10/04/2018

PR Definitions

A schedule o is said to be feasible if it satisfies a set of
constraints.

TaSk A task set T is said to be feasible, if there exists an

- = algorithm that generates a feasible schedule for T".
Scheduling

A task set T is said to be schedulable with an algorithm A,
if A generates a feasible schedule.

Examples of constraints
* Timing constraints: activation, period, deadline, jitter.
* Precedence: order of execution between tasks.

* Resources: synchronization for mutual exclusion.
..., Feasibility vs. schedulability %..;. 1hescheduling problem
unfeasible o Given a set I' of n tasks, a set P of p processors, and a set
taskset .~ _ T Peasible e R of r resources, find an assignment of P and R to T that
e - task sets S produces a feasible schedule under a set of constraints.
Space of ! o Task sets
all /~ Tasksets . Schedulable _ r—
task sets | | schedulable | Wwithalg. A i Scheduling
. withalg.B i P —— e —— ©
3 _&// gorithm g
AN i R —" t feasible
S constraints
EEN Complexity 4.,.. Why do we care about complexity?
e In 1975, Garey and Johnson showed that the e Let’s consider an application with n = 30 tasks on a
general scheduling problem is NP hard. processor in which the elementary step takes 1 ps
In practice, it means that the time for finding a feasible e Consider 3 algorithms with the following complexity:

schedule grows exponentially with the number of tasks.

A;: O(n) A,: O(né) A;: O(8")

Fortunately, polynomial time algorithms can be l l l

found under particular conditions.
30 ps 182 hours 40.000

billion years

10/04/2018

~.... Simplifying assumptions

» Single processor

» Homogeneous task sets

» Fully preemptive tasks

» Simultaneous activations
» No precedence constraints
» No resource constraints

z N Task set assumptions

We consider algorithms for different types of tasks:

» Single-job tasks (one shot)
tasks with a single activation (not recurrent)

> Periodic tasks

recurrent tasks regularly activated by a timer (each
task potentially generates infinite jobs)

» Aperiodic/Sporadic tasks

recurrent tasks irregularly activated by events (each
task potentially generates infinite jobs)

» Mixed task sets

%.,;. Classical scheduling policies

e First Come First Served
e Shortest Job First

e Priority Scheduling

¢ Round Robin

First Come First Served

Ketis

It assigns the CPU to tasks based on their arrival
times (intrinsically non preemptive):

Ready queue

— [Jafal v (o)

Not suited for real-time systems o 111w Pompe @]
a; a, a; a, s, S5 Sy f,
%.... First Come First Served %.... Shortest Job First (SJF)

- Very unpredictable

response times strongly depend on task arrivals:

a; a, a,

R, =20 R,=26 Ry =26

T L) |T3|

R t
0 4 8 2 16 20 24 28 32
a3 a, 4 _ _ _

R, =26 R, = Ry=2
T3 T T |

T T I T T T T T T T I T I t

0 4 8 12 16 20 24 28 32

It selects the ready task with the shortest
computation time.

= Static (C,is a constant parameter)
= |t can be used on line or off-line
= Can be preemptive or non preemptive

= |t minimizes the average response time

10/04/2018

Xopis SJF - Optimality

SJF

C Viiia L U s U7z

, -
O Uiiia s I L i

[T
T, fo<f, £ =f,

fo+6 < fy+ o)

IA

R@@) = = (F-n)

Xopis SJF - Optimality

c 06 —o¢’ — ... — 0"

R(c) > R(c") > R(c") ... = R(c%)

F —
G” = Ogur

R(Gg,e) is the minimum response time
achievable by any algorithm

%...s 1S SJF suited for Real-Time?

- It is not optimal in the sense of feasibility

A = SJF feasible d, d, d,
E T1 ! Ty | T3 | t
o 4 8 12 16 2 24 28 B
. d, d
SJF not feasible di 23
T3 —I Ty I T I t
T ‘\‘ T T T | T I T I T T

0 8 12 16 20 24 28 32

i Priority Scheduling

» Each task has a priority P, typically P, € [0, 255]

» The task with the highest priority is selected for
execution.

» Tasks with the same priority are served FCFS

NOTE: pcl/C = SIF
p;cl/a, = FCFS

B is Priority Scheduling

= Problem: starvation

low priority tasks may experience long delays
due to the preemption of high priority tasks.

= A possible solution: aging
priority increases with waiting time

X, sis Round Robin

The ready queue is served with FCFS, but ...

- Each task T, cannot execute for more than Q
time units (Q = time quantum).

- When Q expires, 1, is put back in the queue.

READY queue

Q expired

10/04/2018

Xoris Round Robin

N = number of task in the system
e
5 5 o v s e

T 1T T T T T T

T

py)
1}
~
>
QO
~
>
O

i = 6 = i
Time sharing

Each task runs as it was executing alone on a virtual
processor n times slower than the real one.

Xoris Round Robin

-if Q>max(C) then RR=FCFS

-if Q= context switch time () then

ConQ+d) . n@Q+d)
7 AU 7 77
Q+d C Q+3

i = nQ+9) 9 " .(9 j

;P Multi-Level Scheduling

system tasks
High priority —— PRIORITY

interactive tasks RR
Medium priority — [T [[}——

batch tasks
Low priority —— FCES

Boaze Multi-Level Scheduling

priority

CPU

S

=

Real-Time Scheduling
Algorithms

4., How to schedule RT tasks?

How to schedule RT tasks to maximize feasibility?

Di
C l
d;
= |
I |

10/04/2018

... Earliest Due Date [Jackson 55]

Given a set of real-time tasks arrived simultaneously,
executing them by increasing deadline will minimize the
maximum lateness (L,,4y)-

S—
b ™

— g
= - !

NOTE: = No other scheduler can decrease L,
= Preemption is not required

maximum Lateness

max

2.pis EDD - Optimality

#EDD

C A 8 | AV
, <
o Y~ W s Y

1, fr<f £ =f d, d, t
Lpoe = Ly = -4,

L’ =f'—d, < f,—d, ,
Lb’—fb’—db<fa—daf Himex < L

Xoeis EDD - Optimality

c —06 —¢’'— ... —o*

Lmax (G) 2 Lmax (G') 2 Lmax (G”) e 2 Lmax (G*)

P —
G” = Ogpp

L,ox (Cepp) is the minimum value
achievable by any algorithm

... EDD guarantee test (off line)

sl =0 |,

—
f, £ f; fy

‘Tl
[

A task set I is feasible iff Vi f < d.

fi = Zilck
k=1

Vi ick <D,

k=1

£

%.... Earliest Deadline First

If tasks arrive dynamically, the maximum lateness can be
minimized executing them by increasing absolute deadline,
but preemption must be enabled.

4.,.. EDF Guarantee test (on line)

cy(t) l
1
(1) l
l [|
| (D) l
[
’_‘ | cy(t) \

t

Vi Yl () < d-t
k=1

10/04/2018

Xopis Complexity

EDD
Scheduler (queue ordering): O(n logn)

Feasibility Test (guarantee test): Oo(n)

EDF
Scheduler (insertion in the queue): O(n)
Feasibility Test (guarantee single task): O(n)

z EDF optimality

= In the sense of feasibility [Dertouzos 1974]

An algorithm A is optimal in the sense of
feasibility if it generates a feasible schedule, if
there exists one.

Demonstration method

It is sufficient to prove that, given an arbitrary
feasible schedule, the schedule generated by
EDF is also feasible.

Xooris A property of optimal algorithms

If a task set I' is not schedulable by an
optimal algorithm, then T cannot be
scheduled by any other algorithm.

%

N|

If an algorithm A minimizes L., then A is
also optimal in the sense of feasibility.
The opposite is not true.

Periodic Task
Scheduling

Lo is Problem formulation

e We consider a computing system that has to
execute a set T' of n periodic real-time tasks:

r

{t, 1, .10}

e Each task 7, is characterized by:
C, worst-case computation time

T, activation period
D, relative deadline
@, initial arrival time (phase)

Lo is Problem formulation

(P, G, T;, D)) job Tik
(—)%

= em e e =l

D, A di

For each periodic task T; we must guarantee that:
> each job Tikis activated at aix = @; + (k-1)T;

> each job Tik completes within dix = aix + D;

There are several wrong ways to achieve this goal.

10/04/2018

%.... Afarm scheduling problem

25 min / 50 min

At
Feed cow for _-_-'_}_"J C
? 2)\;\J s

. R First try

Alternate pig with cow

Feed pig and cow 10 min each

ﬁ 0 20 40 60 80 100
5 B Cow | 1 I T ; l \l T l
{4.; i 0 50 100
ST
Feed pig for &35 : % i Evaluation: Pig gets hungry
10 min /20 min " Cow gets fat
Xopis Second try R pis Third try

Feed pig and cow 5 min each

Pig ’_\ﬁl_\l_\l_\ﬁl_\l_\l_\l_l|

Feed the most starving animal (= EDF)

P o e | e | el

20 40 60 80 100

0
Cowll—\r—|l‘l__!—||‘
0 0

I“““IIS “‘IIIIOYO

Evaluation: ‘ Everybody is happy ‘

0 20 40 " 60 80 100 0
C0W|l—\!—||—\!—|!—| C0W|!_|!_|l_\l_\!_|!_|l_|l_\l_\!_|
0 1 I I I '5'0‘ 71 I | '10'0 0 I I I ‘5‘0‘ I I I I ‘10'0
Evaluation: Pig is OK Evaluation: Pig is OK, Cow is OK
Cow is not happy but the farmer is tired
£ Optimal algorithm Bl What do we learn?

e Reducing the execution time window, we get
closer to a feasible solution.

e The time is split proportionally between the
animals.

In the example, each animal required food for 50%
of the time, but how can we generalize the solution
if the animals require different fraction of time?

a2

10/04/2018

%.... A new scheduling problem

Feed cow for
20 min / 40 min

Feed pig for
4 min /16 min

4., Proportional share algorithm

Basic idea
¢ Divide the timeline into slots of equal length.

e Within each slot serve each task for a time
proportional to its utilization:

Pig utilization factor = 4/16 =1/4
Cow utilization factor = 20/40 = 1/2

Pig
4/16

COW 4 ! 4 ! 4 ! 4 ' 4
2040 A
0 8 16 24 32 40

4., Proportional share algorithm

In general
Let: U, = required feeding fraction
A = GCD(T,,T,)=8

|execute each task for §,= UA in each slot A

Pig lzj P 'zj B : B
AR B - T - = . - .

Cow P T A

4., Proportional share algorithm

e This method approximates a fluid system, where
execution progresses proportionally to U,

e The major problem is that if periods are not
harmonic, A = GCD (T, ..., T,) is small and a task
is fragmented into many chunks: T/A of small
duration §, = UA.

PTUZI E S B S s B S ‘
0 8 16 24 32 40
. . too much overhead
NOTE: UA ensures C;in T, in fact: §,(T/A)=C;
Feasibility test: X5, < A ie. XU; <1 N .
ol Work and Sleep ol Work and Sleep
According to this method, a task executes for C; units Examplel: task C T, Sleep
and then suspends for T; — C; units: A | 1]5 4
= 2 1 10 " It works vyell fgr small
task C; T, Sleeptime = 3 20 = computation times
A 1 5 4
B 2 10 8 |
clls]of[v PNCTC NS R = R = N = M & B & A
o s A
I o I BRI ST — I =
functionA(); functionB(); functionC(); 13 no3 21 23 31
' } C (3/20) 1 v
sleep(4); | | sleep(8); | | sleep(17); | 0 s s s

a8

10/04/2018

g 0 Work and Sleep

Loop Scheduling

Example2: tassk C T, Sleep It is a simple trick to schedule periodic activities at different
A | 215 3 Problem rates using a single loop (often used in Arduino):
B 2 8 6 Low pyiority tasks int count = 0; // relative time
c 6 | 20 12 experience long delays int T1 = 20; // period 1 in ms
int T2 = 50; // period 2 in ms
int T3 = 80; // period 3 in ms
while (1) {
A (2/5) . - - .
if (count%T1l == 0) functionl();
. . .) . . if (count%T2 == 0) function2();
B (2/10) ! i ' ‘ ' if (count¥T3 == 0) function3();
2 4 12 14 22 24 31
5 count++;
C (6/20) D l:l D l:l . v D if (count == T1*T2*T3) count = 0;
0 4 7 10 14 17 2 34 delay(1); // wait for 1 ms
3
49 50
g T Loop Scheduling o Loop Scheduling

Note that the counter must be reset at the least common
multiple of the periods, called the hyperperiod (H):

count++;
if (count == T1*T2*T3) count = 0;

Q: How many bits are needed to represent the hyperperiod?

T1=10 =) H=10"

T2 =40

T3=50 bits = (10g2101;‘ = (39.8% = 40
T4 =100

;g z ?ggo It does not fit to a long integer.

We are in trouble!

A better way is to rely on a system call that returns
the system time:

— Initialization
v N t = get_time();
t = get_time(); al=t-T1;
a2=t-T2;

= al=t — functionl();

»—= a2 =t — function2();

o Loop Scheduling

Implementation:

#define N 5 // number of tasks

time t; // current time
time a[N], TIN]; // act. times, periods
initialize_periods(T); // e.g., read from file

t = get_time();
for (i=0; i<N; i++) a[i] = t — T[i];

while (1) {
for (i=0; i<N; i++) {
t = get_time(Q);
if (t>=a[i] + TLD {
a[i] = ¢;
function(i);

o Loop Scheduling

Example1l: task G T
A 1]
B | 1]
c | 1]2
A(1/5) mhhhhhh '
0 5 9 14 19 24 29 34
BGO) [H T—|

C(R20 o

10/04/2018

ol Loop Scheduling Loop Scheduling
Example2: task G T Problem If the scheduler is not the only thread, a sleep must be inserted:
A 1 5 Tasks experience delays #define N 5 // number of tasks
B 3 10 from the other tasks #define DELTA 3 // milliseconds
time t; // current time
c 5%/ time a[N], TINI; // act. times, periods
9 10 initialize_periods(T); // e.g., read from file
,,,,,,,,,,,,,,,, ‘ 1 t = get_time(Q);
: v : \ for (i=0; i<N; i++) a[i] = t — T[i];
PN Y I A = N - N < B m '
P e e e e e while (1) {
; for (i=0; i<N; i++) {
B (3/10) t = get_time();
1 1 21 31 if (t-a[i] >= T[iD {
a[i] = t;
RACEC NN - IS I function(i);
0 4 9 24
} sleep(DELTA); // suspend for 3 ms
o Loop Scheduling o Timeline Scheduling
Example3: task C T Problem . . .
DEiTA- 3 Bl ' | 5 | |lheexperiencaddelayiisigiven Also known as cygl!c scheduling, it has peeq used for
B | 3| 10| by othertasks + suspension 30 years in military systems, navigation, and
c |51 20 monitoring systems.
— & 8 s Examples
: v [[v
AWS O]) I — A — Air traffic control systems
0 5 9 14 19 24 29 34
TN S P g T """" i — Space Shuttle
‘ ‘1 e lll 1‘3 ‘ 16 | B 2‘3 o 2‘6‘ o 31 " - Boelng 777
cono L e ~ Airbus navigation system
0 4 9 12

NOTE: Suspension time can be higher due to other tasks

ol Timeline Scheduling

Method

e The time axis is divided in intervals of equal
length (time slots).

e Each task is statically allocated in a slot in
order to meet the desired request rate.

e The execution in each slot is activated by a
timer.

£ Timeline Scheduling

Example: task C; T,
10ms | 25ms | A=GCD (minor cycle)

10ms | 50ms | T=Ilcm (major cycle)

10 ms | 100 ms

A T
0 25 50 75 100 125 150 175 200

[Co+Cy<A

Guarantee: {
\» CatCc<A

10

10/04/2018

o Timeline Scheduling

Implementation:

minor
cycle

major
cycle

timer

20 is Cycling Scheduling

Coding:

#define MINOR 25 // minor cycle = 25 ms
initialize_timer(MINOR); // interrupt every 25 ms
while (1) {

syncQ); // block until interrupt

function_AQ;
function_B(Q);
syncQ); // block until interrupt
function_AQ;
function_C(Q);
syncQ); // block until interrupt
function_AQ;
function_B(Q);
syncQ); // block until interrupt
function_AQ;

i Timeline scheduling

Advantages
e Simple implementation (no RTOS is required).
e Low run-time overhead.

o All tasks run with very low jitter.

Disadvantages
e |tis not robust during overloads.
e |t is difficult to expand the schedule.

e Itis not easy to handle aperiodic activities.

4...s Problems during overloads

What do we do during task overruns?

» Let the task continue

— we can have a domino effect on all the other
tasks (timeline break)

» Abort the task

— the system can remain in inconsistent states.

EoP Expandibility

If one or more tasks need to be upgraded, we may
have to re-design the whole schedule again.

Example: B is updated so that C; =20 ms
now C,+Cg>A

A
C mami

0 25

EoP Expandibility

e We have to split task B in two subtasks (B, B,)
and re-build the schedule:

A B A By C A B A By

0 25 50 75 100

[Cp+ Cg <A

Guarantee: ¢
|Ca+Cg, + Cc<A

11

10/04/2018

xoris Expandibility

If the frequency of some task is changed, the
impact can be even more significant:

task Tya Toew
25 ms 25 ms
50 ms 40 ms
100ms | 100 ms

minor cycle: A=25 A=5 40 sync.
major cycle: T=100 T=200 |Pereyele!

Rovis Example
A T

B o |
0 25 50 75 100 125 150 175 200
O] .

L H\\|H\I\HIHHHHIHHHH\
0 25 75 100 125 150 175 200
| - :

Priority
Scheduling

X, sis Priority Scheduling

Method

1. Assign priorities to each task based on its
timing constraints.

2. Verify the feasibility of the schedule using
analytical techniques.

3. Execute tasks on a priority-based kernel.

4..,, HoOw to assign priorities?

o Typically, task priorities are assigned based on
the their relative importance.

e However, different priority assignments can
lead to different processor utilization bounds.

£ Priority vs. importance

If T2 is more important than t1 and is assigned
higher priority, the schedule may not be feasible:

T S S =

|
| e

P,>P,

deadline miss

P,>P, |
T I%

12

10/04/2018

z S Priority vs. importance

If priority are not properly assigned, the utilization
bound can be arbitrarily small:

An application can be unfeasible even
when the processor is almost empty!

deadline miss

=
0 R T
P,>P, .
© | — -
€ C,
U= = = -
T, 00

+.... Optimal priority assignments

e Rate Monotonic (RM): optimal among FP alg®
forT=D
P, oc 1/T, (static)

e Deadline Monotonic (DM): [optimal among FP aIgS]

forD<T
P, oc 1/D; (static)

e Earliest Deadline First (EDF): [Optimal amongJ
all algs
P; oc 1/dy

dix = rix + D;

(dynamic)

%..;. Rate Monotonic is optimal

RM is optimal among all fixed priority
algorithms (if D, = T)):

If there exists a fixed priority assignment
which leads to a feasible schedule, then
the RM schedule is feasible.

$

If a task set is not schedulable by RM,
then it cannot be scheduled by any fixed
priority assignment.

%.,;s Deadline Monotonic is optimal

If D, < T, then the optimal priority assignment is
given by Deadline Monotonic (DM):

M TlJ_-l_h IL l|
PR g | |

6 b e e]
Ll |

B0, is EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for a task set,

then EDF wili generate a feasibie scheduie.

$

If a task set is not schedulable by EDF, then
it cannot be scheduled by any algorithm.

[Keris Optimality
EDE
dynamic -J..fixed o
priority priority RM
(b<T) | (D<T) | fixed priority |
.\\ -.\\ (D - T) /.r"’ ,-")
\\,\ _/‘/)/

13

10/04/2018

Aosis Rate Monotonic (RM)

e Each task is assigned a fixed priority
proportional to its rate [Liu & Layland ‘73].

TA_ h h h |
0 "o "0 " " 100
B —ﬁ—i:l—ﬁﬁﬁ}:l—ﬁ—ﬁﬁﬁl—‘:l—ﬁ

40 30

| mom . wm

Note that small parameter variations are automatically
handled by the scheduler without any intervention.

%.... An unfeasible RM schedule

0 30 6 12 15 18
o — -
0 3 6 9 12 15 18

deadline miss

R pis EDF Schedule
Up:§+i: 0.944
6 9
0 3 6 9 12 15 18
T2 | [— l| —
0 3 6 9 12 15 18

4., How can we verify feasibility?

e Each task uses the processor for a fraction of
time:

C.
U ==
Ti
e Hence the total processor utilization is:
n C
u = —+

e U, is a measure of the processor load.

4., ldentifying the worst case

Feasibility may depend on the 3
initial activations (phases): b6

deadline miss

Tlh _ h l
0 306 9 12 15 18
n |5
0

6 9 12 15 18

3

o Critical Instant

For any task T, the longest response time occurs
when it arrives together with all higher priority tasks.

T1 L h H L—.

|
T o pewm mm |

- L -

84

14

10/04/2018

Critical Instant

For independent preemptive tasks under fixed priorities, the
critical instant of 1, occurs when it arrives together with all
higher priority tasks.

(]~ N - T S
T, 28 | == h h =
Ty 2112 | == == =

Idle time
— T

T, 214 | o

A necessary condition

A

A necessary condition for having a feasible
schedule is that U, < 1.

N

In fact, if U, > 1 the processor is overloaded
hence the task set cannot be schedulable.

However, there are cases in which Up <1
but the task set is not schedulable by RM.

0

4

8

12

v] pm o e

16

Tlh h h h h

0

2

4

6

8

10

specific task set.

12

14

L
16

T
18

T T
20

NOTE: The upper bound U,, depends on the

%.... Anunfeasible RM schedule %..;. Utilization upper bound
3 4
U =—+—= 094
B 5 o Up=%+%=0.833
T1 h h h
0 3 6 9 12 15 18
o] e] |
0 3 6 9.§ 12 15 18 T2 I =
deadline miss 0 3 6 12 15 18
Given this task set (period configuration), what is the NOTE: If C, or C, is increased,
higher utilization that guarantees feasibility? 1, will miss its deadline!
... Adifferent upper bound ..., Adifferent upper bound
Uub=g+i=0.9 Up=z+i=1
4 10 4 8

e e m

0

4 8 12 16
v e] e
4 8 12 16

0

NOTE: The upper bound U, depends on the
specific task set.

15

10/04/2018

n periodic tasks:

UM = n(2""-1)

/

forn>o U, ,—> In2

e In 1973, Liu and Layland proved that for a set of

ESPN The least upper bound £ A sufficient condition
Uup If U, < Uy, the task set is certainly
1 - - - schedulable with the RM algorithm.
UIub
NOTE
If Uy, < Uy, <1 we cannot say anything
about the feasibility of that task set.
Cris U, for RM %.... RM Least Upper Bound

£ N A special case

If tasks have harmonic periods U, = 1.

RM Guarantee Test

o We compute the processor utilization as:

n Ci
Ung?

e Guarantee Test (only sufficient):

U, < n2""-1)

p

16

10/04/2018

;-2 Basic Assumptions 4.,.. The Hyperbolic Bound
Al. C,is constant for every job of 1, e In 2000, Bini et al. proved that a set of n
)) periodic tasks is schedulable by RM if:
A2. T,is constant for every job of 1,
A3. Foreach task, D;=T; n
A4. Tasks are independent: I I (Ui +1) <2
¢ no precedence relations i=1
e no resource constraints
¢ no blocking on I/O operations
o HB vs. LL 4., Extensiontotasks withD<T
U,
: n | L 1
LL | D Ui < n2""-1) ‘ D
i=1
0.83 Ci
L T | l |
li;[(ui g Tik dix Tig
Scheduling algorithms
e Deadline Monotonic: p;oc 1/D; (static)
e Earliest Deadline First: p;oc 1/d; (dynamic)
0.83 1 U,
£ P Deadline Monotonic 4.,.. Response Time Analysis

Problem with the Utilization Bound

5 C, 23
U =) —=—-+=-=116>1
P ;Di 36

but the task set is schedulable.

[Audsley '90]

» For each task t; compute the interference due
to higher priority tasks:
I, = ch

D, <D,
> compute its response time as R; = C; + 1,

» verify that R, < D;

17

10/04/2018

%.... ~Computing Interference %.... Computing Response Times
i1
Tk I—\ ”—\ ||—\ ”—\ || Ri . Ci_i_i(%w Ck
k=1 | 'k
Ti | N s B ||
0 R,
Iterative solution:
Interference of 1, on T | = (& C
' ' J: ik = k
in the interval [0, R}]: I Tk (Rio _ Ci . .
_ » o-1) iterate while
Interference on T, < | R s < | R*® RS > RC
i _ — >R
by high-priority tasks: i = L—_I—‘ Cy 1 R = Ci+z Cy : !
k=1 Kk k=1 k
4., Earliest Deadline First (EDF)
» Each job receives an absolute deadline:
Dynamic Priority disc = T D
SChEd Uling » At any time, the processor is assigned to the
job with the earliest absolute deadline.
» Under EDF, any task set can utilize the
processor up to 100%.
£ EDF Example ol Unfeasible under RM
By 4 3 4
T u, 5 + 9 0.944
Di:Tl
LI e | — | [— T \ | |
3 6 5 12 15 18 T3 T e T T T Ts T T
n "|‘| ©
3 6 9 12 15 18 I‘é“é"é 12“15 18“
deadline miss

18

10/04/2018

B0is EDF Optimality R, EDF schedulability
EDF is optimal among all algorithms: » In 1973, Liu and Layland proved that for a
set of n periodic tasks:
If there exists a feasible schedule for a task set EDE
I', then EDF will generate a feasible schedule. Ulub =l
If T is not schedulable by EDF, then it > This means that a task set I is schedulable
cannot be scheduled by any algorithm. by EDF if and only if
U, <1
g - EDFwithD<T g - Processor Demand
Schedulability Analysis
Processor Demand Criterion [Baruah ‘90] T l [[l T- l [ﬁ l [
In any interval of length L, the computational 4 b
demand g(0,L) of the task set must be no The demand in [t;, t,] is the computation time of
greater than the available time in that interval. those tasks started at or after t; with deadline
less than or equal to t,:
vL>0, g(0O,L) < L g,<t,
g(t,t,) = Zci
it
4.,.. Demand of a periodic task £ Example
I
" 'L-D,+T, |) T2|||||
-+ 1 0 2 4 6 8 10 12 14 16
g:;(0,L) = L—J C
T, 90, L) L
8
S| L-D,+T, 6
00 = = ¢ 4
=1 i
2
0 L

19

10/04/2018

z Bounding complexity

» Since g(0,L) is a step function, we can check
feasibility only at deadline points.

> If tasks are synchronous and U, < 1, we can
check feasibility up to the hyperperiod H:

H=lem(T, ..., T,)

z Bounding complexity

e Moreover we note that: g(0,L) < G(0,L)

.l -3 [LTDJ c

i=1

LU + EHJ(Ti -D,)Y,

R pis Limiting L

GO.L) = LU + 3T -D)U,

i=1

> -0,
1-U

L =

forL>L"

%.,.. Processor Demand Test

vLeD, g(O,L)< L

D = {dk|dkS min (H, L")}

e

H = lem(T,, ..., T,)

g(0,L)<G(O,L)<L i(Ti -D,)U,
T L o =l
L 1-U
Aoris Summary 4.,.. Schedulability Analysis

e Three scheduling approaches:

— Off-line construction (Timeline)
(RM, DM)
— Dynamic priority (EDF)

— Fixed priority

e Three analysis techniques:
— Processor Utilization Bound U < U,

— Response Time Analysis Vi R, <D,

— Processor Demand Criterion VL g(0,L) <L

D,=T, D,<T,

pseudo-polynomial
Response Time Analysis

Vi R; <D

Suff.: polynomial O(n)
LL: XU, < n@U-1)
RM HB: [TI(U+1) <2

i-1 R.
Exact pseudo-polynomial R = Ci+z -iC,
RTA | T

ial- oM pseudo-polynomial
EDF polynomlal W Processor Demand Analysis

2U <1 vL>0, g(O,L)< L

120

