INSTITUTE

OF COMMUNICATION,
INFORMATION
AND PERCEPTION -
TECHNOLOGIES 2
= | Scuola Superiore ei :LS

24/ Sant’Anna Real-Time Systems Laboratory

Response-Time Analysis
of Conditional DAG Tasks
In Multiprocessor Systems

Alessandra Melani

What does it mean?

[l « Response-time analysis » V
[« conditional »

U « DAG tasks »

0 « multiprocessor systems » V

17/04/2015

What does it mean?

= <=
== -

O « conditional » . ’
S22

- = == .

: ;
lf-then-else statements Switch statements

a DAG: Directed Acyclic Graph
(N

O « DAG tasks »

a

17/04/2015

In other words

O We will analyze a multiprocessor real-time systems...

O ... by means of a schedulability test based on response-
time analysis

O ... assuming Global Fixed Priority or Global EDF scheduling
policies

U ... and assuming a parallel task model (i.e., a task is
modelled as a Directed Acyclic Graph - DAG)

Parallel task models

J Many parallel programming models have been proposed
to support parallel computation on multiprocessor
platforms (e.g., OpenMP, Cilk, Intel TBB)

Cilk Plusy?

"wm ~

OpenMP

Early real-time scheduling models: Recently, more expressive
each recurrent task is completely execution models allow exploitation
sequential of parallelism within tasks

17/04/2015

Fork-join

() Each task is an alternating sequence of sequential and
parallel segments

U Every parallel segment has a degree of parallelism < m
(number of processors)

Synchronous-parallel

U Generalization of the fork-join model
U Allows consecutive parallel segments

U Allows an arbitrary degree of parallelism of every segment

U Synchronization at segment boundaries: a sub-task in the
new segment may start only after completion of all sub-
tasks in the previous segment

17/04/2015

DAG

U Directed acyclic graph (DAG) G; = (V;, E})
(I Vl = {vi,l, ...,vi‘ni}; Ei c Vi X Vl
) Generalization of the previous two models

Ul Every node is a sequential sub-task

L1 Arcs represent precedence constraints between sub-tasks

cp-DAG

[Conditional - parallel DAG (cp-DAG) G; = (V;, E;)

J(Regular)all/su€cessors must be executed in parallel

e
L (Conditional))to model start/end of a conditional
construct (e.q., if-then-else statement)

-l Each node has a WCET ; ;
U In this lecture, we will focus on this task model

17/04/2015

Conditional pairs

O (v,, vg) form a conditional pair
L v, is a starting conditional node
L vy is the joining point of the conditional branches starting at v,

1 Restriction: there cannot be any connection between a
node belonging to a branch of a conditional statement

(e.g., v,) and nodes outside that branch (e.qg., vs),
including other branches of the same statement

U It does not make sense for v to wait for v, if v; is executed

U Analogously, v, cannot be connected to v; since only one
is executed

L1 Violation of the correctness of conditional constructs and
the semantics of the precedence relation

17/04/2015

Formal definition (1)

Let (v4,v,) be a pair of conditional nodes in a DAG G; = (V,, E;).
The pair (v4,v;) is a conditional pair if the following hold:

Ul Suppose there are exactly g outgoing arcs from v; to the
nodes sy, sy, ..., s, for some q > 1. Then there are exactly q
incoming arcs into v, in E;, from some nodes ty, t,, ..., t,

Formal definition (2)

U Foreach l€{1,2,..,q}, let V/ € V; and E| € E; denote all
the nodes and arcs on paths reachable from s; that do
not include v,.

By definition, s; is the sole source node of the DAG
G, = (V/,E;"). It must hold that ¢; is the sole sink node of G;.

17/04/2015

Formal definition (3)

It must hold that V/ nV/ = @ forall ,j,1 # j.
Additionally, with the exception of (v4,s;), there should

be no arcs in E; into nodes in ;' from nodes not in V;’, for
eachle{l,2,..,q}.

Thatis, E; n ((V;\V/) x V') = {(vy,s;)} should hold for all L.

Motivating example (1)

U Why is it important to explicity model conditional
statements?

fpragma omp parallel num_ threads (N)
fpragma omp master { S0
fpragma omp task { // Ty > H T
if (condition) { 4
fpragma omp task { // Tp }
}
else {
#pragma omp task { // T }
#pragma omp task { // T3 }
#pragma omp task { // T4 }
}1}}

f tcondji{... T~ == l T
else{...}

Ll Which branch leads to the worst-case response-time?

17/04/2015

Motivating example (2)

* 1 processor

10

ovr v .

e 2 processors

10

12

18

if (cond){...}‘
else{..}

Upper-branch

Lower-branch

Motivating example (3)

» 2 3 processors

|

10

m

if (cond) { ...}’
else{ ...}

17/04/2015

Motivating example (4)

U This example shows that it makes sense to enrich the task
model with conditional statements when dealing with
parallel task models

U Depending on the number of processors and on the
other tasks, not always the same branch leads to the
worst-case response-time

U Why we do not model conditional statements also with
sequential task models?

0 Conditional branches are incorporated in the notion of WCET
(longest chain of execution)

0 The only parameters needed to compute the response-time of a
task are the WCETs, periods and deadlines of each task in the
system

System model

U n conditional-parallel tasks (cp-tasks) t;, expressed as cp-
DAGs in the form G; = (V;, E;)

U platform composed of m identical processors

U sporadic arrival pattern (minimum inter-arrival time T;
between jobs of task ;)

U constrained relative deadline D; < T;

Problem: compute a safe upper-bound on the response-time
of each cp-task, with any work-conserving algorithm
(including Global FP and Global EDF)

17/04/2015

10

Quantities of interest

1. Chain (or path) of a cp-task
2. Longest path
3. Volume

4. Worst-case workload

5. Critical chain

1. Chain (or path)

A chain (or path) of a cp-task t; is a sequence of nodes
A= (Ul',a, "'!vi,b) such that (vi,j,vi,jﬂ) € Ei,Vj € [a, b)

17/04/2015

11

1. Chain (or path)

A chain (or path) of a cp-task 1; is a sequence of nodes
A= (vl-,a, ...,vi,b) such that (vi,j,vi,jﬂ) € Ei,Vj € [a, b)

The length of the chain, denoted by len(}), is the sum of the
WCETs of all its nodes:

b
len()\) = Z Ci,j
j=a

2. Longest path

The longest path L; of a cp-task t; is any source-sink chain of
the task that achieves the longest length

L; also represents the time required to execute it when the
number of processing units is infinite (large enough to allow
maximum parallelism)

Necessary condition for feasibility: L; < D;

17/04/2015

12

2. Longest path
How to compute the longest path?
1. Find a topological order of the given cp-DAG

U A topological order is such that of there is an arc from u
to v in the cp-DAG, then u appears before v in the
topological order —» can be done in 0(n)

L Example: for this cp-DAG possible topological orders are
" (vll VU3, Vs, V3, V4, Vg, Vg, VU7, 179)
" (vll Us, U2, V3, V4, Vg, V7, Vg, 179)

" (vll VU2, Vs, V3, Ve, Vs, Vg, VU7, 179)

2. Longest path
How to compute the longest path?

2. For each vertex v; ; of the cp-DAG in the topological order,
compute the length of the longest path ending at v; ; by
looking at its incoming neighbors and adding (; ; to the
maximum length recorded for those neighbors

If v; ; has no incoming neighbors, set the length of the
longest path ending at v; ; to ; ;
Example:

= Forv,, record 1

= For v,, record 2

= For vs, record 5

= For v,, record 6

= For vg, record max(5,6) = 6

17/04/2015

13

2. Longest path

How to compute the longest path?

3. Finally, the longest path in the cp-DAG may be obtained by
starting at the vertex v; ; with the largest recorded value, then
repeatedly stepping backwards to its incoming neighbor with
the largest recorded value, and reversing the sequence
found in this way

Example: recorded values

e Starting at vy and stepping
backward we find the sequence
(vq, V7, V6, Va, V2, V1)

¢ The longest path is then
(v1, V2, Va, Vg, V7, Vo)

3. Volume

In the absence of conditional branches, the volume of a task
is the worst-case execution time needed to complete it on a
dedicated single-core platform

It can be computed as the sum of the WCETs of all its vertices:

'UOli: Z Ci,j

Vi j€V;

It also represents the
maximum amount of
workload generated by a
single instance of a DAG-task

17/04/2015

14

In the presence of conditional branches, the worst-case
workload of a task is the worst-case execution time needed
to complete it on a dedicated single-core platform, over all
combination of choices for the conditional branches

In this example, the worst-case workload is given by all the
vertices except v;, since the branch corresponding to v,
yields a larger workload

4. Worst-case workload

It also represents the
maximum amount of
workload generated by a
single instance of a cp-task

How can it be computed?

Algorithm 1 Worst-Case Workload Computation

1: procedure WCW(G)
2:

16: end procedure

3
4:
5:
6
7
8

o:
10:
11

o + TOPOLOGICALORDER(G)
for = = || down to 1 do reverse topological order
i o(z) i takes the zt" element of the permutation
S(vi) + {vi} Stakesthe accumulated worst-case workload from v, till the end of the cp-DAG
if succ(v;) # @ then if the vertex has some successors
if ISBEGINCOND(#;) then if the vertex is the head node of a conditional pair
U 4 ArgmaX,esuec(e) C(S(v)) v* s the successor of v; achieving the largest partial workload
S(vi) = S(vi) US(v*) Sw*)is merged into S(v;)
else ifinstead the vertex is a regular one
S(v;) S(v;) U UUESUCC(W) S(v) the workload of all successors is merged into S(v;)
end if
end if
end for
return C'(S(v,(1y)) the worst-case workload accumulated by the source vertex is returned as output

17/04/2015

15

4. Worst-case workload

Ll What is the complexity of this algorithm?

Algorithm 1 Worst-Case Workload Computation
1: procedure WCW(G)
2: o < TOPOLOGICALORDER(G)

3 for = = |1V| down to 1 do

4 14 o(z)

5: S(v;) « {vs} * O(|E]) set operations

6 it SE;CIC(];%) 7 g\the“ N « Any of them may require to

7 if ISBEGINCOND(v;) then compute C(S(v;)), which has cost
8: U 4 Argmax eguee(y,) C(5())

0. S(v) S(v;) US(0¥) oqvh

10: else

It: dsjﬁvz) & S(vi) Ulsesvee(n S() The time complexity is then O(|E||V|)
12 end 1

13: end if

14: end for

15: return C'(S(vg(1)))
16: end procedure

5. Critical chain

U Given a set of cp-tasks and a (work-conserving) scheduling
algorithm, the critical chain A} of a cp-task t; is the chain of
vertices of t; that leads to its worst-case response-time R;

J How can it be identified?

U We should know the worst-case instance of t; (i.e., the job of t; that
has the largest response-time in the worst-case scenario)

U Then we should take its sink vertex v;,, and recursively pre-pend the
last to complete among the predecessor nodes, until the source
vertex v; ; has been included in the chain

Key observation: the critical chain is unknown, but is always
upper-bounded by the longest path of the cp-task!

17/04/2015

16

Critical interference

To find the response-time of a cp-task, it is sufficient to
characterize the maximum interference suffered by its critical
chain

The critical interference I;, imposed by task t, on task 1; is the
cumulative workload executed by vertices of T, while a node

belonging to the critical chain of t; is ready to execute but is
not executing

Critical chain CPUs | “W ‘N H

CPU,
[Critical interference
N Gan cPu, Bha &

7;'1‘ T + Ri

Critical interference

[l I;: total interference suffered by task t;

4 I; - total interference of task t;, on task ;

cu; | Rmha & |
CPU, R

cPU, E
jri N~ ﬂ—/ ri'{:'Ri

l
Il- _ Z‘tk Ii,k

For any work-conserving algorithm!
m

Y lik

R; =len(A)) + I; = len(A}) +

17/04/2015

17

Types of interference

chain

interference I;; includes interfering contributions
of vertices of the same task (not belonging to the (o-&-0-5-0 |
critical chain) on 1; itself

O In the particular case when i = k, the critical %\ critical

self-interf. on 2 processors
U This type of interference is called self-interference

(or intra-task interference) and is peculiar to

parallel tasks only SFTHLTRE TR TR

U The interference from other tasks in the system is ~',|.|.i].|.\u._'.|.|. [
called inter-task interference

R, = len(\) + I; = len(\)) 4+ =tk —

. 1
len(A;) { i

m
self-int. [inter-task int.

Inter-task interference

[Caused by other cp-tasks executing in the system
U Finding it exactly is difficult

0 We need to find an upper-bound on the workload of an interfering
task in the scheduling window [r;, 1; + R;]

U In the sequential case (global multiprocessor scheduling):
Carry-in job i Carry-out job

17/04/2015

18

Inter-task interference

U Sequential case

[The first job of 1, starts executing as late as possible, with a starting time
aligned with the beginning of the scheduling window

[l Later jobs are executed as soon as possible

() Parallel case

[l This scenario may not give a safe upper-bound on the interfering
workload. Why?

o] |0 |ls

N,
\
’

—

\
)]
-

l—
A

i
e
S

ra
‘\

T + Ri
Shifting right the scheduling window may give a larger interfering workload!

Inter-task interference

Ul Pessimistic assumption

[l Each interfering job of task 1, executes for its worst-case workload W,

[l The carry-in and carry-out contributions are evenly distributed among all m
processors

[l Distributing them on less processors cannot increase the workload within
the window

[l Other task configurations cannot lead to a higher workload within the

e [l i |

-,
Y

\

1

—
3
-

N/

17/04/2015

19

Inter-task interference

L Lemma: An upper-bound on the workload of an interfering task t,,
in a scheduling window of length L is given by

Wi (L) = Lt R"T W"/m] W, + min (Wk, ((L + R, — %) mod Tk>>
U Proof:
U The maximum number of carry-in and body instances within the
window is
L+ Ry — Wy/m
l Tk]

Inter-task interference

2 Proof (continued): W(L) = [“R"T—W"/’”I W + min (wk m- ((L + R~ 28 mog Tk>)

L+Ry

U Each of the [—W"/ml instances contributes for W,

U The portion of the carry-out job included in the window is
(L+ R =25 mod T

ER=IRNEENN =

L -
(L +Rk - Wk/m) mod Tk

Ll At most m processors may be occupied by the carry-out job

Ul The carry-out job cannot execute for more than W, units

v

17/04/2015

20

Intra-task interference

0 Simple upper-bound

Ii (L) < Wi (L)

_-- -~o

R; zen(x)+1¢zen(x)+ .‘,:,_Zrk: ik

N 1
Z; € len(};) +EI”

1
< len(A}) + - (Wi—len(X)))

O\

O
W critical chain

/o \®4
< Lk — (Wi — L) _/

_,\ W; — len(})

 Length of the longest path |

Putting things together 6

-
e

0 Schedulability condition

Given a cp-task set globally scheduled on m processors, an upper-
bound R*’ on the response-time of a task 1; can be derived by the
fixed-point iteration of the following expression starting with R*? = L;:

R}“’:Li+ —L)+|= me‘
Vk:tl
) Global FP
x;ilLG — xI’:P — Wk(Rrb)’ Vk<i EDecreasing priority 0rder§
0, otherwise
) Global EDF

X" = XiPF =Wy (R¥P), vk = i

Wi (L) = IMJ W, + min <Wk,m- ((L + Ry —%) mod Tk)>

17/04/2015

21

Putting things together
1 ALG Q
m 2, X ‘

Vk#i

1
R¥ =1L, +E(Wi — L)+

) Global FP

The fixed-point iteration updates the bounds in decreasing priority
order, starting from the highest priority task, until either:

L] one of the response-time bounds exceeds the task relative
deadline D, (negative schedulability result);

1 OR no more update is possible (positive schedulability result),
i.e., Vk: R¥ =R¥*1 < D,

[Global EDF

U Multiple rounds may be needed

Reference

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-
Spaccamela, G. Buttazzo, Response-Time Analysis of
Conditional DAG Tasks in Multiprocessor Systems,
Proceedings of the 27" Euromicro Conference on
Real-Time Systems (ECRTS 2015)

17/04/2015

22

17/04/2015

Alessandra Melani
alessandra.melani(

AV, v]

B
N B

23

