?

 Execute all urgent tasks
 A task τ௜ is urgent at time ݐ if
݈ܽ݃ τ௜, ݐ ൐ 0 and ݈ܽ݃ሺτ௜, ݐ ൅ 1ሻ ൒ 0 if τ௜ executes

 Do not execute tnegru tasks
 A task τ௜ is tnegru at time ݐ if
݈ܽ݃ τ௜, ݐ ൏ 0 and ݈ܽ݃ τ௜, ݐ ൅ 1 ൑ 0 if τ௜ does not execute

 For the other tasks, execute the task that has the least ݐ
such that ݈ܽ݃ τ௜, ݐ ൐ 0

18

The algorithm PF
 Results

 The algorithm PF assigns priorities to tasks at every time slot
→ Job-level dynamic priority (JLDP) scheduling policy

 Theorem: the schedule generated by algorithm PF is P-fair.
 Proof: [Baruah et al., ‘96]

15/04/2015

4

19

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 1:

			݈ܽ݃ τଵ, 1 ൌ 1 ∗
2
5

െ 1 ൌ െ
3
5

݈ܽ݃ τଶ, 1 ൌ 1 ∗
3
5

െ 0 ൌ
3
5

At time 0, any of the two tasks
may be scheduled

At time 2 if τଶ executes:

݈ܽ݃ τଶ, 2 ൌ 2 ∗
3
5

െ 1 ൌ
1
5

τଶ is urgent at time 1!!

20

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 2:

			݈ܽ݃ τଵ, 2 ൌ 2 ∗
2
5

െ 1 ൌ െ
1
5

݈ܽ݃ τଶ, 2 ൌ 2 ∗
3
5

െ 1 ൌ
1
5

At time 3 if τଶ executes:

݈ܽ݃ τଵ, 3 ൌ 3 ∗
2
5

െ 1 ൌ
1
5

݈ܽ݃ τଶ, 3 ൌ 3 ∗
3
5

െ 2 ൌ െ
1
5

τଶ is scheduled since it has the least ݐ such that lag is positive

21

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 3:

			݈ܽ݃ τଵ, 3 ൌ 3 ∗
2
5

െ 1 ൌ
1
5

݈ܽ݃ τଶ, 3 ൌ 3 ∗
3
5

െ 2 ൌ െ
1
5

At time 4 if τଵ executes:

݈ܽ݃ τଵ, 4 ൌ 4 ∗
2
5

െ 2 ൌ െ
2
5

τଵ is scheduled since it has the least ݐ such that lag is positive

22

The algorithm PF
 Example: τ ൌ ଵܶ ൌ 5, ଵܥ ൌ 2 , ଶܶ ൌ 5, ଶܥ ൌ 3 	 , one

processor

τଵ

At time 4:

			݈ܽ݃ τଵ, 4 ൌ 4 ∗
2
5

െ 2 ൌ െ
2
5

݈ܽ݃ τଶ, 4 ൌ 4 ∗
3
5

െ 2 ൌ
2
5

At time 5 if τଶ executes:

݈ܽ݃ τଶ, 5 ൌ 5 ∗
3
5

െ 3 ൌ 0

τଶ is urgent at time 4!!

…and so on…

23

Proportionate fairness

 Exact test of existence of a P-fair schedule:

෍ ௜ܷ ൑ ݉

௡

௜ୀଵ

 Full processor utilization!

Disadvantages
 High number of preemptions
 High number of migrations
 Optimal only for implicit deadlines

24

(Other) negative results

 No optimal algorithm is known for constrained or
arbitrary deadline systems

 No optimal online algorithm is possible for arbitrary
collections of jobs [Leung and Whitehead]

 Even for sporadic task systems, optimality requires
clairvoyance [Fisher et al., 2009]

⇒ Many sufficient schedulability tests exist, according to
different metrics of evaluation

We will see one of those in the next lecture …

15/04/2015

5

25

Taxonomy of multiprocessor
scheduling algorithms

Uniprocessor
Algorithms

LLFEDF

Partitioned
Algorithms

Global
Algorithms

Global
EDF

Dedicated
Global

Algorithms

Partitioned
EDF Optimal

Algorithms

EKG

DP-Wrap

pfair

LLREF

Uniprocessor

Multiprocessor

RM

Partitioned
FP

Global
FP

DM

Optimal

Not
optimal

anymore

26

Thank you!
Alessandra Melani
alessandra.melani@sssup.it

