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Global vs Partitioned scheduling

- 0 Single shared queue instead of multiple dedicated queues
ietzs

Real-Time Systems Laboratory

Global scheduling Partitioned scheduling

Global Scheduling in
Multiprocessor Real-Time

Systems
Uniprocessor:
scheduling
..problem__
NP-hard in the
. strong selnse; Wellknown
Alessandra Melani various heuristics
adopted

Pros and cons Main (negative) results
U Global scheduling U Partitioned scheduling U Weak theoretical framework .
v/ Automatic load balancing v Supported by automotive 1 Unknown critical instant
v/ Lower avg. response time industry (e.g. AUTOSAR) . .
) ) ) No migrations L G-EDF is not optimal
v Simpler implementation
7 Optimal schedulers exist ¥ lsolation between cores 0 Any G-JLFP scheduler is not optimal
. A ¥ Mature schedulin
7 More efficient reclaiming framework ¢ 1 Optimality only for implicit deadlines
% Migration costs % Cannot exploit unused 0 Many sufficient tests (most of them incomparable)
o capacity
® Inter-core synchronization
. Rescheduling not
% Loss of cache affinity convenient
X Weak scheduling ¥ NP-hard allocation
framework

Unknown critical instant Unknown critical instant
O Critical instant 0 Synchronous periodic arrival of jobs is not a
1 Job release time such that response-time is maximized critical instant for mul’rlprocessors

i : Ml_
U Uniprocessor Synchronous periodic !
0 Liv & Layland: synchronous release sequence yields worst- C.D.T; situation
case response-times 7, =(1,1,2) Py

7, - 1,1,3)

1 Synchronous: all tasks release a job at time 0 73 = (5,6,6)
O Assuming constrained deadlines and no deadline misses Py H [ H H
The second job of 1, is
N delayed by one unit
L Multiprocessors »
2

) No general critical instant is known!

We need to find pessimistic situations to derive sufficient
schedulability tests

L Itis not necessarily the synchronous release sequence...
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G-EDF is not optimal

o S —

2 |
Scheduled on
T3 h . processor 1
Scheduled on
Ty processor 2

S —

L Uniprocessors
[ EDF is optimal

[ Multiprocessors
[ G-EDF is not optimal

[ Key problem: sequentiality of tasks

O Two processors available for 1y,
but it can only use one

Any G-JLFP scheduler is not optimal

Two processors, three tasks, T; = 15, C; = 10

T
Scheduled on
) l . processor 1
Scheduled on
T3 processor 2

[ Any job-level fixed-priority scheduler is not optimal
0 Synchronous release time
0 One of the three jobs is scheduled last under any JLFP policy

L Deadline miss unavoidable!

G-JLDP required for optimality
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Job priority changes! ‘

L) G-JLDP: Global Job Level Dynamic Priority; the priority of
each job may change over time

Proportionate fairness

[ P-fair: notion of “fair share of processor”

O If a schedule is P-fair, no implicit deadline will be missed
— optimal algorithm

Basic principle:
1 Timeline is divided into equal length slots

[ Task period and execution time are multiples of the slot
size

1 Each task receives amount of slots proportional to its
task utilization

U If a task has utilization U = % then it will have been allocated U * t fime
slots for execution in the interval [0, t]

Proportionate fairness
Example:

d C1:C2:3;T1:T2:6(U1:U2—§)

U Quantum-based: C; € Z*,T; € Z*; scheduling decisions can only
occur at integers

0 A task executes during a whole time slot or not execute at allin
that time slot

Proportionate fairness

C:
lag(t;,t) =t <Fl> — allocated(t;,t)
i

—_— Y~

Error “Fluid” Real
execution: execution
should have i
executed in in[0.6)
[0,8)

0 Goal: find an algorithm that minimizes max |lag(t;, t)|

L) Which are the values that lag(t;) can take?
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Proportionate fairness
O Example:t={(T; =5, ¢, =2), (T, =7, C, =4)}, 1 processor
No task executes in [0,1)
T l—l—l—l—l—l—L lag(t, 1) =1+ (2)-0 0
T, I lag(, ) =1+ (3) =0 =0

T H Task t, executes in [0,1) lag(t;,1) =0
1 is impossible

lag(ty, 1) =1+ (g) -1 #0

T, I lag(r, D =1+(1)-0 #0 attime 1

Task T, executes in [0,1)
Tq _ 2
lag(r, 1) =1+ (%) =0 =0
T, H lag(tz,1)=1*(§)—l #0

Proportionate fairness

0 Example:t={(T, =4, ¢, =1), (T, =4, G, =1),(T3 =4, G =1),(T; =4, ; =1)},
one processor

r1m_|_|_'_|_ lag(rl,1)=1*<%)_l=_%
o Wl W]l
w1 H ]l

—1 < lag(t;, t) < 1seems
to be the worst-case lag

Proportionate fairness

1 Definition (P-fair schedule):
a schedule is P-fairif and only if V t; and vV t: —1 < lag(t;,t) < 1

lag(t;,t)
+/-1

Execution domain of P-fair

Slope U;

Proportionate fairness

1 Theorem
A P-fair schedule is optimal in the sense of feasibility for a set of

periodic tasks with implicit deadlines
1 Proof

A schedule S is P-fair

= -1<lag(t,t) <1

= —1<lag(t;,kT})) <1

=>-1< kTi;—z — allocated(t;, kT;) < 1

= —1 < kC; — allocated(t;, kT;) < 1

= kC; — allocated (t;, kT;) = 0

= kC; = allocated(t;, kT;)

= allocated(t;, (k +1)T;) — allocated (t;, kT;) = C;

= 1; executes C; time-units during [kT;, (k + 1)T;]

= 1; meets every deadline in periodic scheduling

The algorithm PF

1 How to generate a P-fair schedule?

0 Execute all urgent tasks
0 Atask t; is urgent at time t if
lag(t;,t) > 0 and lag(t;, t + 1) = 0 if t; executes

) Do not execute tnegru tasks
0 Atask t; is tnegru at time t if
lag(t;, t) < 0 and lag(t;, t + 1) < 0 if t; does not execute

0 For the other tasks, execute the task that has the least ¢
such that lag(t;, t) > 0

The algorithm PF

[ Results

0 The algorithm PF assigns priorities to tasks at every time slot
— Job-level dynamic priority (JLDP) scheduling policy

0 Theorem: the schedule generated by algorithm PF is P-fair.
1 Proof: [Baruah et al., ‘96]
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The algorithm PF

O Example:t={(T, =5,6, =2), (T, =5, C; =3)}, 0one

processor
At time 0, any of the two tasks
T may be scheduled
At time 1: At time 2 if T, executes:
2 3 3 1
lag(ty, 1) =1+ 3 —1=—§ lag(ty,2) =2+ B —1=§
3 3 . .
lag(ty, 1) =1+ z)- 0= 3 T, Is urgent at time 11!

The algorithm PF

O Example:t={(T, =5,, =2), (T, =5, C; =3)}, 0ne

processor
o i [ 111]
At time 2: At time 3 if t, executes:
1 2 2 2 1 ! 1 3 3 2 1 1
=2+(2)-1=-= =3+(=)-1==
ag(t,,2) 5 5 ag(ty,3) 5 5
3 1 3 1
lag(ty,2) =2+ g —1=§ lag(t,,3) =3+ g —2=—§

T, is scheduled since it has the least t such that lag is positive

The algorithm PF

O Example:t={(T, =5,¢, =2), (T, =5, C; =3)}, one
processor

T1H| |

At time 3:

At fime 4 if 1, executes:
2 1
lag(ty,3) =3+ (E) -1= 3

2 2
lag(ty, 4) = 4+ (g) —-2=-

5

3 1
lag(ty,3) =3 *(E)—Z =-z

T, is scheduled since it has the least ¢t such that lag is positive

The algorithm PF

0 Example:t={(T, =5,, =2), (T, =5, C; =3)}, one
processor

T1H |

At time 4: At fime 5 if T, executes:

2 2 3
lag(tl,4)=4—*(g>—2=—g lag(tz,5)=5*<§>—3=0

3 2 i i 1
lag(rz,4)=4*<§>—2=§ T, is urgent at fime 4!!

...and so on...

Proportionate fairness

[ Exact test of existence of a P-fair schedule:
n

Ui <m
=1
U Full processor utilization!

Disadvantages

0 High number of preemptions

0 High number of migrations

0 Optimal only for implicit deadlines

(Other) negative results

1 No optimal algorithm is known for constrained or
arbitrary deadline systems

1 No optimal online algorithm is possible for arbitrary
collections of jobs [Leung and Whitehead]

1 Even for sporadic task systems, optimality requires
clairvoyance [Fisher et al., 2009]

= Many sufficient schedulability tests exist, according fo
different metrics of evaluation

We will see one of those in the next lecture ...




Taxonomy of multiprocessor
scheduling algorithms
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Uniprocessor
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