15/04/2015

Global vs Partitioned scheduling

- 0 Single shared queue instead of multiple dedicated queues
ietzs

Real-Time Systems Laboratory

Global scheduling Partitioned scheduling

Global Scheduling in
Multiprocessor Real-Time

Systems
Uniprocessor:
scheduling
..problem__
NP-hard in the
. strong selnse; Wellknown
Alessandra Melani various heuristics
adopted

Pros and cons Main (negative) results
U Global scheduling U Partitioned scheduling U Weak theoretical framework .
v/ Automatic load balancing v Supported by automotive 1 Unknown critical instant
v/ Lower avg. response time industry (e.g. AUTOSAR) . .
))) No migrations L G-EDF is not optimal
v Simpler implementation
7 Optimal schedulers exist ¥ lsolation between cores 0 Any G-JLFP scheduler is not optimal
. A ¥ Mature schedulin
7 More efficient reclaiming framework ¢ 1 Optimality only for implicit deadlines
% Migration costs % Cannot exploit unused 0 Many sufficient tests (most of them incomparable)
o capacity
® Inter-core synchronization
. Rescheduling not
% Loss of cache affinity convenient
X Weak scheduling ¥ NP-hard allocation
framework

Unknown critical instant Unknown critical instant
O Critical instant 0 Synchronous periodic arrival of jobs is not a
1 Job release time such that response-time is maximized critical instant for mul’rlprocessors

i : Ml_
U Uniprocessor Synchronous periodic !
0 Liv & Layland: synchronous release sequence yields worst- C.D.T; situation
case response-times 7, =(1,1,2) Py

7, - 1,1,3)

1 Synchronous: all tasks release a job at time 0 73 = (5,6,6)
O Assuming constrained deadlines and no deadline misses Py H [H H
The second job of 1, is
N delayed by one unit
L Multiprocessors »
2

) No general critical instant is known!

We need to find pessimistic situations to derive sufficient
schedulability tests

L Itis not necessarily the synchronous release sequence...

15/04/2015

G-EDF is not optimal

o S —

2 |
Scheduled on
T3 h . processor 1
Scheduled on
Ty processor 2

S —

L Uniprocessors
[EDF is optimal

[Multiprocessors
[G-EDF is not optimal

[Key problem: sequentiality of tasks

O Two processors available for 1y,
but it can only use one

Any G-JLFP scheduler is not optimal

Two processors, three tasks, T; = 15, C; = 10

T
Scheduled on
) l . processor 1
Scheduled on
T3 processor 2

[Any job-level fixed-priority scheduler is not optimal
0 Synchronous release time
0 One of the three jobs is scheduled last under any JLFP policy

L Deadline miss unavoidable!

G-JLDP required for optimality

T
Scheduled on
G_JLFP Ty processor 1
Scheduled on
x ‘[3 processor 2
T1
G-JLDP Scheduled on
Ty processor 1

Scheduled on

‘[3 processor 2

I
i
T
\
\
¥
\
\
\

N
\

Job priority changes! ‘

L) G-JLDP: Global Job Level Dynamic Priority; the priority of
each job may change over time

Proportionate fairness

[P-fair: notion of “fair share of processor”

O If a schedule is P-fair, no implicit deadline will be missed
— optimal algorithm

Basic principle:
1 Timeline is divided into equal length slots

[Task period and execution time are multiples of the slot
size

1 Each task receives amount of slots proportional to its
task utilization

U If a task has utilization U = % then it will have been allocated U * t fime
slots for execution in the interval [0, t]

Proportionate fairness
Example:

d C1:C2:3;T1:T2:6(U1:U2—§)

U Quantum-based: C; € Z*,T; € Z*; scheduling decisions can only
occur at integers

0 A task executes during a whole time slot or not execute at allin
that time slot

Proportionate fairness

C:
lag(t;,t) =t <Fl> — allocated(t;,t)
i

—_— Y~

Error “Fluid” Real
execution: execution
should have i
executed in in[0.6)
[0,8)

0 Goal: find an algorithm that minimizes max |lag(t;, t)|

L) Which are the values that lag(t;) can take?

15/04/2015

Proportionate fairness
O Example:t={(T; =5, ¢, =2), (T, =7, C, =4)}, 1 processor
No task executes in [0,1)
T l—l—l—l—l—l—L lag(t, 1) =1+ (2)-0 0
T, I lag(,) =1+ (3) =0 =0

T H Task t, executes in [0,1) lag(t;,1) =0
1 is impossible

lag(ty, 1) =1+ (g) -1 #0

T, I lag(r, D =1+(1)-0 #0 attime 1

Task T, executes in [0,1)
Tq _ 2
lag(r, 1) =1+ (%) =0 =0
T, H lag(tz,1)=1*(§)—l #0

Proportionate fairness

0 Example:t={(T, =4, ¢, =1), (T, =4, G, =1),(T3 =4, G =1),(T; =4, ; =1)},
one processor

r1m_|_|_'_|_ lag(rl,1)=1*<%)_l=_%
o Wl W]l
w1 H]l

—1 < lag(t;, t) < 1seems
to be the worst-case lag

Proportionate fairness

1 Definition (P-fair schedule):
a schedule is P-fairif and only if V t; and vV t: —1 < lag(t;,t) < 1

lag(t;,t)
+/-1

Execution domain of P-fair

Slope U;

Proportionate fairness

1 Theorem
A P-fair schedule is optimal in the sense of feasibility for a set of

periodic tasks with implicit deadlines
1 Proof

A schedule S is P-fair

= -1<lag(t,t) <1

= —1<lag(t;,kT})) <1

=>-1< kTi;—z — allocated(t;, kT;) < 1

= —1 < kC; — allocated(t;, kT;) < 1

= kC; — allocated (t;, kT;) = 0

= kC; = allocated(t;, kT;)

= allocated(t;, (k +1)T;) — allocated (t;, kT;) = C;

= 1; executes C; time-units during [kT;, (k + 1)T;]

= 1; meets every deadline in periodic scheduling

The algorithm PF

1 How to generate a P-fair schedule?

0 Execute all urgent tasks
0 Atask t; is urgent at time t if
lag(t;,t) > 0 and lag(t;, t + 1) = 0 if t; executes

) Do not execute tnegru tasks
0 Atask t; is tnegru at time t if
lag(t;, t) < 0 and lag(t;, t + 1) < 0 if t; does not execute

0 For the other tasks, execute the task that has the least ¢
such that lag(t;, t) > 0

The algorithm PF

[Results

0 The algorithm PF assigns priorities to tasks at every time slot
— Job-level dynamic priority (JLDP) scheduling policy

0 Theorem: the schedule generated by algorithm PF is P-fair.
1 Proof: [Baruah et al., ‘96]

15/04/2015

The algorithm PF

O Example:t={(T, =5,6, =2), (T, =5, C; =3)}, 0one

processor
At time 0, any of the two tasks
T may be scheduled
At time 1: At time 2 if T, executes:
2 3 3 1
lag(ty, 1) =1+ 3 —1=—§ lag(ty,2) =2+ B —1=§
3 3 . .
lag(ty, 1) =1+ z)- 0= 3 T, Is urgent at time 11!

The algorithm PF

O Example:t={(T, =5,, =2), (T, =5, C; =3)}, 0ne

processor
o i [111]
At time 2: At time 3 if t, executes:
1 2 2 2 1 ! 1 3 3 2 1 1
=2+(2)-1=-= =3+(=)-1==
ag(t,,2) 5 5 ag(ty,3) 5 5
3 1 3 1
lag(ty,2) =2+ g —1=§ lag(t,,3) =3+ g —2=—§

T, is scheduled since it has the least t such that lag is positive

The algorithm PF

O Example:t={(T, =5,¢, =2), (T, =5, C; =3)}, one
processor

T1H| |

At time 3:

At fime 4 if 1, executes:
2 1
lag(ty,3) =3+ (E) -1= 3

2 2
lag(ty, 4) = 4+ (g) —-2=-

5

3 1
lag(ty,3) =3 *(E)—Z =-z

T, is scheduled since it has the least ¢t such that lag is positive

The algorithm PF

0 Example:t={(T, =5,, =2), (T, =5, C; =3)}, one
processor

T1H |

At time 4: At fime 5 if T, executes:

2 2 3
lag(tl,4)=4—*(g>—2=—g lag(tz,5)=5*<§>—3=0

3 2 i i 1
lag(rz,4)=4*<§>—2=§ T, is urgent at fime 4!!

...and so on...

Proportionate fairness

[Exact test of existence of a P-fair schedule:
n

Ui <m
=1
U Full processor utilization!

Disadvantages

0 High number of preemptions

0 High number of migrations

0 Optimal only for implicit deadlines

(Other) negative results

1 No optimal algorithm is known for constrained or
arbitrary deadline systems

1 No optimal online algorithm is possible for arbitrary
collections of jobs [Leung and Whitehead]

1 Even for sporadic task systems, optimality requires
clairvoyance [Fisher et al., 2009]

= Many sufficient schedulability tests exist, according fo
different metrics of evaluation

We will see one of those in the next lecture ...

Taxonomy of multiprocessor
scheduling algorithms

Optimal

Uniprocessor

Not
optimal
anymore |

15/04/2015

Alessandra Melani
alessandra.melani@

