
04/04/2018

1

Giorgio Buttazzo
E-mail: buttazzo@sssup.it

Scuola Superiore Sant’Anna

http://retis.sssup.it/~giorgio/rts-LE.html

Definition

Real-Time Systems are
computing systems that must
perform computation within given
timing constraints.

They are typically embedded
in a larger system to control
its functions:

Real-Time Embedded Systems

Embedded
Computer

Controlled System

Sensors

Motors

Evolution of Embedded Systems

Embedded computing systems have grown
exponentially in several application domains:

Number of
embedded
computers consumer electronics

1970 1990 2000 2010
0

1980 year

avionics

robotics

automotive

multimedia

Computers everywhere

Today, 98% of all processors in the planet are
embedded in other objects:

Typical applications

 avionics

 automotive

 robotics

 industrial automation

 telecommunications

 multimedia systems

 consumer electronics

Art & Entertainment

Stereograms Virtual games

Animation Smart toys

04/04/2018

2

Health Care

 Tele-monitoring

 Tele-rehabilitation

 Assisted Living

 Sport

intelligent transport. systems

agriculture

Emerging applications

intelligent buildings

agriculture

civil protection

Smart objects

The number of such objects will increase in the future:

Electronic key

Recording pen

GPS Localizer

Cardio pulse meter

Step counter

Watch computer

Computers will be embedded even in our body:

Inside body

heart ear eye brain

Increasing complexity

80

200

functions
in a cell phone

1970 1990 2000 2010
0

20

40

60

1980
year

ECU growth in a car

80

100

ECUs
in a car

1970 1990 2000 2010
0

20

40

60

1980
year

04/04/2018

3

107

108

109

1010

Software evolution in a car
Lines of source code
in a car

1980 1990 2000 2010 2020

102

103

104

105

106

Control
Unit

Steer by Wire

Sensor

Motor
Sensor
Motor

Unit

Software in a car

Car software controls almost everything:

 Engine: ignition, fuel pressure, water temperature,
valve control, gear control,

 Dashboard: engine status, message display, alarms

 Diagnostic: failure signaling and prediction

 Safety: ABS, ESC, EAL, CBC, TCS

 Assistance: power steering, navigation, sleep sensors,
parking, night vision, collision detection

 Comfort: fan control, heating, air conditioning, music,
active light control, noise control & cancellation,
regulations: steer/lights/sits/mirrors/glasses…

Comparing Software Complexity

10 M

Lines of code
100 M

2 M

10 M

30 M

100 M

100 K

1 M

50 K

Complexity and bugs

Software bugs increase with complexity:

10.000
bugs

1 K 100 K 1 M 10 M
0

10

100

1000

10K

Lines of code

When aircraft control depends on a program
with 100 million instructions, reliability is a
primary objective.

108 i t ti

Software reliability

108 instructions

04/04/2018

4

Reliability does not only depend on the correctness of
single instructions, but also on when they are
executed:

controller
input

t

Software reliability

output

t + 



A correct action executed too late can be useless or
even dangerous.

Real-Time Systems

Computing systems that must guarantee
bounded and predictable response times
are called real-time systems.

Predictability of response times must be guaranteed

 for each critical activity;

 for all possible combination of events.

efficiency predictability

Predictability vs. Efficiency

QoS management High performance Safety critical

Allocated resources

digital tvsoft firm hard

Criticality

What’s special in Embedded Systems?

FEATURES

Scarce resources (space, weight,
time, memory, energy)

High concurrency and resource

REQUIREMENTS

High efficiency in resource
management

Temporal isolation to limit High concurrency and resource
sharing (high task interference)

Interaction with the environment
(causing timing constraints)

High variability on workload and
resource demand

p
the interference

High predictability in the
response time

Adaptivity to handle
overload situations

Aim of the Course

 Studying software methodologies for supporting
time critical computing systems.

 We will not consider how to control a system,
but only how to provide a predictable softwarebut only how to provide a predictable software
support to control applications.

Main focus: predictable software

Design
Analysis

Sensory
processing

Control
software

ProgrammingCommun.

Graphics

Embedded
Computer

Controlled System

system
dynamics

04/04/2018

5

Often, control and implementation are done by
different people that do not talk to each other:

BuAxx  if (b != 0) y = a/b;
else printf("error\n");

Control and implementation

Control guys typically assume a computer with infinite
resources and computational power. In some case,
computation is modeled by a fixed delay .

In reality, a computer:

 has limited resources;

 finite computational power (non null execution times);

 executes several concurrent activities;

Control and implementation

 executes several concurrent activities;

 introduces variabile delays (often unpredictable).

Modeling such factors and taking them into account
in the design phase allows a significant
improvement in performance and reliability.

 Study software methodologies and algorithms
to increase predictability in computing systems.

 We consider embeddded computing systems
consisting of several concurrent activities subject

Specific course objectives

consisting of several concurrent activities subject
to timing constratints.

 We will see how to model and analyze a real-time
application to predict worst-case response times
and verify its feasibility under a set of constraints.

Specific course objectives

How to model a real-time system

How to combine
control & programming

How to program safety-critical code

How to monitor real-time applications

How to analyze timing properties

How to manage load variations

Course outline - 1

1. Basic concepts and terminology

2. Sample applications

3. Problem identification

4. Modeling real-time activitiesg

5. Deriving timing constraints

6. Worst-case reasoning

7. Managing periodic tasks

8. Scheduling algorithms

9. Schedulability analysis

10. Problems introduced by resource sharing

11. Resource access protocols

12. Estimating worst-case blocking times

13 H dli h (i di) t k

Course outline - 2

13. Handling asynchronous (aperiodic) tasks

14. Handling execution overruns

15. Managing overload conditions

16. Real-time communication mechanisms

04/04/2018

6

Programming real-time applications

 Processes and threads in Linux

 Thread creation and activation

 Linux schedulers

Course outline - 3

 Time management

 How implement periodic threads

 How to structure RT applications

 How to use a graphics library

 How to simulate RT control systems

Teaching material

http://retis.sssup.it/~giorgio/rts-MECS.html
Course homepage

Books:

32

Third Edition

Pitagora, 2006

Third Edition

Springer, 2011

Embedded systems

They are computing systems hidden in an object to control
its functions, enhance its performance, manage the available
resources and simplify the interaction with the user.

Object

Environment
actuators

sensors

micro-
processor

communication

user other units

Control system components

 the system to be controlled
– it may include sensors and actuators

In every control application, we can distinguish 3
basic components:

 the controller
– it sends signals to the system according to a

predetermined control objective

 the environment in which the system operates

A typical control system

Environ-
SystemController

ment
SystemController

feedback

04/04/2018

7

Detailed block diagram

Environ.

System

Controller

internal statefeedback

actuators

sensor sensor

Other activities

filtering, classification, data fusion, recognition, planning

Sensory
processing

external statepre-
processing

Types of control systems

 Monitoring Systems
– do not modify the environment

Depending of the system-environment interactions,
we can distinguish 3 types of control systems:

y

 Open-loop control systems
– loosely modify the environment

 Closed-loop control systems
– tight interaction between perception and action

 Do not have actuators
 Do not modify the environment

Monitoring Systems

sensorsReal-time system

Examples: Environmental monitoring, surveillance systems,
air traffic control

Environ-
ment

Data
processing

sensors

sensors

...
Display

Modify the environment, actions are mostly pre-programmed,
so loosely coupled with the current state of the environment:

Loosely-coupled control systems

SystemController actuators

sensors
Data

processing
Planning

Environment

Examples: painting robots, assembly robots, sorting robots

SystemController actuators

Sensing and control are tightly coupled and occur at
different hierarchical level:

Tightly-coupled control systems

Environment

sensors
Data

processing
Planning

Examples: flight control systems, military systems,
advanced robots, living beings

Hierarchical control

S3 A3
F2

F3

Sensing Control

high-level
command

high-level
recognition

Environment

S1

S2

A1

A2
F1

Sensing Control

low-level
actuation

low-level
acquisition

04/04/2018

8

Implications

 The tight interaction with the environment
requires the system to react to events within
precise timing constraints.

 Timing constraints are imposed by the
performance requirements and the dynamics ofperformance requirements and the dynamics of
the system to be controlled.

The operating system must be able to
execute tasks within timing constraints.

E iRT S
x (t)

Real-Time System

It is a system in which the correctness depends
not only on the output values, but also on the time
at which results are produced.

EnvironmentRT System

y

()

(t+)
tt

REAL means that system time must be synchronized
with the time flowing in the environment.

Typical objection

It is not worth to invest in RT theory, because
computer speed is increasing exponentially, and
all timing constraints can eventually be handled.

Answer
Given an arbitrary computer speed, we must
always guarantee that timing constraints can be
met. Testing is NOT sufficient.

Real-Time  Fast

 A real-time system is not a fast system.

 Speed is always relative to a specific
environment.

 Running faster is good, but does not
guarantee a correct behavior.

Speed vs. Predictability

 The objective of a real-time system is to guarantee
the timing behavior of each individual task.

 The objective of a fast system is to minimize the
average response time of a task set. But …

Don’t trust the average when you have to
guarantee individual performance

Sources of non determinism

 Architecture
 cache, pipelining, interrupts, DMA

 Operating system
 scheduling, synchronization, communication

 Language
 lack of explicit support for time

 Design methodologies
 lack of analysis and verification techniques

04/04/2018

9

Traditional (wrong) approach

In spite of this large application domain, most of
RT applications are designed using empirical
techniques:

– assembly programming

– timing through dedicated timers

– control through driver programming

– priority manipulation

Disadvantages

1. Tedious programming which heavily
depends on programmer’s ability

2. Difficult code understanding

Readability 
1

efficiency

Disadvantages

3. Difficult software maintainability

 Complex appl.s consists of millions lines of code

 Code understanding takes more that re-writing

 But re-writing is VERY expensive and bug proneg p g p

4. Difficult to verify timing constraints without
explicit support from the OS and the language

Implications

 Such a way of programming RT applications
is very dangerous.

 It may work in most situations, but the risk of
a failure is high.

 When the system fails is very difficult to
understand why.

low reliability

Accidents due to SW

 Task overrun during LEM lunar landing

 First flight of the Space Shuttle (synch)

 Ariane 5 (overflow) Ariane 5 (overflow)

 Airbus 320 (cart task)

 Airbus 320 (holding task)

 Pathfinder (reset for timeout)

Lessons learned

 Tests, although necessary, allow only a
partial verification of system’s behavior.

 Predictability must be improved at the level of
the operating system.p g y

 The system must be designed to be fault-tolerant
and handle overload conditions.

 Critical systems must be designed under
pessimistic assumptions.

