

Response-Time Analysis of Conditional DAG Tasks in Multiprocessor Systems

Alessandra Melani

What does it mean?

■ « Response-time analysis »

- « conditional »
- « DAG tasks »
- « multiprocessor systems »

In other words

- We will analyze a multiprocessor real-time systems...
- ... by means of a schedulability test based on responsetime analysis
- assuming Global Fixed Priority or Global EDF scheduling policies
- and assuming a parallel task model (i.e., a task is modelled as a Directed Acyclic Graph - DAG)

Parallel task models

Many parallel programming models have been proposed to support parallel computation on multiprocessor platforms (e.g., OpenMP, Cilk, Intel TBB)

Early real-time scheduling models: each recurrent task is completely sequential Recently, more expressive execution models allow exploitation of parallelism within tasks

Fork-join

- Each task is an alternating sequence of sequential and parallel segments
- \square Every parallel segment has a degree of parallelism $\le m$ (number of processors)

Synchronous-parallel

- ☐ Generalization of the fork-join model
- □ Allows consecutive parallel segments
- ☐ Allows an arbitrary degree of parallelism of every segment
- Synchronization at segment boundaries: a sub-task in the new segment may start only after completion of all subtasks in the previous segment

DAG

- \square Directed acyclic graph (DAG) $G_i = (V_i, E_i)$
- ☐ Generalization of the previous two models
- Every node is a sequential sub-task
- ☐ Arcs represent precedence constraints between sub-tasks

cp-DAG

 $lue{}$ Conditional - parallel DAG (cp-DAG) $G_i = (V_i, E_i)$

- ☐ Two types of nodes
 - Regular: all successors must be executed in parallel
 - **Conditional**: to model start/end of a conditional construct (e.g., if-then-else statement)
- lacksquare Each node has a WCET $\mathcal{C}_{i,j}$
- ☐ In this lecture, we will focus on **this** task model

Conditional pairs

- \square (v_2, v_6) form a conditional pair
 - lacksquare v_2 is a starting conditional node
 - lacksquare v_6 is the joining point of the conditional branches starting at v_2
- **Restriction**: there cannot be any connection between a node belonging to a branch of a conditional statement (e.g., v_4) and nodes outside that branch (e.g., v_5), including other branches of the same statement

Why this restriction?

- \square It does not make sense for v_5 to wait for v_4 if v_3 is executed
- lacksquare Analogously, v_4 cannot be connected to v_3 since only one is executed
- Violation of the correctness of conditional constructs and the semantics of the precedence relation

Formal definition (1)

Let (v_1, v_2) be a pair of conditional nodes in a DAG $G_i = (V_i, E_i)$. The pair (v_1, v_2) is a conditional pair if the following hold:

□ Suppose there are exactly q outgoing arcs from v_1 to the nodes $s_1, s_2, ..., s_{q_1}$ for some q > 1. Then there are exactly q incoming arcs into v_2 in E_{i_1} from some nodes $t_1, t_2, ..., t_q$

13

Formal definition (2)

□ For each $l \in \{1,2,...,q\}$, let $V'_l \subseteq V_i$ and $E'_l \subseteq E_i$ denote all the nodes and arcs on paths reachable from s_l that do not include v_2 .

By definition, s_l is the sole source node of the DAG $G'_l = (V'_l, E_l')$. It must hold that t_l is the sole sink node of G'_l .

Formal definition (3)

It must hold that $V'_l \cap V'_j = \emptyset$ for all $l, j, l \neq j$.

Additionally, with the exception of (v_1, s_l) , there should be no arcs in E_i into nodes in V_l from nodes not in V_l , for each $l \in \{1,2,...,q\}$.

That is, $E_i \cap ((V_i \setminus V_l') \times V_l') = \{(v_1, s_l)\}$ should hold for all l.

15 CO

Motivating example (1)

■ Why is it important to explicitly model conditional statements?

■ Which branch leads to the worst-case response-time?

Motivating example (4)

- ☐ This example shows that it makes sense to enrich the task model with conditional statements when dealing with parallel task models
- □ Depending on the number of processors and on the other tasks, not always the same branch leads to the worst-case response-time
- Why we do not model conditional statements also with sequential task models?
 - Conditional branches are incorporated in the notion of WCET (longest chain of execution)
 - The only parameters needed to compute the response-time of a task are the WCETs, periods and deadlines of each task in the system

System model

- \square *n* conditional-parallel tasks (cp-tasks) τ_i , expressed as cp-DAGs in the form $G_i = (V_i, E_i)$
- \square platform composed of m identical processors
- **sporadic** arrival pattern (minimum inter-arrival time T_i between jobs of task τ_i)
- $lue{}$ constrained relative deadline $D_i \leq T_i$

<u>Problem:</u> compute a **safe upper-bound** on the response-time of each cp-task, with any work-conserving algorithm (including Global FP and Global EDF)

Quantities of interest

- 1. Chain (or path) of a cp-task
- 2. Longest path
- 3. Volume
- 4. Worst-case workload
- 5. Critical chain

1. Chain (or path)

A chain (or path) of a cp-task τ_i is a sequence of nodes $\lambda = (v_{i,a}, \dots, v_{i,b})$ such that $(v_{i,j}, v_{i,j+1}) \in E_i, \forall j \in [a,b)$.

1. Chain (or path)

A chain (or path) of a cp-task τ_i is a sequence of nodes $\lambda = (v_{i,a}, ..., v_{i,b})$ such that $(v_{i,j}, v_{i,j+1}) \in E_i, \forall j \in [a,b)$.

The length of the chain, denoted by $len(\lambda)$, is the sum of the WCETs of all its nodes:

$$len(\lambda) = \sum_{j=a}^{b} C_{i,j}$$

2. Longest path

The longest path L_i of a cp-task τ_i is any source-sink chain of the task that achieves the longest length

 L_i also represents the time required to execute it when the number of processing units is infinite (large enough to allow maximum parallelism)

Necessary condition for feasibility: $L_i \leq D_i$

2. Longest path

How to compute the longest path?

- 1. Find a topological order of the given cp-DAG
 - △ A topological order is such that of there is an arc from u to v in the cp-DAG, then u appears before v in the topological order \rightarrow can be done in O(n)
 - Example: for this cp-DAG possible topological orders are
 - $(v_1, v_2, v_5, v_3, v_4, v_6, v_8, v_7, v_9)$
 - $v_1, v_5, v_2, v_3, v_4, v_6, v_7, v_8, v_9$
 - $(v_1, v_2, v_4, v_3, v_6, v_5, v_8, v_7, v_9)$

2. Longest path

How to compute the longest path?

2. For each vertex $v_{i,j}$ of the cp-DAG in the topological order, compute the length of the longest path ending at $v_{i,j}$ by looking at its incoming neighbors and adding $C_{i,j}$ to the maximum length recorded for those neighbors

If $v_{i,j}$ has no incoming neighbors, set the length of the longest path ending at $v_{i,j}$ to $\mathcal{C}_{i,j}$

Example:

- For v_1 , record 1
- For v_2 , record 2
- For v_3 , record 5
- For v_4 , record 6
- For v_5 , record max(5,6) = 6

2. Longest path

How to compute the longest path?

3. Finally, the longest path in the cp-DAG may be obtained by starting at the vertex $v_{i,j}$ with the largest recorded value, then repeatedly stepping backwards to its incoming neighbor with the largest recorded value, and reversing the sequence found in this way

Example: recorded values

- Starting at v₉ and stepping backward we find the sequence (v₉, v₇, v₆, v₄, v₂, v₁)
- The longest path is then $(v_1, v_2, v_4, v_6, v_7, v_9)$

Complexity of the longest path computation: O(n)

3. Volume

In the **absence** of conditional branches, the volume of a task is the worst-case execution time needed to complete it on a dedicated single-core platform

It can be computed as the sum of the WCETs of all its vertices:

$$vol_i = \sum_{v_{i,j} \in V_i} C_{i,j}$$

It also represents the maximum amount of workload generated by a single instance of a DAG-task

4. Worst-case workload

In the **presence** of conditional branches, the worst-case workload of a task is the worst-case execution time needed to complete it on a dedicated single-core platform, *over all combination of choices for the conditional branches*

It also represents the maximum amount of workload generated by a single instance of a cp-task

In this example, the worst-case workload is given by all the vertices except v_3 , since the branch corresponding to v_4 yields a larger workload

4. Worst-case workload

How can it be computed?

4. Worst-case workload

■ What is the complexity of this algorithm?

```
Algorithm 1 Worst-Case Workload Computation
 1: procedure WCW(G)
           \sigma \leftarrow \mathsf{TOPOLOGICALORDER}(G)
           for z = |V| down to 1 do
               i \leftarrow \sigma(z)
                S(v_i) \leftarrow \{v_i\}
if SUCC(v_i) \neq \emptyset then
                     if IsBeginCond(v_i) then
                           v^* \leftarrow \operatorname{argmax}_{v \in \operatorname{SUCC}(v_i)} C(S(v))
S(v_i) \leftarrow S(v_i) \cup S(v^*)
10:
                           S(v_i) \leftarrow S(v_i) \cup \bigcup_{v \in \mathtt{SUCC}(v_i)} S(v)
11:
                     end if
12:
                end if
13:
14:
           end for
          return C(S(v_{\sigma(1)}))
16: end procedure
```

- O(|E|) set operations
- Any of them may require to compute $\mathcal{C}(S(v_i))$, which has cost $\mathcal{O}(|V|)$

The time complexity is then O(|E||V|)

5. Critical chain

- \square Given a set of cp-tasks and a (work-conserving) scheduling algorithm, the **critical chain** λ_i^* of a cp-task τ_i is the chain of vertices of τ_i that leads to its worst-case response-time R_i
- How can it be identified?
 - \square We should know the worst-case instance of τ_i (i.e., the job of τ_i that has the largest response-time in the worst-case scenario)
 - ightharpoonup Then we should take its sink vertex v_{i,n_i} and recursively pre-pend the last to complete among the predecessor nodes, until the source vertex $v_{i,1}$ has been included in the chain

Key observation: the critical chain is unknown, but is always upper-bounded by the longest path of the cp-task!

Critical interference

To find the response-time of a cp-task, it is sufficient to characterize the maximum interference suffered by its critical chain

The **critical interference** $I_{i,k}$ imposed by task τ_k on task τ_i is the cumulative workload executed by vertices of τ_k while a node belonging to the critical chain of τ_i is ready to execute but is not executing

33

Critical interference

- \Box I_i : total interference suffered by task τ_i
- \square $I_{i,k}$: total interference of task τ_k on task τ_i

$$R_i = len(\lambda_i^*) + I_i = len(\lambda_i^*) + \frac{\sum_{\tau_k} I_{i,k}}{m}$$

Types of interference

□ In the particular case when i = k, the critical interference $I_{i,i}$ includes interfering contributions of vertices of the same task (not belonging to the critical chain) on τ_i itself

☐ This type of interference is called **self-interference** (or *intra-task interference*) and is **peculiar to parallel tasks** only

☐ The interference from other tasks in the system is called **inter-task interference**

$$R_i = len(\lambda_i^*) + I_i = len(\lambda_i^*) + \frac{\sum_{\tau_k} I_{i,k}}{m} = len(\lambda_i^*) + \frac{1}{m} I_{i,i} + \frac{\sum_{\tau_{k \neq i}} I_{i,k}}{m}$$
 [self-int.] inter-task int.

etis

Inter-task interference Sequential case The first job of τ_k starts executing as late as possible, with a starting time aligned with the beginning of the scheduling window Later jobs are executed as soon as possible Parallel case This scenario may not give a safe upper-bound on the interfering workload. Why? Shifting right the scheduling window may give a larger interfering workload!

Inter-task interference

□ **Lemma:** An upper-bound on the workload of an interfering task τ_k in a scheduling window of length L is given by

$$\mathcal{W}_k(L) = \left\lfloor \frac{L + R_k - W_k/m}{T_k} \right\rfloor W_k + \min\left(W_k, m \cdot \left(\left(L + R_k - \frac{W_k}{m}\right) mod \ T_k\right)\right)$$

- Proof:
 - The maximum number of carry-in and body instances within the window is

39

Inter-task interference

□ Proof (continued):

- \square Each of the $\left\lfloor \frac{L+R_k-W_k/m}{T_k} \right\rfloor$ instances contributes for W_k
- □ The portion of the carry-out job included in the window is $\left(L + R_k \frac{W_k}{m}\right) mod T_k$

- lacksquare At most m processors may be occupied by the carry-out job
- lacktriangle The carry-out job cannot execute for more than W_k units

Intra-task interference

Simple upper-bound

Simple upper-bound
$$R_i = len(\lambda_i^*) + I_i \neq len(\lambda_i^*) + \frac{1}{m}I_{i,i} + \frac{\sum_{\tau_{k \neq i}I_{i,k}}}{m}$$

$$Z_{i} \stackrel{\text{def}}{=} len(\lambda_{i}^{*}) + \frac{1}{m} I_{i,i}$$

$$\leq len(\lambda_{i}^{*}) + \frac{1}{m} (W_{i} - len(\lambda_{i}^{*}))$$

$$\leq L_{i} + \frac{1}{m} (W_{i} - L_{i})$$

Putting things together

Schedulability condition

Given a cp-task set globally scheduled on m processors, an upperbound $R_i^{u\dot{b}}$ on the response-time of a task au_i can be derived by the fixed-point iteration of the following expression, starting with $R_i^{ub} = L_i$:

$$R_i^{ub} = L_i + \frac{1}{m}(W_i - L_i) + \left[\frac{1}{m} \sum_{\forall k \neq i} \mathcal{X}_k^{ALG}\right]$$

Global FP

$$m{\mathcal{X}}_k^{ALG} = m{\mathcal{X}}_k^{FP} = egin{cases} m{\mathcal{W}}_k ig(R_i^{ub}ig), & \forall \ k < i \ 0, & otherwise \end{cases}$$
 Decreasing priority order

Global EDF

$$\boldsymbol{\mathcal{X}}_{k}^{ALG} = \boldsymbol{\mathcal{X}}_{k}^{EDF} = \boldsymbol{\mathcal{W}}_{k}(R_{i}^{ub}), \forall k \neq i$$

$$w_{k}(L) = \left| \frac{L + R_{k} - W_{k}/m}{T_{k}} \right| w_{k} + \min\left(W_{k}, m \cdot \left(\left(L + R_{k} - \frac{W_{k}}{m}\right) \bmod T_{k}\right)\right)$$

Putting things together

$$R_i^{ub} = L_i + \frac{1}{m}(W_i - L_i) + \left[\frac{1}{m} \sum_{\forall k \neq i} \mathcal{X}_k^{ALG}\right]$$

Global FP

The fixed-point iteration updates the bounds in decreasing priority order, starting from the highest priority task, until either:

- \square one of the response-time bounds exceeds the task relative deadline D_k (negative schedulability result);
- □ OR no more update is possible (positive schedulability result), i.e., $\forall k$: $R_k^x = R_k^{x+1} \le D_k$
- Global EDF
 - Multiple rounds may be needed

Reference

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, G. Buttazzo, *Response-Time Analysis of Conditional DAG Tasks in Multiprocessor Systems*, Proceedings of the 27th Euromicro Conference on Real-Time Systems (ECRTS 2015)

