
10/04/2018

1

Definitions

A task set  is said to be feasible, if there exists an
algorithm that generates a feasible schedule for .

A schedule  is said to be feasible if it satisfies a set of
constraints.

Examples of constraints

• Timing constraints: activation, period, deadline, jitter.

• Precedence: order of execution between tasks.

• Resources: synchronization for mutual exclusion.

A task set  is said to be schedulable with an algorithm A,
if A generates a feasible schedule.

Feasibility vs. schedulability

Feasible
task sets

Space of Task sets

unfeasible
task set

3

Space of
all

task sets

schedulable
with alg. A

Task sets
schedulable

with alg. B

The scheduling problem

Given a set  of n tasks, a set P of p processors, and a set

R of r resources, find an assignment of P and R to  that
produces a feasible schedule under a set of constraints.

Scheduling
algorithm



R

P 
feasible

constraints

Complexity

 In 1975, Garey and Johnson showed that the
general scheduling problem is NP hard.

In practice, it means that the time for finding a feasible
schedule grows exponentially with the number of tasks.

Fortunately, polynomial time algorithms can be
found under particular conditions.

 Let’s consider an application with n = 30 tasks on a
processor in which the elementary step takes 1 s

 Consider 3 algorithms with the following complexity:

O() O(8) O(8)

Why do we care about complexity?

A1: O(n) A2: O(n
8) A3: O(8

n)

30 s 182 hours 40.000
billion years

10/04/2018

2

Simplifying assumptions

 Single processor

 Homogeneous task sets

 Fully preemptive tasks

 Simultaneous activations

 No precedence constraints

 No resource constraints

Task set assumptions

We consider algorithms for different types of tasks:

 Single-job tasks (one shot)
tasks with a single activation (not recurrent)

 Periodic tasks Periodic tasks
recurrent tasks regularly activated by a timer (each
task potentially generates infinite jobs)

 Aperiodic/Sporadic tasks
recurrent tasks irregularly activated by events (each
task potentially generates infinite jobs)

 Mixed task sets

Classical scheduling policies

 First Come First Served

 Shortest Job First

 Priority Scheduling Priority Scheduling

 Round Robin

Not suited for real-time systems

First Come First Served

It assigns the CPU to tasks based on their arrival
times (intrinsically non preemptive):

Ready queue


t

CPU1234

a1 a2 a3 a4

1 2 3 4

s2 s3 s4 f4

‐ Very unpredictable

response times strongly depend on task arrivals:

a1 a2 a3
R3 = 26R2 = 26R1 = 20

First Come First Served

11

0 4 8 12 16 20 24 28 32
t

1 2 3

0 4 8 12 16 20 24 28 32
t

3 2 1

a3 a2 a1
R3 = 2R2 = 8R1 = 26

Shortest Job First (SJF)

 Static (Ci is a constant parameter)

It selects the ready task with the shortest
computation time.

12

 It can be used on line or off‐line

 Can be preemptive or non preemptive

 It minimizes the average response time

10/04/2018

3

SJF - Optimality

SL
 SJF

S L’
t

13

t
fS’ fL fL’ = fS<r0

fS’ + fL’  fS + fL

)()(
1

)'(
1

')(
11

 


Rrf
n

rf
n

R
n

i
ii

n

i
ii

 ’ ’’ *. . .

)''(')()( RRR . . . *)( R

SJF - Optimality

14

* = SJF

)(SJFR  is the minimum response time
achievable by any algorithm

Is SJF suited for Real-Time?

‐ It is not optimal in the sense of feasibility

1 2

d1 d2 d3A  SJF feasible

3

15

0 4 8 12 16 20 24 28 32
t

1 2 3

0 4 8 12 16 20 24 28 32
t

3 2 1

d1 d2 d3SJF not feasible

 Each task has a priority Pi, typically Pi  [0, 255]

 The task with the highest priority is selected for
execution.

 T k ith th i it d FCFS

Priority Scheduling

16

 Tasks with the same priority are served FCFS

pi  1/Ci  SJF

pi  1/ai  FCFS

NOTE:

Priority Scheduling

 Problem: starvation

low priority tasks may experience long delays
due to the preemption of high priority tasks.

17

 A possible solution: aging

priority increases with waiting time

The ready queue is served with FCFS, but ...

‐ Each task i cannot execute for more than Q
time units (Q = time quantum).

‐ When Q expires, i is put back in the queue.

Round Robin

18

When Q expires, i is put back in the queue.

CPU

READY queue

Q expired

10/04/2018

4

n = number of task in the system

t

nQ nQ

Round Robin

19

t

Q
i

i
i nC

Q

C
nQR )(

Each task runs as it was executing alone on a virtual
processor n times slower than the real one.

Time sharing

Round Robin

‐ if Q > max(Ci) then RR  FCFS

‐ if Q  context switch time () then

n(Q + ) n(Q + )

20

t

(Q)

Q + 

(Q)








 


Q

Q
nC

Q

C
QnR i

i
i)(

High priority

system tasks

PRIORITY

Multi-Level Scheduling

21

CPUMedium priority

Low priority

interactive tasks

batch tasks

RR

FCFS

Multi-Level Scheduling

CPU

priority

22

CPU

How to schedule RT tasks?

How to schedule RT tasks to maximize feasibility?

Ci

Di

di

24

i

10/04/2018

5

Earliest Due Date [Jackson 55]

Given a set of real-time tasks arrived simultaneously,
executing them by increasing deadline will minimize the
maximum lateness (Lmax).

-5
maximum Lateness

25

-8

-20

-30

NOTE:  No other scheduler can decrease Lmax

 Preemption is not required

EDD - Optimality

AB
 EDD

A B’
t

26

Lmax = La = fa  da

La’ = fa’  da < fa  da

Lb’ = fb’  db < fa  da

L’max < Lmax

fa’ fb fb’ = fa<r0 da db

EDD - Optimality

 ’ ’’ *. . .

)''(')()(maxmaxmax  LLL . . . *)(max  L

27

* = EDD

)(max EDDL  is the minimum value
achievable by any algorithm

EDD guarantee test (off line)

t
f1 f2 f3 f4

1 2 3 4

28

A task set  is feasible iff ii dfi 





i

k
ki Cf

1
i

i

k
k DCi  

1

Earliest Deadline First

If tasks arrive dynamically, the maximum lateness can be
minimized executing them by increasing absolute deadline,
but preemption must be enabled.

29

EDF Guarantee test (on line)

c1(t)

c2(t)

c (t)

30

t

c3(t)

c4(t)

tdtci i

i

k
k  

1

)(

10/04/2018

6

Complexity

EDD

Scheduler (queue ordering):

Feasibility Test (guarantee test):

O(n log n)

O(n)

31

EDF

Scheduler (insertion in the queue):

Feasibility Test (guarantee single task):

O(n)

O(n)

EDF optimality

 In the sense of feasibility [Dertouzos 1974]

An algorithm A is optimal in the sense of
feasibility if it generates a feasible schedule, if
there exists one

32

there exists one.

Demonstration method

It is sufficient to prove that, given an arbitrary
feasible schedule, the schedule generated by
EDF is also feasible.

A property of optimal algorithms

If a task set  is not schedulable by an
optimal algorithm, then  cannot be
scheduled by any other algorithm.

33

If an algorithm A minimizes Lmax then A is
also optimal in the sense of feasibility.
The opposite is not true.

Problem formulation

 We consider a computing system that has to
execute a set  of n periodic real-time tasks:

 = { 1, 2 , … n }

35

 Each task i is characterized by:

Ci worst-case computation time

Ti activation period

Di relative deadline

i initial arrival time (phase)

Problem formulation

i (i, Ci, Ti, Di) job ik

aik diki

36

For each periodic task i we must guarantee that:

 each job ik is activated at aik = i + (k-1)Ti

 each job ik completes within dik = aik + Di

There are several wrong ways to achieve this goal.

10/04/2018

7

A farm scheduling problem

Feed cow for
25 min / 50 min

37

Feed pig for
10 min / 20 min

First try

Alternate pig with cow

Pig

38

0

600 10020 80

Cow
50

g
40

100

Pig gets hungry

Cow gets fat

Evaluation:

Feed pig and cow 10 min each

Pig

Second try

39

0

600 10020 80

Cow
50

g
40

100

Pig is OK

Cow is not happy

Evaluation:

Feed pig and cow 5 min each

Pig

Third try

40

0

600 10020 80

Cow
50

g
40

100

Pig is OK, Cow is OK

but the farmer is tired

Evaluation:

Optimal algorithm

Feed the most starving animal ( EDF)

Pig

41

0

600 10020 80

Cow
50

g
40

100

Everybody is happyEvaluation:

What do we learn?

 Reducing the execution time window, we get
closer to a feasible solution.

 The time is split proportionally between the
animals.

42

In the example, each animal required food for 50%
of the time, but how can we generalize the solution
if the animals require different fraction of time?

10/04/2018

8

A new scheduling problem

Feed cow for
20 min / 40 min

43

Feed pig for
4 min / 16 min

Proportional share algorithm

Basic idea

 Divide the timeline into slots of equal length.

 Within each slot serve each task for a time
proportional to its utilization:

Pi tili ti f t 4/16 1/4

240 408 32

Cow

Pig

16

4/16

20/40
4 4 4 4 4

2 2 2 2 2 2

Pig utilization factor = 4/16 = 1/4

Cow utilization factor = 20/40 = 1/2

Δ = GCD (T1, T2) = 8

Let: Ui = required feeding fraction

execute each task for i = UiΔ in each slot Δ

In general

Proportional share algorithm

45

240 408 32

Cow

Pig

16

4/16

20/40
4 4 4 4 4

2 2 2 2 2 2

NOTE: UiΔ ensures Ci in Ti, in fact: i(Ti/Δ) = Ci

Feasibility test: i ≤ Δ i.e. Ui ≤ 1

Proportional share algorithm

 This method approximates a fluid system, where
execution progresses proportionally to Ui

 The major problem is that if periods are not
harmonic, Δ = GCD (T1, …, Tn) is small and a task
i f t d i t h k / f ll

46

is fragmented into many chunks: Ti/Δ of small
duration i = UiΔ.

too much overhead

Work and Sleep

According to this method, a task executes for Ci units
and then suspends for Ti – Ci units:

1

2

5

10

Ci Ti

A

task

B

Sleep time

4

8

47

functionA();

sleep(4);

functionB();

sleep(8);

functionC();

sleep(17);

3 20C 17

1

2

3

5

10

20

Ci Ti

A

task

B

C

Example 1:

Work and Sleep

Sleep

4

8

17

It works well for small
computation times

48

0

B (2/10)

A (1/5)
5

C (3/20)

1

0

3 23

11

11 14 18 26

21 31

34

6

4

8

7

17

4

3

8

13

4

17

4 4

8

26

23

23 31

4

10/04/2018

9

2

2

6

5

8

20

Ci Ti

A

task

B

C

Example 2:

Work and Sleep

Problem
Low priority tasks
experience long delays

Sleep

3

6

12

49

0

B (2/10)

A (2/5)
5

C (6/20)

2

0

4

12

10 15 17 26

22 31

34

7

3

6

12

4 14

32

24

23 31

10 14

3 3 3 3 3 3

7 12

17

6 6

34

Loop Scheduling

int count = 0; // relative time
int T1 = 20; // period 1 in ms
int T2 = 50; // period 2 in ms
int T3 = 80; // period 3 in ms

It is a simple trick to schedule periodic activities at different
rates using a single loop (often used in Arduino):

50

while (1) {

if (count%T1 == 0) function1();

if (count%T2 == 0) function2();

if (count%T3 == 0) function3();

count++;
if (count == T1*T2*T3) count = 0;

delay(1); // wait for 1 ms
}

Loop Scheduling

count++;
if (count == T1*T2*T3) count = 0;

Note that the counter must be reset at the least common
multiple of the periods, called the hyperperiod (H):

Q: How many bits are needed to represent the hyperperiod?

51

T1 = 10
T2 = 40
T3 = 50
T4 = 100
T5 = 500
T6 = 1000

H = 1012

bits = log21012 = 39.86 = 40

It does not fit to a long integer.
We are in trouble!

Loop Scheduling

A better way is to rely on a system call that returns
the system time:

t = get_time();
t = get_time();
a1 = t – T1;
a2 = t – T2;

Initialization

52

a1 = t function1();t  a1+T1

a2 = t

t = get_time();

function2();t  a2+T2

a2 t T2;

Loop Scheduling

Implementation:

#define N 5 // number of tasks
time t; // current time
time a[N], T[N]; // act. times, periods

initialize_periods(T); // e.g., read from file

t = get_time();

53

for (i=0; i<N; i++) a[i] = t – T[i];

while (1) {

for (i=0; i<N; i++) {

t = get_time();
if (t >= a[i] + T[i]) {

a[i] = t;
function(i);

}
}

}

1

1

1

5

10

20

Ci Ti

A

task

B

C

Loop Scheduling

Example 1:

54

0

B (3/10)

A (1/5)
5

C (5/20)

1

0

2 22

11

9 14 19 24 29

21 31

34

10/04/2018

10

1

3

5

5

10

20

Ci Ti

A

task

B

C

9 10

Problem
Tasks experience delays
from the other tasks

Loop Scheduling

Example 2:

55

0

B (3/10)

A (1/5)
5

C (5/20)

1

0

4 24

11

9

9 14 19 24 29

21 31

34

Loop Scheduling

If the scheduler is not the only thread, a sleep must be inserted:

#define N 5 // number of tasks
#define DELTA 3 // milliseconds
time t; // current time
time a[N], T[N]; // act. times, periods

initialize_periods(T); // e.g., read from file

t = get time();

56

t get_time();
for (i=0; i<N; i++) a[i] = t – T[i];

while (1) {

for (i=0; i<N; i++) {

t = get_time();
if (t-a[i] >= T[i]) {

a[i] = t;
function(i);

}
}
sleep(DELTA); // suspend for 3 ms

}

1

3

5

5

10

20

Ci Ti

A

task

B

C

12 15

Problem
The experienced delay is given
by other tasks + suspension

Loop Scheduling

Example 3:

DELTA = 3

57

0

B (3/10)

A (1/5)

5

C (5/20)

1

0

4 24

11

9

9 14 19 24 29

23 31

12

13 16 26

34

NOTE: Suspension time can be higher due to other tasks

Timeline Scheduling

Also known as cyclic scheduling, it has been used for
30 years in military systems, navigation, and
monitoring systems.

Examples

58

p

– Air traffic control systems

– Space Shuttle

– Boeing 777

– Airbus navigation system

 The time axis is divided in intervals of equal
length (time slots).

Method

Timeline Scheduling

59

 Each task is statically allocated in a slot in
order to meet the desired request rate.

 The execution in each slot is activated by a
timer.

10 ms

10 ms

10 ms

25 ms

50 ms

100 ms

Ci Ti

A

task

B

C

 = GCD (minor cycle)

T = lcm (major cycle)

Timeline Scheduling

Example:

60

T

0 25 50 75 100 125 150 175 200



CA + CB  
CA + CC  

Guarantee:

10/04/2018

11

timer

timer

minor
cycle

Timeline Scheduling

Implementation:

A
B

61

timer

timer

timer

major
cycle

A
C

A
B

A

Cycling Scheduling

Coding:

#define MINOR 25 // minor cycle = 25 ms

initialize_timer(MINOR); // interrupt every 25 ms

while (1) {

sync(); // block until interrupt
function A();

62

function_A();
function_B();

sync(); // block until interrupt
function_A();
function_C();

sync(); // block until interrupt
function_A();
function_B();

sync(); // block until interrupt
function_A();

}

Timeline scheduling

 Simple implementation (no RTOS is required).

 Low run-time overhead.

 All tasks run with very low jitter.

Advantages

63

 It is not robust during overloads.

 It is difficult to expand the schedule.

 It is not easy to handle aperiodic activities.

Disadvantages

Problems during overloads

What do we do during task overruns?

 Let the task continue

– we can have a domino effect on all the other

64

tasks (timeline break)

 Abort the task

– the system can remain in inconsistent states.

Expandibility

If one or more tasks need to be upgraded, we may
have to re-design the whole schedule again.

Example: B is updated so that CB = 20 ms
C C 

65

now CA + CB > 

0 25



A B

 We have to split task B in two subtasks (B1, B2)
and re-build the schedule:

Expandibility

66

CA + CB1  
CA + CB2 + CC  

Guarantee:

0 25 50 75 100

B1 B1B2 B2A A A AC
• • •

10/04/2018

12

If the frequency of some task is changed, the
impact can be even more significant:

25 25

Told Tnew

A

task

Expandibility

67

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

A

B

C

 = 25  = 5

T = 100 T = 200

minor cycle:

major cycle:

40 sync.
per cycle!

Example

T

0 25 50 75 100 125 150 175 200



68

0 25 50 75 100 125 150 175 200



T

Priority Scheduling

1. Assign priorities to each task based on its
timing constraints.

Method

70

2. Verify the feasibility of the schedule using
analytical techniques.

3. Execute tasks on a priority-based kernel.

How to assign priorities?

 Typically, task priorities are assigned based on
the their relative importance.

 However, different priority assignments can
ff

71

lead to different processor utilization bounds.

Priority vs. importance

If 2 is more important than 1 and is assigned
higher priority, the schedule may not be feasible:

1

P1 > P2

72

2

1

2

P2 > P1

1 2

deadline miss

10/04/2018

13

If priority are not properly assigned, the utilization
bound can be arbitrarily small:

An application can be unfeasible even
when the processor is almost empty!

deadline miss

Priority vs. importance

73

1

2

P2 > P1





U =


T1

+

C2

0

Optimal priority assignments

 Rate Monotonic (RM):

Pi  1/Ti (static)

 Deadline Monotonic (DM):

optimal among FP algs

for T = D

optimal among FP algs()

Pi  1/Di (static)

 Earliest Deadline First (EDF):

Pi  1/dik (dynamic)

di,k = ri,k + Di

for D  T

optimal among
all algs

Rate Monotonic is optimal

RM is optimal among all fixed priority
algorithms (if Di = Ti):

If there exists a fixed priority assignment
which leads to a feasible schedule then

75

which leads to a feasible schedule, then
the RM schedule is feasible.

If a task set is not schedulable by RM,
then it cannot be scheduled by any fixed
priority assignment.

Deadline Monotonic is optimal

If Di  Ti then the optimal priority assignment is
given by Deadline Monotonic (DM):

1DM

76

2

1

2

P2 > P1

P1 > P2

RM

EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for a task set,
th EDF ill t f ibl h d l

77

then EDF will generate a feasible schedule.

If a task set is not schedulable by EDF, then
it cannot be scheduled by any algorithm.

Optimality

RM
fixed

DM
EDF

dynamic

78

RM
fixed priority
(D = T)

fixed
priority
(D  T)

y
priority
(D  T)

10/04/2018

14

Rate Monotonic (RM)

 Each task is assigned a fixed priority
proportional to its rate [Liu & Layland ‘73].

500 10025 75

A

79

0

B

0

C

40 80

100

Note that small parameter variations are automatically
handled by the scheduler without any intervention.

An unfeasible RM schedule

944.0
9

4

6

3
pU

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

1

2

EDF Schedule

944.0
9

4

6

3
pU

Di = Ti

81

0 9 18

6 120 183

3 6 12

9

15

15

1

2

How can we verify feasibility?

 Each task uses the processor for a fraction of
time:

i

i
i T

C
U 

 Hence the total processor utilization is:





n

i i

i
p T

C
U

1

 Up is a measure of the processor load.

Identifying the worst case

6 120 183 9 15

1

944.0
9

4

6

3
pUFeasibility may depend on the

initial activations (phases):

83

0 9 183 6 12 15

deadline miss

2

0 9 18

6 120 183

3 6 12

9

15

15

1

2

Critical Instant

For any task i, the longest response time occurs
when it arrives together with all higher priority tasks.

1

84

2

R2

1

2

R2

10/04/2018

15

1

For independent preemptive tasks under fixed priorities, the
critical instant of i, occurs when it arrives together with all
higher priority tasks.

1/6

Critical Instant

2

3

Idle time

2/8

2/12

i 2/14

A necessary condition

A necessary condition for having a feasible
schedule is that Up ≤ 1.

However, there are cases in which Up ≤ 1
but the task set is not schedulable by RM.

In fact, if Up > 1 the processor is overloaded
hence the task set cannot be schedulable.

An unfeasible RM schedule

6 120 183 9 1

1

944.0
9

4

6

3
pU

87

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

2

Given this task set (period configuration), what is the
higher utilization that guarantees feasibility?

Utilization upper bound

833.0
9

3

6

3
pU

1

88

0 9 18

6 120 183

3 6 12

9

15

15

1

2

NOTE: If C1 or C2 is increased,
2 will miss its deadline!

A different upper bound

9.0
10

4

4

2
ubU

1

89

NOTE: The upper bound Uub depends on the
specific task set.

0

4 120 8 16

1

2
4 108 1662 12 14 18 20

1
8

4

4

2
pU

1

A different upper bound

90

0

4 120 8 16

1

2
4 128 16

NOTE: The upper bound Uub depends on the
specific task set.

10/04/2018

16

1

Uub

The least upper bound

91



Ulub

. . .

A sufficient condition

If Up  Ulub the task set is certainly

schedulable with the RM algorithm.

92

If Ulub < Up  1 we cannot say anything

about the feasibility of that task set.

NOTE

Ulub for RM

 In 1973, Liu and Layland proved that for a set of
n periodic tasks:

 12 /1
l b  nRM nU

93

 12lub nU

for n  Ulub  ln 2

RM Least Upper Bound

69%

CPU%

n

A special case

1
8

4

4

2
pU

If tasks have harmonic periods Ulub = 1.

84p

0

4 120 8 16

1

2
4 128 16

RM Guarantee Test

 We compute the processor utilization as:





n

i i

i
p T

C
U

1

96

 12 /1  n
p nU

 Guarantee Test (only sufficient):

10/04/2018

17

Basic Assumptions

A1. Ci is constant for every job of i

A2. Ti is constant for every job of i

A3. For each task, Di = Ti

97

A4. Tasks are independent:
 no precedence relations

 no resource constraints

 no blocking on I/O operations

The Hyperbolic Bound

 In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable by RM if:

n

98

2)1(
1


i

iU

HB vs. LL

1

U1

0.83

LL

HB 2)1(
n

U

)12(/1

1




n
n

i
i nU

99U210.83

HB 2)1(
1


i

iU

Extension to tasks with D < T

Cii

Di

Ti

100

 Deadline Monotonic: pi  1/Di (static)

 Earliest Deadline First: pi  1/di (dynamic)

ri,k di,k
tri,k+1

Scheduling algorithms

Deadline Monotonic

2

1

0 4 8 12 16 20 24 28

101

0 4 8 12 16 20 24 28

Problem with the Utilization Bound

116.1
6

3

3

2

1

 


n

i i

i
p D

C
U

but the task set is schedulable.

Response Time Analysis

 For each task i compute the interference due
to higher priority tasks:





k DD

ki CI

[Audsley '90]

102

 compute its response time as Ri = Ci + Ii

 verify that Ri  Di

 ik DD

10/04/2018

18

Computing Interference

0 Ri

i

k

103

0 Ri

Interference of k on i

in the interval [0, Ri]: k
k

i
ik C

T

R
I 

Interference on i

by high-priority tasks: k
k

i
i

k
i C

T

R
I 






1

1

Computing Response Times

k
k

i
i

k
ii C

T

R
CR 






1

1

104

Iterative solution:

k
k

s
i

i

k
i

s
i C

T

R
CR

)1(1

1






ii CR 0

iterate while
)1( s

i
s
i RR

Earliest Deadline First (EDF)

 Each job receives an absolute deadline:

di,k = ri,k + Di

 At any time, the processor is assigned to the

106

y , p g
job with the earliest absolute deadline.

 Under EDF, any task set can utilize the
processor up to 100%.

EDF Example

944.0
9

4

6

3
pU

Di = Ti

107

0 9 18

6 120 183

3 6 12

9

15

15

1

2

Unfeasible under RM

944.0
9

4

6

3
pU

108

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

1

2

10/04/2018

19

EDF Optimality

EDF is optimal among all algorithms:

If there exists a feasible schedule for a task set
, then EDF will generate a feasible schedule.

109

If  is not schedulable by EDF, then it
cannot be scheduled by any algorithm.

EDF schedulability

 In 1973, Liu and Layland proved that for a
set of n periodic tasks:

1lub EDFU

110

 This means that a task set  is schedulable
by EDF if and only if

Up  1

EDF with D  T

Processor Demand Criterion [Baruah ‘90]

Schedulability Analysis

In any interval of length L, the computational

demand (0 L) of the task set must be no

111

demand g(0,L) of the task set must be no

greater than the available time in that interval.

LLgL ),0(,0

Processor Demand

t1 t2

The demand in [t t] is the computation time of

112







2

1

),(21

td

tr
i

i

i

Cttg

The demand in [t1, t2] is the computation time of
those tasks started at or after t1 with deadline
less than or equal to t2:

0 L

Demand of a periodic task

ii C
TDL

L


)0(

113







n

i
i

i

ii C
T

TDL
Lg

1

),0(

i
i

ii
i C

T
Lg ),0(

Example

2

1

0 2 6 124 8 10 14 16

114

0

2

4

6

8

g(0, L)

L

L

10/04/2018

20

Bounding complexity

 Since g(0,L) is a step function, we can check
feasibility only at deadline points.

 If tasks are synchronous and Up < 1, we can
check feasibility up to the hyperperiod H:

115

y p yp p

H = lcm(T1, … , Tn)

 Moreover we note that: g(0, L)  G(0, L)











 


n

i
i

i

ii C
T

DTL
LG

1

),0(

Bounding complexity

116

i

i
n

i
ii

n

i i

i

T

C
DT

T

C
L 




11

)(





n

i
iii UDTLU

1

)(

g(0, L)

G(0, L)





n

i
iii UDTLULG

1

)(),0(L

UDT
L

n

i
iii 





)(
1*

Limiting L

117

L
L*

for L > L*

g(0,L)  G(0,L) < L

U
L




1

LLgDL ),0(,

D = {dk | dk  min (H, L*)}

Processor Demand Test

118

D {dk | dk  min (H, L)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii








1

)(
1*

Summary

 Three scheduling approaches:
 Off-line construction (Timeline)

 Fixed priority (RM, DM)

 Dynamic priority (EDF)

119

 Three analysis techniques:
 Processor Utilization Bound U  Ulub

 Response Time Analysis i Ri  Di

 Processor Demand CriterionL g(0,L)  L

Schedulability Analysis

RM

Di = Ti Di  Ti

LL: Ui  n(21/n –1)

HB: Ui+1)  2
i Ri  Di

pseudo-polynomial

1

Suff.: polynomial O(n)
Response Time Analysis

120

EDF
Ui  1



LLgL ),0(,0

O(n)

k
k

i
i

k
ii C

T

R
CR 






1

1

pseudo-polynomialpolynomial:

RTA
Exact pseudo-polynomial

Processor Demand Analysis

