
17/04/2015

1

1

Response-Time Analysis
of Conditional DAG Tasks
in Multiprocessor Systems

Alessandra Melani

2

 « Response-time analysis »

 « conditional »

 « DAG tasks »

 « multiprocessor systems »

What does it mean?

17/04/2015

2

3

 « Response-time analysis »

 « conditional »

 « DAG tasks »

 « multiprocessor systems »

What does it mean?

If-then-else statements Switch statements

4

 « Response-time analysis »

 « conditional »

 « DAG tasks »

 « multiprocessor systems »

What does it mean?

DAG: Directed Acyclic Graph

17/04/2015

3

5

 We will analyze a multiprocessor real-time systems…

 … by means of a schedulability test based on response-
time analysis

 … assuming Global Fixed Priority or Global EDF scheduling
policies

 … and assuming a parallel task model (i.e., a task is
modelled as a Directed Acyclic Graph - DAG)

In other words

6

 Many parallel programming models have been proposed
to support parallel computation on multiprocessor
platforms (e.g., OpenMP, Cilk, Intel TBB)

Parallel task models

Early real-time scheduling models:
each recurrent task is completely

sequential

Recently, more expressive
execution models allow exploitation

of parallelism within tasks

17/04/2015

4

7

 Each task is an alternating sequence of sequential and
parallel segments

 Every parallel segment has a degree of parallelism ൑ ݉
(number of processors)

Fork-join

൑ ݉

8

 Generalization of the fork-join model

 Allows consecutive parallel segments

 Allows an arbitrary degree of parallelism of every segment

 Synchronization at segment boundaries: a sub-task in the
new segment may start only after completion of all sub-
tasks in the previous segment

Synchronous-parallel

ܿ݊ݕݏ

17/04/2015

5

9

 Directed acyclic graph (DAG) ܩ௜ ൌ ሺ ௜ܸ, ௜ሻܧ

 ௜ܸ ൌ ,௜,ଵݒ … , ௜,௡೔ݒ ; ௜ܧ ⊆ ௜ܸ ⨯ ௜ܸ

 Generalization of the previous two models

 Every node is a sequential sub-task

 Arcs represent precedence constraints between sub-tasks

DAG

10

 Conditional - parallel DAG (cp-DAG) ܩ௜ ൌ ሺ ௜ܸ, ௜ሻܧ

 Two types of nodes
 Regular: all successors must be executed in parallel
 Conditional: to model start/end of a conditional

construct (e.g., if-then-else statement)
 Each node has a WCET ܥ௜,௝
 In this lecture, we will focus on this task model

cp-DAG

17/04/2015

6

11

 ሺݒଶ, ଺ሻݒ form a conditional pair
 ૛࢜ is a starting conditional node

 ૟࢜ is the joining point of the conditional branches starting at ݒଶ

 Restriction: there cannot be any connection between a
node belonging to a branch of a conditional statement
(e.g., ݒସ) and nodes outside that branch (e.g., ݒହ),
including other branches of the same statement

Conditional pairs

12

 It does not make sense for ݒହ to wait for ݒସ if ݒଷ is executed

 Analogously, ݒସ cannot be connected to ݒଷ since only one
is executed

 Violation of the correctness of conditional constructs and
the semantics of the precedence relation

Why this restriction?

17/04/2015

7

13

Let ,ଵݒ ଶݒ be a pair of conditional nodes in a DAG ௜ܩ ൌ ௜ܸ, ௜ܧ .

The pair ሺݒଵ, ଶሻݒ is a conditional pair if the following hold:

 Suppose there are exactly ݍ outgoing arcs from ଵݒ to the
nodes ,ଵݏ ,ଶݏ … , ,௤ݏ for some ݍ ൐ 1. Then there are exactly ݍ
incoming arcs into ଶݒ in ,௜ܧ from some nodes ,ଵݐ ,ଶݐ … , ௤ݐ

Formal definition (1)

ଵݒ
…

ଵݏ

ଶݏ…

௤ݏ

ଶݒ

ଵݐ

ଶݐ

௤ݐ

…

14

 For each ݈ ∈ 1,2, … , ݍ , let ௟ܸ
ᇱ ⊆ ௜ܸ and ௟ܧ

ᇱ ⊆ ௜ܧ denote all
the nodes and arcs on paths reachable from ௟ݏ that do
not include .ଶݒ

By definition, ௟ݏ is the sole source node of the DAG
௟ܩ
ᇱ ൌ ሺ ௟ܸ

ᇱ, .௟′ሻܧ It must hold that ௟ݐ is the sole sink node of .௟ᇱܩ

Formal definition (2)

ଵݒ
…

ଵݏ

ଶݏ…

௤ݏ

ଶݒ

ଵݐ

ଶݐ

௤ݐ

…

…

… ଵܩ
ᇱ ൌ ሺ ଵܸ

ᇱ, ଵ′ሻܧ

17/04/2015

8

15

 It must hold that ௟ܸ
ᇱ ∩ ௝ܸ

ᇱ ൌ ∅ for all ݈, ݆, ݈ ് ݆.
Additionally, with the exception of ሺݒଵ, ,௟ሻݏ there should
be no arcs in ௜ܧ into nodes in ௟ܸ ′ from nodes not in ௟ܸ ′, for
each ݈ ∈ ሼ1,2,… , .ሽݍ

That is, ௜ܧ ∩ ௜ܸ\ ௟ܸ
ᇱ ⨯ ௟ܸ

ᇱ ൌ ሼሺݒଵ, ௟ሻሽݏ should hold for all ݈.

Formal definition (3)

ଵݒ
…

ଵݏ

ଶݏ…

௤ݏ

ଶݒ

ଵݐ

ଶݐ

௤ݐ

…

…

…

௫ݒ

16

 Why is it important to explicitly model conditional
statements?

 Which branch leads to the worst-case response-time?

Motivating example (1)

17/04/2015

9

17

Motivating example (2)

• 1 processor

10

18

Upper-branch

Lower-branch

• 2 processors

12

10

Upper-branch

Lower-branch

18

Motivating example (3)
• ≥ 3 processors

10

Upper-branch

Lower-branch

6

• 3 processors + 1 interfering task of 6 time-units

10

Upper-branch Lower-branch

12

17/04/2015

10

19

Motivating example (4)

 This example shows that it makes sense to enrich the task
model with conditional statements when dealing with
parallel task models

 Depending on the number of processors and on the
other tasks, not always the same branch leads to the
worst-case response-time

 Why we do not model conditional statements also with
sequential task models?
 Conditional branches are incorporated in the notion of WCET

(longest chain of execution)
 The only parameters needed to compute the response-time of a

task are the WCETs, periods and deadlines of each task in the
system



20

 ݊ conditional-parallel tasks (cp-tasks) τ௜, expressed as cp-
DAGs in the form ௜ܩ ൌ ሺ ௜ܸ, ௜ሻܧ

 platform composed of ݉ identical processors

 sporadic arrival pattern (minimum inter-arrival time ௜ܶ
between jobs of task τ௜)

 constrained relative deadline ௜ܦ ൑ ௜ܶ

Problem: compute a safe upper-bound on the response-time
of each cp-task, with any work-conserving algorithm
(including Global FP and Global EDF)

System model

17/04/2015

11

21

1. Chain (or path) of a cp-task

2. Longest path

3. Volume

4. Worst-case workload

5. Critical chain

Quantities of interest

22

A chain (or path) of a cp-task τ௜ is a sequence of nodes
λ ൌ ሺݒ௜,௔, … , ௜,௕ሻݒ such that ,௜,௝ݒ ௜,௝ାଵݒ ∈ ,௜ܧ ∀݆ ∈ ሾܽ, ܾሻ.

1. Chain (or path)

17/04/2015

12

23

A chain (or path) of a cp-task τ௜ is a sequence of nodes
λ ൌ ሺݒ௜,௔, … , ௜,௕ሻݒ such that ,௜,௝ݒ ௜,௝ାଵݒ ∈ ,௜ܧ ∀݆ ∈ ሾܽ, ܾሻ.

The length of the chain, denoted by ݈݁݊ሺλሻ, is the sum of the
WCETs of all its nodes:

݈݁݊ λ ൌ ෍ܥ௜,௝

௕

௝ୀ௔

1. Chain (or path)

24

The longest path ௜ܮ of a cp-task τ௜ is any source-sink chain of
the task that achieves the longest length

௜ܮ also represents the time required to execute it when the
number of processing units is infinite (large enough to allow
maximum parallelism)

Necessary condition for feasibility: ௜ܮ ൑ ௜ܦ

2. Longest path

ࢋࢉ࢛࢘࢕࢙ ࢑࢔࢏࢙

17/04/2015

13

25

How to compute the longest path?

1. Find a topological order of the given cp-DAG

 A topological order is such that of there is an arc from ݑ
to ݒ in the cp-DAG, then ݑ appears before ݒ in the
topological order →	can be done in ܱሺ݊ሻ

 Example: for this cp-DAG possible topological orders are

 ሺݒଵ, ,ଶݒ ,ହݒ ,ଷݒ ,ସݒ ,଺ݒ ,଼ݒ ,଻ݒ ଽሻݒ

 ሺݒଵ, ,ହݒ ,ଶݒ ,ଷݒ ,ସݒ ,଺ݒ ,଻ݒ ,଼ݒ ଽሻݒ

 ሺݒଵ, ,ଶݒ ,ସݒ ,ଷݒ ,଺ݒ ,ହݒ ,଼ݒ ,଻ݒ ଽሻݒ

2. Longest path

26

How to compute the longest path?

2. For each vertex ௜,௝ݒ of the cp-DAG in the topological order,
compute the length of the longest path ending at ௜,௝ݒ by
looking at its incoming neighbors and adding ܥ௜,௝ to the
maximum length recorded for those neighbors

If ௜,௝ݒ has no incoming neighbors, set the length of the
longest path ending at ௜,௝ݒ to ܥ௜,௝
Example:
 For ݒଵ, record 1
 For ݒଶ, record 2
 For ݒଷ, record 5
 For ݒସ, record 6
 For ݒହ, record max 5, 6 ൌ 6

2. Longest path

17/04/2015

14

27

How to compute the longest path?

3. Finally, the longest path in the cp-DAG may be obtained by
starting at the vertex ௜,௝ݒ with the largest recorded value, then
repeatedly stepping backwards to its incoming neighbor with
the largest recorded value, and reversing the sequence
found in this way

Example: recorded values

Complexity of the longest path computation: ܱሺ݊ሻ

2. Longest path

૚

૛

૜

૞

૟
૟

ૠ

ૠ

ૡ

• Starting at ݒଽ and stepping
backward we find the sequence
,ଽݒ ,଻ݒ ,଺ݒ ,ସݒ ,ଶݒ ଵݒ

• The longest path is then
,ଵݒ ,ଶݒ ,ସݒ ,଺ݒ ,଻ݒ ଽݒ

28

In the absence of conditional branches, the volume of a task
is the worst-case execution time needed to complete it on a
dedicated single-core platform

It can be computed as the sum of the WCETs of all its vertices:

௜݈݋ݒ ൌ ෍ ௜,௝ܥ
௩೔,ೕ∈௏೔

3. Volume

1 0

It also represents the
maximum amount of

workload generated by a
single instance of a DAG-task

17/04/2015

15

29

In the presence of conditional branches, the worst-case
workload of a task is the worst-case execution time needed
to complete it on a dedicated single-core platform, over all
combination of choices for the conditional branches

In this example, the worst-case workload is given by all the
vertices except ଷݒ , since the branch corresponding to ସݒ
yields a larger workload

4. Worst-case workload

It also represents the
maximum amount of

workload generated by a
single instance of a cp-task

30

How can it be computed?

4. Worst-case workload

reverse topological order
݅ takes the ݖ௧௛ element of the permutation

S takes the accumulated worst-case workload from ݒ௜ till the end of the cp-DAG
if the vertex has some successors

if the vertex is the head node of a conditional pair
∗ݒ is the successor of ݒ௜	achieving the largest partial workload

ܵሺݒ∗ሻ is merged into ܵሺݒ௜ሻ
if instead the vertex is a regular one

the workload of all successors is merged into ܵሺݒ௜ሻ

the worst-case workload accumulated by the source vertex is returned as output

17/04/2015

16

31

4. Worst-case workload

 What is the complexity of this algorithm?

• ܱሺ|ܧ|ሻ set operations
• Any of them may require to

compute ܥሺܵሺݒ௜ሻሻ, which has cost
ܱሺ|ܸ|ሻ

The time complexity is then ܱሺ|ܧ||ܸ|ሻ

32

 Given a set of cp-tasks and a (work-conserving) scheduling
algorithm, the critical chain λ௜

∗ of a cp-task τ௜ is the chain of
vertices of τ௜ that leads to its worst-case response-time ܴ௜

5. Critical chain

 How can it be identified?
 We should know the worst-case instance of τ௜ (i.e., the job of τ௜ that

has the largest response-time in the worst-case scenario)

 Then we should take its sink vertex ௜,௡೔ݒ and recursively pre-pend the
last to complete among the predecessor nodes, until the source
vertex ௜,ଵݒ has been included in the chain

Key observation: the critical chain is unknown, but is always
upper-bounded by the longest path of the cp-task!

17/04/2015

17

33

To find the response-time of a cp-task, it is sufficient to
characterize the maximum interference suffered by its critical
chain

The critical interference ௜,௞ܫ imposed by task τ௞ on task τ௜ is the
cumulative workload executed by vertices of τ௞ while a node
belonging to the critical chain of τ௜ is ready to execute but is
not executing

Critical interference

i

i
iCPU1

CPU2

CPU3

τ4

τ1
τ2

τ3τ2

τ5

τ6

τ8

τ5

τ3

τ7

τ3

௜ݎ ௜ݎ ൅ ܴ௜

i Critical chain

τk Critical interference
of τ௞ on τ௜

34

 :௜ܫ total interference suffered by task τ௜

 :௜,௞ܫ total interference of task τ௞ on task τ௜

Critical interference

i

i
iCPU1

CPU2

CPU3

௜ݎ ௜ݎ ൅ ܴ௜

ܴ௜ ൌ ݈݁݊ሺλ௜
∗ሻ ௜ܫ + ൌ ݈݁݊ሺλ௜

∗ሻ	+	
∑ ூ೔,ೖಜೖ

௠

For any work-conserving algorithm!ܫ௜ ൌ
∑ ௜,௞தೖܫ

݉

τ4

τ1
τ2

τ3τ2

τ5

τ6

τ8

τ5

τ3

τ7

τ3

17/04/2015

18

35

 In the particular case when ݅ ൌ ݇, the critical
interference ܫ௜,௜ includes interfering contributions
of vertices of the same task (not belonging to the
critical chain) on τ௜ itself

 This type of interference is called self-interference
(or intra-task interference) and is peculiar to
parallel tasks only

 The interference from other tasks in the system is
called inter-task interference

Types of interference

ܴ௜ ൌ ݈݁݊ሺλ௜
∗ሻ ൅	ܫ௜ ൌ ݈݁݊ሺλ௜

∗ሻ	൅	
∑ ூ೔,ೖಜೖ

௠
ൌ

݈݁݊ሺλ௜
∗ሻ ൅ ଵ

௠
௜,௜ܫ 	൅

∑ ூ೔,ೖಜೖಯ೔

௠
self-int. inter-task int.

critical
chain

self-interf. on 2 processors

36

 Caused by other cp-tasks executing in the system

 Finding it exactly is difficult

 We need to find an upper-bound on the workload of an interfering
task in the scheduling window ሾݎ௜, ௜ݎ ൅ ܴ௜ሿ

Inter-task interference

 In the sequential case (global multiprocessor scheduling):
Carry-in job Body jobs Carry-out job

What is the scenario that maximizes the interfering workload?

௜ݎ ௜ݎ ൅ ܴ௜

17/04/2015

19

37

 Sequential case
 The first job of τ௞ starts executing as late as possible, with a starting time

aligned with the beginning of the scheduling window

 Later jobs are executed as soon as possible

 Parallel case
 This scenario may not give a safe upper-bound on the interfering

workload. Why?

Inter-task interference

Shifting right the scheduling window may give a larger interfering workload!

௜ݎ ௜ݎ ൅ ܴ௜

38

 Pessimistic assumption
 Each interfering job of task τ௞ executes for its worst-case workload ௞ܹ

 The carry-in and carry-out contributions are evenly distributed among all ݉
processors

 Distributing them on less processors cannot increase the workload within
the window

 Other task configurations cannot lead to a higher workload within the
window

Inter-task interference

௜ݎ ௜ݎ ൅ ܴ௜

݉

17/04/2015

20

39

 Lemma: An upper-bound on the workload of an interfering task τ௞
in a scheduling window of length ܮ is given by

௞ࣱ ܮ ൌ
ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ
௞ܹ ൅ min	 ௞ܹ, ݉ ∙ ܮ ൅ ܴ௞ െ

௞ܹ

݉
	݀݋݉ ௞ܶ

 Proof:
 The maximum number of carry-in and body instances within the

window is
ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ

Inter-task interference

݉

ܮ
ܴ௞

ܴ௞ െ ௞ܹ/݉ ௞ܶ ௞ܶ௞ܶ

40

 Proof (continued):

 Each of the ௅ାோೖିௐೖ/௠

்ೖ
instances contributes for ௞ܹ

 The portion of the carry-out job included in the window is
ܮ ൅ ܴ௞ െ

ௐೖ

௠
	݀݋݉ ௞ܶ

 At most ݉ processors may be occupied by the carry-out job

 The carry-out job cannot execute for more than ௞ܹ units

Inter-task interference
௞ࣱ ܮ ൌ

ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ
௞ܹ ൅ min	 ௞ܹ, ݉ ∙ ܮ ൅ ܴ௞ െ

௞ܹ

݉
	݀݋݉ ௞ܶ

݉

ܮ
ሺܮ ൅ ܴ௞ െ ௞ܹ ݉ሻ⁄ 	݀݋݉ ௞ܶ

17/04/2015

21

41

 Simple upper-bound

ܴ௜ ൌ ݈݁݊ሺλ௜
∗ሻ ൅	ܫ௜ ൌ ݈݁݊ሺλ௜

∗ሻ ൅
ଵ

௠
௜,௜ܫ 	൅

∑ ூ೔,ೖಜೖಯ೔

௠

Intra-task interference

ሻܮ௜,௞ሺܫ ൑ ௞ࣱ ܮ

ܼ௜ ≝ ݈݁݊ λ௜
∗ ൅

1
݉
௜,௜ܫ

൑ ݈݁݊ λ௜
∗ ൅

1
݉
ሺ ௜ܹെ݈݁݊ሺλ௜

∗ሻሻ

൑ ௜ܮ ൅
1
݉
ሺ ௜ܹ	െ	ܮ௜ሻ

௜ܹ െ ݈݁݊ሺλ௜
∗ሻ

critical chain

Length of the longest path

42

 Schedulability condition

Given a cp-task set globally scheduled on ݉ processors, an upper-
bound ܴ௜௨௕ on the response-time of a task τ௜ can be derived by the
fixed-point iteration of the following expression, starting with ܴ௜௨௕ ൌ :௜ܮ

ܴ௜
௨௕ ൌ ௜ܮ ൅

1
݉ ௜ܹ െ ௜ܮ ൅

1
݉
෍ ढ௞

஺௅ீ

∀௞ஷ௜

Putting things together

 Global FP

ढ௞
஺௅ீ ൌ ढ௞

ி௉ ൌ ቊड௞ ܴ௜
௨௕ , 				 ∀	݇ ൏ ݅

0, ݁ݏ݅ݓݎ݄݁ݐ݋														

 Global EDF
ढ௞
஺௅ீ ൌ ढ௞

ா஽ி ൌ ड௞ ܴ௜
௨௕ , ∀	݇ ് ݅

Decreasing priority order

௞ࣱ ܮ ൌ
ܮ ൅ ܴ௞ െ ௞ܹ/݉

௞ܶ
௞ܹ ൅ min	 ௞ܹ,݉ ∙ ܮ ൅ ܴ௞ െ

௞ܹ

݉
	݀݋݉ ௞ܶ

17/04/2015

22

43

ܴ௜
௨௕ ൌ ௜ܮ ൅

1
݉ ௜ܹ െ ௜ܮ ൅

1
݉
෍ ढ௞

஺௅ீ

∀௞ஷ௜

Putting things together

 Global FP

The fixed-point iteration updates the bounds in decreasing priority
order, starting from the highest priority task, until either:

 one of the response-time bounds exceeds the task relative
deadline ܦ௞ (negative schedulability result);

 OR no more update is possible (positive schedulability result),
i.e., ∀	݇:	ܴ௞௫ ൌ ܴ௞

௫ାଵ ൑ ௞ܦ

 Global EDF

 Multiple rounds may be needed

44

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-
Spaccamela, G. Buttazzo, Response-Time Analysis of
Conditional DAG Tasks in Multiprocessor Systems,
Proceedings of the 27th Euromicro Conference on
Real-Time Systems (ECRTS 2015)

Reference

17/04/2015

23

45

Thank you!
Alessandra Melani
alessandra.melani@sssup.it

