17/04/2015

What does it mean?

INSTITUTE
OF COMMUNICATION,
INFORMATION

AND PERCEFTION
TECHNOLOGIES

Seuola Superiore j Ee tis

Sant’Anna RealTime Systems Laboratory
' 0 « Response-time analysis » V

U « conditional »

Response-Time Analysis
of Conditional DAG Tasks
in Multiprocessor Systems

[« DAG tasks »

U « multiprocessor systems » V

Alessandra Melani

What does it mean? What does it mean?
a & a E DAG: Directed Acyclic Graph i
0 « conditional » E : a : //(ﬂlk _.“\ E
Q [een] U « DAG tasks » i (o= 'T@---@__\\ ;
1 : i Nege o= =
g ; . ; & > ;
If-then-else statements Switch statements E \b..---'@ E

In other words Parallel task models

1 Many parallel programming models have been proposed
U We will analyze a multiprocessor real-time systems.... to support parallel computation on multiprocessor
platforms (e.g., OpenMP, Cilk, Intel TBB)

O ... by means of a schedulability test based on response-

time analysis Cilk Plusy/

OpenMP

TB
1 ... assuming Global Fixed Priority or Global EDF scheduling g
policies D

0 ... and assuming a parallel task model (i.e., a task is Early real-time scheduling models: Recently, more expressive
modelled as a Directed Acyclic Graph N DAG) each recurrent task is completely execution models allow exploitation
sequential of parallelism within tasks

17/04/2015

Fork-join

1 Each task is an alternating sequence of sequential and
parallel segments

O Every parallel segment has a degree of parallelism <m
(number of processors)

<m C,%@:}:}/‘O

Synchronous-parallel

J Generalization of the fork-join model
1 Allows consecutive parallel segments
1 Allows an arbitrary degree of parallelism of every segment

1 Synchronization at segment boundaries: a sub-task in the
new segment may start only after completion of all sub-
tasks in the previous segment

sync

DAG

1 Directed acyclic graph (DAG) G; = (V;, E;)
OV ={vi1, e vin s B S Vi x V;

1 Generalization of the previous two models
J Every node is a sequential sub-task

1 Arcs represent precedence constraints between sub-tasks
-~

: _..
Q—@‘“’@\@\\
A

cp-DAG

1 Conditional - parallel DAG (cp-DAG) G; = (V;, E;)
v

+€cessors must be executed in parallel

0 model start/end of a conditional
e.g., if-then-else statement)

U Each node has a WCET (; ;
[In this lecture, we will focus on this task model

O (v,, v6) form a conditional pair
[v, is a starting conditional node
) v is the joining point of the conditional branches starting at v,

[Restriction: there cannot be any connection between a
node belonging to a branch of a conditional statement

(e.g., v,) and nodes outside that branch (e.g., vs),
including other branches of the same statement

O It does not make sense for v to wait for v, if v; is executed

1 Analogously, v, cannot be connected to v; since only one
is executed

U Violation of the correctness of conditional constructs and
the semantics of the precedence relation

17/04/2015

Formal definition (1)

Let (v4,v,) be a pair of conditional nodes in a DAG G; = (V;, E}).
The pair (v4,v,) is a conditional pair if the following hold:
U Suppose there are exactly q outgoing arcs from v; to the

nodes sy, sy, ..., Sq, for some q > 1. Then there are exactly q
incoming arcs into v, in E;, from some nodes ty, t, ..., tq

Formal definition (2)

U For each 1 €{1,2,...,q}, let V/ € V; and E; € E; denote all
the nodes and arcs on paths reachable from s; that do
notinclude v,.

By definition, s; is the sole source node of the DAG
G; = (V/,E;"). It must hold that ¢, is the sole sink node of G;.

G1 = (W, E1)

Formal definition (3)

O It must hold that v/ nV/ = @ forall 1,j,1 # j.
Additionally, with the exception of (vq,s;), there should
be no arcs in E; into nodes in V;’ from nodes not in V', for
eachle{1,.,..,q}.

Thatis, E; n ((V\V}) x V) = {(v1,s,)} should hold for all L.

Motivating example (1)

U Why is it important to explicity model conditional
statements?

#pragma omp parallel num_threads (N)
#pragma omp master | 0 -
{pragma omp task { // Ty - n
if (condition) { T
+pragma omp task { // T
}

else |
+pragma omp task { // To
fpragma omp task { // T3
#pragma omp task { // Ty
1203}

v
¥ A\
u

I
|
A\
~

) Which branch leads to the worst-case response-time?

Motivating example (2)

+ 1 processor

Upper-branch —

10

18

* 2 processors

10

Rl

Motivating example (3)

e 23 processors

1o
Upper-branch — L "R

o 3
10 A (cond) { T —— Ty
else{ .} ;3

Lower-branch

m
eff

« 3 processors + 1 interfering task of 6 time-units

.
.
.
1 1
-_— ;
10 |
12

17/04/2015

Motivating example (4)

U This example shows that it makes sense to enrich the task
model with conditional statements when dealing with
parallel task models

U Depending on the number of processors and on the
other tasks, not always the same branch leads to the
worst-case response-time

1 Why we do not model conditional statements also with
sequential task models?

J Conditional branches are incorporated in the notion of WCET
(longest chain of execution)

1 The only parameters needed to compute the response-time of a
task are the WCETs, periods and deadlines of each task in the
system

System model
U n conditional-parallel tasks (cp-tasks) t;, expressed as cp-
DAGs in the form G; = (V;, E;)
4 platform composed of m identical processors

O sporadic arrival pattern (minimum inter-arrival time T;
between jobs of task t;)

[constrained relative deadline D; < T;

Problem: compute a safe upper-bound on the response-time
of each cp-task, with any work-conserving algorithm
(including Global FP and Global EDF)

Quantities of interest

1. Chain (or path) of a cp-task
2. Longest path

3. Volume

4. Worst-case workload

5. Critical chain

1. Chain (or path)

A chain (or path) of a cp-task t; is a sequence of nodes
A= (ig, .., v;p) such that (v; ;v j11) € E;,Vj € [a, D).

1. Chain (or path)

A chain (or path) of a cp-task t; is a sequence of nodes
A= (ig, .., vip) such that (v; ;,v; j11) € E;,Vj € [a, D).

The length of the chain, denoted by len(}), is the sum of the
WCETs of all its nodes:

b
len(?\) = Z Ci’]'
j=a

2. Longest path

The longest path L; of a cp-task t; is any source-sink chain of
the task that achieves the longest length

L; also represents the time required to execute it when the
number of processing units is infinite (large enough to allow
maximum parallelism)

Necessary condition for feasibility: L; < D;

17/04/2015

2. Longest path
How to compute the longest path?
1. Find a topological order of the given cp-DAG

1 A topological order is such that of there is an arc from u
to v in the cp-DAG, then u appears before v in the
topological order — can be done in 0(n)

1 Example: for this cp-DAG possible topological orders are
* (v1,v2,V5, V3, V4, Ve, Vg, V7, Vo)
= (v1, V5, V2, V3, Vy, Ve, V7, Vg, Vo)

= (V1,V2,V4, V3, V6, Vs, Vg, V7, Vo)

2. Longest path
How to compute the longest path?

2. For each vertex v; ; of the cp-DAG in the topological order,
compute the length of the longest path ending at v; ; by
looking at its incoming neighbors and adding C; ; to the
maximum length recorded for those neighbors

If v; ; has no incoming neighbors, set the length of the
longest path ending at v; j to C; ;
Example:

= For vy, record 1

= For v,, record 2

= Forvs, record 5

= Forv,, record 6

= For vg, record max(5,6) = 6

2. Longest path
How to compute the longest path?

3. Finally, the longest path in the cp-DAG may be obtained by
starting at the vertex v; ; with the largest recorded value, then
repeatedly stepping backwards to its incoming neighbor with
the largest recorded value, and reversing the sequence
found in this way

Example: recorded values

« Starting at vy and stepping
backward we find the sequence
(v, V7, Vg, V4, V2, V1)

« The longest path is then
(v1, 2,04, V6, V7, v9)

3. Volume

In the absence of conditional branches, the volume of a task
is the worst-case execution time needed to complete it on a
dedicated single-core platform

It can be computed as the sum of the WCETs of all its vertices:

UOli= Z Ci,j

Vi jEV;

It also represents the
maximum amount of
workload generated by a
single instance of a DAG-task

4. Worst-case workload

In the presence of conditional branches, the worst-case
workload of a task is the worst-case execution time needed
to complete it on a dedicated single-core platform, over all
combination of choices for the conditional branches

It also represents the
maximum amount of
workload generated by a
single instance of a cp-task

In this example, the worst-case workload is given by all the
vertices except vz, since the branch corresponding to v,
yields a larger workload

4. Worst-case workload

How can it be computed?

Algorithm 1 Worst-Case Workload Computation
I: procedure WCW(G)
2 o+ TOPOLOGICALORDER(G)

3 for = = [V| down to 1 de reverse topological order

4 i+ o(z) i takes the z™" element of the permutation

5 S(vi) « {1} Stakesthe accumulated worst-case workload from v, till the end of the cp-DAG

6 if succ(v;) # @ then if the vertex has some successors

7 if ISBEGINCOND(;) then if the vertex is the head node of a conditional pair

8 o7 e argmaX, cgueer,,) C1S(0)) v is the successor of v; achieving the largest partial workload
9 S(w) = Sle) US(e™) S(v*) is merged into S(v;)

10 else ifinstead the vertex is a regular one
10 S(13) = S(3) U, esveeqw,) S(v) - the workload of all successors is merged into S(v;)
12 end if

13 end if
14 end for
15: return C'(S(v,()) the worst-case workload accumulated by the source vertex is returned as output

16: end procedure

17/04/2015

4. Worst-case workload

1 What is the complexity of this algorithm?

Algorithm 1 Worst-Case Workload Computation
I+ procedure WCW(G)

2 o ¢« TOPOLOGICALORDER(()

% for x = |V] down to 1 do

4 i=o(z)

s S(e) = {ui} * O(|E|) set operations

6 it SUC‘C‘I".)‘# ¥ then < Any of them may require to

K IF ISBEGINCOND(v;) then compute C(S(v;)), which has cost
5 o argma, e syeee, C(S(0))

9 S(e) + S(v:) U S oqv

10 else

- “déi'g"-J = () Ulsesvocten S@) The time complexity is then O(|E||V|)
12 e

13 end il

14 end for

15 return C(S(vg0)))

16: end procedure

5. Critical chain

J Given a set of cp-tasks and a (work-conserving) scheduling
algorithm, the critical chain 1; of a cp-task t; is the chain of
vertices of t; that leads to its worst-case response-time R;

J How can it be identified?

1 We should know the worst-case instance of t; (i.e., the job of t; that
has the largest response-time in the worst-case scenario)

U Then we should take its sink vertex v;,, and recursively pre-pend the
last to complete among the predecessor nodes, until the source
vertex v;; has been included in the chain

Key observation: the critical chain is unknown, but is always
upper-bounded by the longest path of the cp-task!

Critical interference

To find the response-time of a cp-task, it is sufficient to
characterize the maximum interference suffered by its critical
chain

The critical interference I;, imposed by task t, on task t; is the
cumulative workload executed by vertices of t;, while a node
belonging to the critical chain of t; is ready to execute but is
not executing

o
Critical chain CPU, ‘ 2
CcPU
@ Ciitical interference 2 \%\\\
k=] of 1, on 1 CcPU,
7 T + R;

Critical interference

O I;: total interference suffered by task t;

1 I;: total interference of task 1, on task t;

ou | | REREY &] |
R ‘

CPU,
CcPU, i
L 7+ R
I
Ii = M For any work-conserving algorithm!
m
2 Lik
_ * _ * kL
‘ R; =len(A)) + [; = len(A)) + —

Types of interference

critical

U In the particular case when i = k, the critical piin

interference I;; includes interfering contributions
of vertices of the same task (not belonging to the

critical chain) on T; itself)
self-interf. on 2 processors

0 This type of interference is called self-interference
(or intra-task interference) and is peculiar to
parallel tasks only Py

U The interference from other tasks in the system is il
called inter-task interference

T dik

R; = len(}}) + I; = len(}]

% 1
len(A) t - 1ii
self-int.

Inter-task interference

1 Caused by other cp-tasks executing in the system
1 Finding it exactly is difficult

) We need to find an upper-bound on the workload of an interfering
task in the scheduling window [r;, 7; + R;]

1 In the sequential case (global multiprocessor scheduling):

Carry-in job

What is the scenario that maximizes the interfering workload?

17/04/2015

Inter-task interference

[Sequential case

O The first job of 1 starts executing as late as possible, with a starting time
aligned with the beginning of the scheduling window

[Later jobs are executed as soon as possible

U Parallel case

[This scenario may not give a safe upper-bound on the interfering
workload. Why?

|l | [l

—

y

T 1+ R;

Shifting right the scheduling window may give a larger interfering workload!

Inter-task interference

) Pessimistic assumption
0 Each interfering job of task t, executes for its worst-case workload W

) The carry-in and carry-out contributions are evenly distributed among all m
processors

) Distributing them on less processors cannot increase the workload within
the window

) Other task configurations cannot lead to a higher workload within the
window

3
E

Inter-task interference

U Lemma: An upper-bound on the workload of an interfering task T,
in a scheduling window of length L is given by

L+ Ry —W, w;,
Wi(L) = "7"/?"] W, + min (Wk, m- ((L Ry — —") mod Tk))
Ty m
1 Proof:
1 The maximum number of carry-in and body instances within the
window is

{L + R — Wk/mJ

Inter-task interference

We(L) = lHR“T;W“/'"J W, + min (Wk,m - ((L + Ry — %) mod T,,)) ‘
e

O Proof (continued):

1 Each of the [“R";—WWJ instances contributes for W,
k

[The portion of the carry-out job included in the window is
w,
(L + Ry — 7") mod Ty
| -

-mmee

|| il [l (s

Ry — Wy /mi{Te Tie T

i [
(L 4 Ry — Wy/m)mod Ty,

]
=0 |0 B |
[At most m processors may be occupied by the carry-out job

[The carry-out job cannot execute for more than W, units

Intra-task interference

0 Simple upper-bound

e @) S W (L) |

TN T lik
g ke

. 1
Z; ©len(}]) + Eli'i

* 1 *
< len(X) + m (Wi—len(A;)) critical chain

SN
S\fi/ﬁ' E(VVL' - Ly

W, — len(%)

{Length of the longest path |

Putting things together 6

0 Schedulability condition

Given a cp-task set globally scheduled on m processors, an upper-
bound R on the response-time of a task t; can be derived by the
fixed-point iteration of the following expression, starting with R* = L;:

1 1
R = Lit— (W= L) +|— D xf
m m

V=i
U Global FP
X[LE = xEP = {Wk(REm)' vk < U [pecreasing priority order |
0, otherwise
U Global EDF

XpLG = XEPF = Wy (R¥),V k # i

s R Wim
‘m(usl%

Wy
Wi+ min(Wem- (14 Re =25 mod T

17/04/2015

[Global FP

Putting things together g
1 -ALG "
w2 X]

Vk#i

1
R =L+ — (W= L) +

The fixed-point iteration updates the bounds in decreasing priority
order, starting from the highest priority task, until either:

1 one of the response-time bounds exceeds the task relative
deadline D, (negative schedulability result);

) OR no more update is possible (positive schedulability result),
i.e., Vk:

Ry =R < Dy

0 Global EDF

U Multiple rounds may be needed

Reference

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-
Spaccamela, G. Buttazzo, Response-Time Analysis of
Conditional DAG Tasks in Multiprocessor Systems,
Proceedings of the 27! Euromicro Conference on
Real-Time Systems (ECRTS 2015)

Alessandra Melani
alessandra.melani@

