
09/04/2018

1

What is a model?

A model is a representation of something. It captures
not all attributes of the represented thing, but rather
only those that are relevant for a specific purpose.

“Confusing a model with reality would be
like going to a restaurant and eat the menu”

2

like going to a restaurant and eat the menu

Golomb’s Law on mathematical models

What is a good model?

 It should be expressive (an accurate representation of reality)

 It should be tractable (provide results in a bounded time)

Unfortunately, expressiveness and tractability
do not get along very well

Untractability (complexity)

3expressiveness

Untractability (complexity)

Useless models
(too far from reality)

Useless models
(too complex to
be analyzed)GOOD

MODEL

Important aspects

Building a model implies:

 simplifying reality (but not too much), capturing the
features of interest;

 defining the variables that characterize the model.

4

 defining the system interface (variables exposed to the
user);

 clearly identifying the assumptions (affecting values);

 defining the metrics for evaluating the outputs of your
system and its performance.

Types of variables

 Parameters (variables you don’t want to change);

 Input variables (commands given by the user/controller)

 Design variables (variables you want to identify to apply
your control actions);

5

your control actions);

 State variables (variables describing the system state
and behavior);

 Output variables (variables you want to measure to
evaluate the performance of your method).

Example

 Parameters: P l l th/ t Parameters:

 Input variables:

 Design variables:

 State variables:

 Output variables:

Pole length/mass, cart mass

Force applied to the cart

Control parameters (KP, KI, KD)

Position/speed of the cart and pole

Pole angle

09/04/2018

2

Elements of computation

Instruction:
It is the elementary entity of a programming language.

MOV AX, 5;

MOV BX 7;

Examples in ASM X86:

7

MOV BX, 7;

ADD AX, BX;

int x;

x = a + b;

if (x > threshold) y = 1;
else y = 0;

Examples in C:

Elements of computation

Function:
It is a container for a set of instructions.
It may take multiple input arguments
and produces a single output.

a

b
y

8

A function can call other functions:

Elements of computation

 It is a function performing a given computational activity in a
system (e.g., sensory processing, motor control, filtering).

 It is the elementary entity managed by an operating system.

 It may have specific constraints (e g activation time

Task:

9

 It may have specific constraints (e.g., activation time,
period, deadline, precedence relations with other tasks).

 It can communicate with other tasks by shared resources.

Resource:
It is a set of variables that can be used by tasks to store data
or temporary results:

Elements of computation

Application:
It consists of a set of tasks interacting through a set of
shared resources:

R1 R2

10

R1 R2
R3

1 2

 The execution of a task on a processor is
represented by a bar on a timeline.

Task execution

Task i Ci

computation time

t

computation time

here the
processor is idle

Task i
Activation
time (ai)

tai si fi

Ci

Ri

Task important variables

Start time (si)

Finishing
time (fi)

Computation
time (Ci)

The interval fi ai

is referred to as the
task response time Ri

09/04/2018

3

RTOS responsibilities

A real-time operating system is responsible for:

 Managing concurrency;

 Activating periodic tasks at the beginning of each
period (time management);p (g)

 Deciding the execution order of tasks (scheduling);

 Solving possible timing conflicts during the access
of shared resources (mutual exclusion);

 Manage the timely execution of asynchronous
events (interrupt handling).

Ready queue

In a concurrent system, more tasks can be simultaneously
active, but only one can be in execution (running).

 An active task that is not in execution is said to be ready.

 Ready tasks are kept in a ready queue, managed by a
h d l lscheduling policy.

 The processor is assigned to the first task in the queue
through a dispatching operation.

Ready queue

CPU
activation dispatching termination

123

Preemption

It is a kernel mechanism that allows to suspend the
execution of the running task in favor of a more important
task. The suspended task goes back in the ready queue.

Ready queueactivation dispatching termination

CPU123

preemption

 Preemption enhances concurrency and allows reducing
the response times of high priority tasks.

 It can be disabled (completely or temporarily) to ensure
the consistency of certain critical operations.

Schedule

Is a particular assignement of tasks to the processor that
determines the task execution sequence:

Formally, given a task set = {1, ..., n}, a schedule is a
function : R+ N that associates an integer k to each
i l f i [1) i h h f ll i iinterval of time [t, t+1) with the following meaning:

k = 0

k > 0

in [t, t+1) the processor is IDLE

in [t, t+1) the processor executes k

(t)
3

2

1 2 3 idleidle

Schedule

1

0
tt3 t4t2t1

 Each interval [ti, ti+1) is called a time slice.

 In time instants t1, t2, t3, t4 the processor is said to
perform a context switch.

Preemptive schedule

1
2

3

priority

3

(t)

3

2

1

0
0 2 4 6 10 12 148 16 18 20

0 2 4 6 10 12 148 16 18 20

09/04/2018

4

1
2

3

priority

Task states

running
ready

ready

running

running

runningrunning

3

(t)

3

2

1

0
0 2 4 6 10 12 148 16 18 20

0 2 4 6 10 12 148 16 18 20

dispatching

wait

BLOCKED

signal

Task states

ACTIVE

READY RUNNING
activation

p g

preemption

termination

 It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

relative deadline Di

tai si fi

response time Ri

di

absolute deadline
(di = ai + Di)

A real‐time task i is said to be feasible if it guaranteed to
complete within its deadline, that is, if fi di, o
equivalently, if Ri Di

i

Slack and Lateness

tai si fi

R

di

Di

i

slack = d fRi slacki = di - fi

tai si fi

Ri

di

Di

i

lateness Li = fi - di

Performance Metrics

How do we evaluate the performance of a scheduler?

For non real-time task sets:

 Average response time: Ravg = 1/n SUM Ri

 Total finishing time: Ftot = max(fi) – min(ri)

For real-time task sets:

 Maximum lateness: Lmax = max(fi – di)

 No. of deadline misses: Nmiss = SUMi H(fi – di)

 Feasibility: F = H(Nmiss)

Tasks and jobs

A task running several times on different input
data generates a sequence of instances (or jobs):

ai,k ai,k+1
t

i
Ci

ai,1

Job 1

i,1 i,k i,k+1

Job k Job k+1

09/04/2018

5

Activation mode

• Time driven: (periodic tasks)

A task is automatically activated by the
operating system at predefined time instants.

• Event driven: (aperiodic tasks)

A task is activated at the arrival of an event (by
interrupt or by another task through an explicit
system call).

Ci computation time

sync

input

output utilization factor

Ci

Ti
Ui =

Periodic task

timer (period Ti)

 A periodic task i generates an infinite sequence of
jobs: i1, i2, …, ik (same code on different data):

Ti
Ci

i

ai,k ai,k+1 t

Ti

Ci

ai,1 = i

i (Ci , Ti , Di) job ik

Periodic task

ai,k = i + (k1) Ti

di,k = ai,k + Di

often
Di = Ti

task phase

 Aperiodic: ai,k+1 > ai,k

 Sporadic: ai,k+1 ai,k + Ti

Aperiodic task

minimum
interarrival time

ai,k ai,k+1 t
i

Ci

ai,1

…

job ik

Ci Ci

Application model

Using models

Task model

Definition of task/app
parameters

Timing
Analysis

solution
Assumptions

feasible?
NO

YES

Evaluation metrics

29

System to be controlled

Sys. Req.

I/O
devices

RTOS

System model Platform modelRTOS model

implementation

Estimating Ci is not easy

loop

?

?

 Each job operates on different data and
can take different paths.

 Even for the same data, computation time
depends on the processor state (cache,
prefetch queue, number of preemptions).

occurrencies

execution
time

Ci

min
Ci

maxtimer

?

?

09/04/2018

6

Predictability vs. Efficiency

occurrencies

execution
time

Ci

min
Ci

max
Ci

avg

Ci estimate

safeefficientunsafe

efficiency predictability

FIRM tasksSOFT tasks HARD tasks

Predictability vs. Efficiency

Ci

min
Ci

max
Ci

avg Ci

Criticality

HARD task
All jobs must meet their deadlines. Missing a single deadline
may cause catastrophic effects on the whole system.

FIRM task
Missing a job deadline has not catastrophic effects on the

t b t i lid t th ti f th t ti l j bsystem, but invalidates the execution of that particular job.

SOFT task
Missing a deadline is not critical. A job finishing after its deadline
has still some value but causes a performance degradation.

An operating system able to handle hard real-time
tasks is called a hard real-time system.

Typical HARD tasks – sensory acquisition
– low-level control
– sensory-motor planning

– RT audio processingTypical FIRM tasks

Criticality

p g
– RT video decoding

– reading data from the keyboard
– user command interpretation
– message displaying
– graphical activities

yp

Typical SOFT tasks

Jitter

t1

It is a measure of the time variation of a periodic event:

t2 t3a1 a2 a3 a4

Absolute: max (tk – ak) – min (tk – ak)
k k

Relative: max | (tk – ak) – (fk-1 – ak-1) |
k

Types of Jitter

fi,1

i

Finishing‐time Jitter

fi,2 fi,3

Start‐time Jitter

si,1

i
si,2 si,3

Completion‐time Jitter (I/O Jitter)

si,1

i

si,2 si,3fi,2fi,1 fi,3

09/04/2018

7

Parameters summary

tai si fi

Ri

di

Di

i

slacki

 Computation time (Ci)

ai fi di

Di

Ti

Ri slacki

Computation time (Ci)

 Period (Ti)

 Relative deadline (Di)

 Arrival time (ai)

 Start time (si)

 Finishing time (fi)

 Response time (Ri)

 Slack and Lateness

 Jitter

These parameters are specified by the
programmer and are known off-line

These parameters depend on the
scheduler and on the actual execution,
and are known at run time.

 > 0

A control example

A positive angle requires a positive control action u

 > 0

u > 0

u > 0

 < 0

A control example

A negative angle requires a negative control action u

u < 0

 < 0 u < 0

task control(float theta0, float k)
{
float error;
float u;
float theta;

while (1) {

reference angle

control gain

A control task

() {

theta = read_sensor();

error = theta – theta0;
u = k * error;

output(u);

wait_for_next_period();
}

}

sensing

uactuation

computation

synchronization

task control(float theta0, float k)
{
float error, u, theta;

while (1) {

theta = read_sensor();
error = theta theta0; u

A control task

error = theta – theta0;
u = k * error;
output(u);
wait_for_next_period();

}
}

u

task execution

sensing

computation actuation

timetask period

u

t
i

Negligible delay and jitter:

u > 0
> 0

Traditional control view

t

t
 > 0

 < 0
 > 0 < 0

u > 0

u < 0
u < 0

09/04/2018

8

u

t
i

Computation times introduce a non negligible delay:

wrong!

Effect of computation times

t

t

wrong!

wrong!

 < 0
 > 0

 < 0

 > 0

correct

 < 0 < 0

u > 0

u < 0
u < 0

u

t
i

Actual situation: variable delay and jitter:

t

Actual situation

t

t

wrong!

 > 0

u < 0

 < 0

u < 0

u > 0

 > 0

correct

correct

A robot control example

Consider a mobile robot equipped with:

 two actuated wheels;

 two proximity (US) sensors;

 a mobile (pan/tilt) camera;

 a wireless transceiver.

Goal

 Follow a path based on visual feedback;

 Avoid obstacles;

 Send complete robot status every 20 ms.

Design requirements

 Modularity: a subsystem must be developed without
knowing the details of other subsystems (team work).

 Configurability: software must be adapted to different
situations (through the use of suitable parameters) without
changing the source codechanging the source code.

 Portability: minimize code changes when porting the system
to different hardware platforms.

 Predictability: allow the estimation of maximum delays.

 Efficiency: optimize the use of available resources
(computation time, memory, energy).

Control view

obstacle
avoidance

visual‐based
navigation

100 ms
object

recognition

mot_dx mot_sxpan tiltcamera US2US1

visual
tracking

vehicle
control

1 ms1 ms

5 ms

10 ms

20 ms
feature

extraction

g

motor
control

motor
control

motor
control

motor
control

Software View

obstacle
avoidance

visual‐based
navigation

object
recognition

periodic task buffer

mot_dx mot_sxpan tiltcamera US2US1

visual
tracking

vehicle
control

feature
extraction

motor
control

09/04/2018

9

Software structure

INPUT

OUTPUT

INPUT

task resource

The operating system is responsible for providing
the proper mechanisms for a predictable interaction
between tasks and resources.

Support for periodic tasks

Task i

while (condition) {
wait_for_activation();

wait_for_next_period();
}

ready

running

idle

activeactive

idle idle

The IDLE state

signal waitBLOCKED

Timer

wait_for_next_periodwake_up
IDLE

dispatching

preemption
RUNNINGREADY

terminateactivate

Design approaches

Event driven Time driven

RT system RT system

y(t+)x(t) polling

EnvironmentEnvironment

Types of constraints

• Timing constraints
–activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
– they enforce a synchronization in the
access of mutually exclusive resources.

09/04/2018

10

Timing constraints

They can be explicit or implicit.

• Explicit timing constraints
They are directly included in the system specifications.

Examples

–open the valve in 10 seconds

– send the position within 40 ms

– read the altimeter every 200 ms

–acquire the camera every 20 ms

Example

Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the
performance requirements.

t0 ?

Example

What is the time validity of a sensory data?

Computing the yellow duration

STO
P

D > Td + Tr + Tb

Td = detection time
Tr = reaction time
Tb = braking time

Detection time: Td = 0.6 s
Reaction time: Tr = 0.6 s
Braking time: Tb = v/(g)

v = 50 Km/h = 14 m/s T 2 8

Computing the yellow duration

 = 0.5

Time to stop the car from the
time the yellow is turned on:

 Tb = 2.8 s

D > 4 s

Dashboard
Controls

BRAKEShuman Distribution
Unit

obstacle
v

D
sensor visibility

Example 2: automatic braking

condition
checker

sensors
emergency
stop

PROBLEM: Find the sampling periods of the sensors that
guarantee the feasibility of the goal

GOAL: If an obstacle is detected, stop the
train without hitting the obstacle.

Assumptions

 Let s(Cs ,Ts) be the task devoted to sampling (Ds = Ts)

 Assume s is the task with the highest priority.

 Let Uother be the load of the other tasks

Ts
max

obstacle not
detected in time

Ts
min

overload performance

Ts

load

1

09/04/2018

11

Minimum period

The system is in overload if 1 other
s

s U
T

C

sC
T

Hence a necessary condition

The minimum period can be computed by imposing
that the system is not in overload:

other

s
s U

T

1for the system feasibility is

The maximum period can be found by a worst-case
reasoning.

other

s
s U

C
T

1
minThus:

Worst-case reasoning

Ts
acq.
task

Ts Tb

v

obstacle in
the field

obstacle
detected

brake
pressed

train
stopped

D = sensor visibility

v(Ts +) + Xb < D

a = g
2

2

2

1
atvtX b

63

g

v
X b

2

22
v = a t

D
g

v
Tv s

2
)(

2

g

v

v

D
Ts 2

Tmax

ggDgv 2)(2
max

64

speedvmaxv

Ts

gggv)(max

gDv 2max

65

D = 0.5

visibility

Car driving

Ts Tbv

60

obstacle in
the field

obstacle
detected

brake
pressed

car
stopped

60
Km/h 0.5 secvisibility: 50m

Tmax = 0.8 sec

09/04/2018

12

Lessons learned

The farther we look, the faster we can run

To go fast safely, look ahead!!!

If v vmax no feasible solution exists, no
matter how fast you react!!!

Don’t look away from the road for too
long!!!

Example 3: contour following

v

F

Goal
Move at velocity v along the surface
tangent, exerting a force F < Fmax along
its normal direction.

Worst-case reasoning

acq.
task

v

F(t-1) F(t) F(t+1)

Ts

task

Ts

force not
detected

trajectory
modified

robot
stopped

dv

v = v0 e–(t/d)

Lenght covered by the robot after the contact:

L = vTs + xf

dd
t

f veevdtevdttvx d
0

0
00

/
00

)()(

70

L = v(Ts + d)

Force on the robot tool:

F = KL = Kv(Ts + d) < Fmax

(K = elastic coefficient)

Condition on the sampling period:

ds Kv

F
T

0

max

Tmax

 F

T max

71

speedvmaxv0

Ts

 dKv
T

0

max
max

dK

F
v

max

max

Types of constraints

• Timing constraints
– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
– they enforce a synchronization in the
access of mutually exclusive resources.

09/04/2018

13

Precedence constraints

Sometimes tasks must be executed with specific
precedence relations, specified through a
Directed Acyclic Graph (DAG):

 predecessor1

2 3

4 5 1 2

1 4

predecessor

immediate predecessor

Sample application

stereo vision

processing recognition

Precedence graph

acq1 acq2

edge1 edge2

shapedisp

depth

rec

Other task models

To refine the analysis and reduce the pessimism, a
task can be modeled at a finer grain expressing:

 precedence constraints between blocks

 execution flow of internal blocks

 i l ll l i f d potential parallel execution of code

 activation constraints of internal blocks

 timing constraints between internal blocks

More expressive models increase
the complexity of the analysis.

Code parallelism

Fork-Join Graphs

 After a fork node, all
immediate successors
must be executed
(the order does not matter).

fork node

 A join node is executed
only after all immediate
predecessors are completed.

join node

Code flow

 Some task model also allows specifying activation
constraints between immediate successors as
minimum interarrival times

5 8

0 3

09/04/2018

14

Conditional nodes

 A branch represents a conditional statement

 Only one node among all immediate successors
must be executed

switchif-then

Conditional DAGs

They include both type of semantics, allowing representing
both conditional statements and parallel execution:

Nodes in conditional branches cannot have
precedence relations with nodes in other
branches to avoid infinite waiting times.

Types of constraints

• Timing constraints
– activation, completion, jitter.

• Precedence constraints
– they impose an ordering in the execution.

• Resource constraints
– they enforce a synchronization in the
access of mutually exclusive resources.

Concurrency

Resource conflicts are caused by concurrency, that is the
ability of the processor to execute more tasks at a time,
by alternating their executions:

1 2 3
sequential
execution

parallel
execution

concurrent
execution

Multiprogramming

Concurrency is the basic mechanism used to implement
multiprogramming in multi‐user operating systems
(it exploits input waiting times to manage other users):

Comparing sequential with concurrent executions, it
seems that concurrency has no advantages:

sequential
ti

R1 = 4

R2 = 10

Response times

Concurrency

execution

concurrent
execution

R3 = 15
0 2 4 6 10 12 14

0 2 4 10 12 14

R1 = 10

R2 = 15

R3 = 14

8

6 8

09/04/2018

15

If a task must wait for I/O data, concurrency allows
another task to run during that interval:

sequential
execution

R1 = 9

R2 = 15

Response times

Concurrency and I/O

busy‐wait
1

2

0 2 4 6 10 12 14

0 2 4 10 12 14

R1 = 9

R2 = 10

8

6 8

I/O device

I/O device

concurrent
execution

1

2

blocked

Concurrency becomes superior whenmanaging periodic tasks at
different rates (waiting times are used to execute other tasks):

sequential
execution
(FIFO)

Periodic tasks

(FIFO)

concurrent
execution

(Rate Monotonic)

0 2 4 6 10 12 148 16 18 20

0 2 4 6 10 12 148 16 18 20

Hence, concurrency allows exploiting tasks inactive
intervals (e.g., waiting times for input data or
periodic task activation).

Concurrency: pro and cons

However, concurrency can generate conflicts when
using shared resources (for example, when more
tasks operate on global data).

Example of conflict

Each thread increments a counter every time an event is
detected:

counter
c: 10

1 2

x = counter;

global
variable

x = counter;

1

2

counter

10

counter

10 11 counter

11

An event
is lost!

;
x = x + 1;
counter = x;

;
x = x + 1;
counter = x;

Example 2

1 2

(x, y)
global buffer

It estimates the
next position (x,y)
of a moving target

It controls a
missile to catch
the target in (x,y)

(x, y)

x = (a + b)/c;
y = (a b) /c;

m1 = k1*(a*x ‐ x);
m2 = k2*(a*y ‐ y);

writing
buffer

reading
buffer

x: 3
y: 5

1 2x = 1
y = 8 It reads (3,8)

which does not belong

Example 2

1

2
read(x)

3

read(y)

8

x ← 1
y ← 8

to the trajectory!

09/04/2018

16

Solution

x: 3
y: 5

1 2x = 1
8 d (3 5)

Regulate the use of shared resources so that tasks can only
access them one at the time (i.e., inmutual exclusion):

y = 8

1

2
read(x)

3

read(y)

5

reads (3,5)
correctly!

x ← 1
y ← 8

blocked

1 2

Mutual exclusion is implemented by two primitives, wait(s)
and signal(s), that use a system variable s, called semaphore:

Semaphores

(x, y)

x = ...
y = …

m1 = … x;
m2 = … y;

writing
buffer

reading
buffer

wait(s);

signal(s);

wait(s);

signal(s);

critical
section

critical
section

 Each shared resourse is protected by a different
semaphore.

 s = 1 free resource, s = 0 busy (locked) resource.

 wait(s):

if 0 h k b bl k d f h

Semaphores

− if s == 0, the task must be blocked on a queue of the
semaphore. The queue management policy depends
on the OS (usually it is FIFO or priority‐based).

− else set s = 0.

 signal(s):

− if there are blocked tasks, the first in the queue is
awaken (s remains 0), else set s = 1.

 If the semaphore s is initialized to 1, the pair wait(s) and
signal(s) can be used for enforcing mutual exclusion:

R

1

3

Semaphores

2

wait(s)

wait(s)

wait(s) signal(s)

signal(s)

signal(s)

s = 1 s = 0 s = 1

blocked

blocked

1

2

3

 If a resource has n parallel units that can be accessed by
n tasks simultaneously, it can be protected by a
semaphore initialized to n.

 wait(s):

− if s == 0 the task is blocked on the semaphore

Multi-unit resources

if s == 0, the task is blocked on the semaphore
queue;

− else s is decremented.

 signal(s):

− If there are blocked tasks, the first in the queue is
awaken (s remains 0), else s is incremented.

s = create_sem(n)
creates the semaphore structure, including a counter (s.count)
initialized to n, and a queue of tasks (s.queue).

wait(s) {
if (s.count == 0)

Implementation notes

<block the calling task on s.queue>
else s.count--;

}

signal(s) {
if (!empty(s.queue))

<unblock the first task in s.queue>
else s.count++;

}

09/04/2018

17

 A semaphore initialized to 0 can be used to wait for an
event generated by another task:

Synchronization semaphores

1 2

signal(s);

calls signal(s) at the
event occurrence

wait(s);

signal(s);

wait(s)

signal(s)

blocked1

2

priority

Problem with semaphores

 Semaphores (when properly used) guarantee the
consistency of shared global data, but introduce extra
blocking delays in high priority tasks.

1

2

blocked

w s

w s
priority

Scheduling anomalies

T1: 3

T2: 2

T3: 2

T4: 2

T9: 9

T8: 4
T7: 4
T6: 4
T5: 4

priority

Pi > Pj i < j

T4: 2 T5: 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P1

P2

P3

T1

T2

T3

T4

T9

T5

T6

T7

T8

tr = 12

Increased processors

T1: 3 T9: 9

T2: 2

T3: 2

T4: 2

T8: 4
T7: 4
T6: 4
T5: 4

P1 T1 T8P1

P2

P3

P4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t15

T1

T2

T3

T4

T5

T6

T7

T8

T9

tr = 15

Shorter tasks

T1: 2 T9: 8

T2: 1

T3: 1

T4: 1

T8: 3
T7: 3
T6: 3
T5: 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 t

P1

P2

P3

T1

T2

T3

T4

T5

T6

T7

T8

T9

tr = 13

09/04/2018

18

Released constraints

T1: 3

T2: 2

T3: 2

T4: 2

T5: 4

T6: 4

T7: 4

T8: 4

T9: 9

P1

P2

P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T1

T2

T3

T4

T5

T6

T7

T8

T9

tr = 16

Faster processor

1

2

1

2

double speed deadline miss

Delay: dangerous system call

A delay() may cause a delay longer than .

1

2

0 2 4 6 8 10 12 14

delay(2) blocked

1

2

0 2 4 6 8 10 12 14

A delay in a task may also increase the response
time of other tasks (example for fixed priorities):

1

0 4 8 12

Delay: dangerous system call

2

0 5 10 15

delay(1)

1

2

deadline miss

0 5 10 15

0 4 8 12

…

Lessons learned

 Tests are not enough for real-time systems

 Intuitive solutions do not always work

 Delay should not be used in real-time tasks

The safest approach:

 use predictable kernel mechanisms

 analyze the system to predict its behavior

Achieving predictability

 The operating system is the most important
component responsible for achieving a
predictable execution.

 Concurrency control must be enforced by: Concurrency control must be enforced by:

 appropriate scheduling algorithms

 appropriate synchronization protocols

 efficient communication mechanisms

 predictable interrupt handling

