

Protocol key aspects										
n.										
critical										
ending										
times.										
le the										

Rules for classical semaphores

The following rules are normally used for classical semaphores:

Access Rule (Decides whether to block and when):

Enter a critical section if the resource is free, block if the resource is locked.

Progress Rule (Decides how to execute in a critical section):

Execute the critical section with the nominal priority.

Release Rule (Decides how to order pending requests):

- > Wake up the blocked task in FIFO order.
- Wake up the blocked task with the highest priority.

Resource Access Protocols

- Classical semaphores (No protocol)
- Non Preemptive Protocol (NPP)
- Highest Locker Priority (HLP)
- Priority Inheritance Protocol (PIP)
- Priority Ceiling Protocol (PCP)
- Stack Resource Policy (SRP)

11/1	Retis No Francisco Nor	Preemptive Protocol	
	Access Rule:	A task never blocks at the entrance of a critical section, but at its activation time.	æ
	Progress Rule:	Disable preemption when executing inside a critical section.	Э
	Release Rule:	At exit, enable preemption so that the resource is assigned to the pending task with the highest priority.	e K
		1	14

NPP: implementation notes Each task t_i must be assigned two priorities: a nominal priority P_i (fixed) assigned by the application developer; a dynamic priority p_i (initialized to P_i) used to schedule the task and affected by the protocol. Then, the protocol can be implemented by changing the behavior of the wait and signal primitives: wait(s): p_i = max(P₁, ..., P_n) signal(s): p_i = P_i

14/3	etis Hi	ghest Locker Priority
	Access Rule:	A task never blocks at the entrance of a critical section, but at its activation time.
	Progress Rule:	Inside resource R, a task executes at the highest priority of the tasks that use R.
	Release Rule:	At exit, the dynamic priority of the task is reset to its nominal priority P_i .
		21

Retis Prio	rity Inheritance Protocol
Access Rule:	A task blocks at the entrance of a critical section if the resource is locked.
Progress Rule:	Inside resource R, a task executes with the highest priority of the tasks blocked on R.
Release Rule:	At exit, the dynamic priority of the task is reset to its nominal priority P _i .
·	
	25

Identifying blocking resourcesUnder PIP, a task τ_i can be blocked on a semaphore S_k only if: 1. S_k is directly shared between τ_i and lower priority tasks (direct blocking) **OR**2. S_k is shared between tasks with priority lower than τ_i and tasks having priority higher than τ_i (push-through blocking).

- 1. Identify the set β_{ij} for all lower priority tasks
- 2. Identify the set β_i
- 3. Compute α_i
- 4. Compute B_i as the highest sum of the α_i durations δ_{ik} of $Z_{ik} \in \beta_i$

NOTE:

The α_i critical sections selected from β_i

- must belong to <u>different tasks</u> (for Lemma 1);
- > must refer to different semaphores (for Lemma 2);

38

Pros typesme Lateratory	Identi	fica	atic	on	of	β ₃
	C _i T _i	Α	В	С	D	Е
τ_1	15 60	3	4	5	_	_
τ_2	30 100	6	11	-	5	_
$B_3 \implies \tau_3$	20 150	-	_	10	_	8
$ au_4$	40 200	-	12	-	(14)	10
		β ₁ =	= {A ₂	, B ₂	, C ₃ ,	B ₄ }
		$\beta_2 =$	$= \{C_3$	$, B_4$	$, D_4 \}$	
 τ₃ can be bl <u>directly</u> b 	ocked y E_4 and	β ₃ =	= { B ₄	, D ₄	, E ₄ }	
indirectly	by B ₄ and I	D_4				

Retis Trans Laboratory		ld	enti	fica	atio	on	of	β ₄
		C _i	T _i	Α	В	С	D	Е
	$\boldsymbol{\tau}_1$	15	60	3	4	5	_	-
	$\boldsymbol{\tau}_2$	30	100	6	11	-	5	-
	$\boldsymbol{\tau}_3$	20	150	-	-	10	-	8
$B_4 \implies$	$\boldsymbol{\tau}_4$	40	200	-	12	-	14	10
				$\beta_1 = \beta_2 = \beta_3 = \beta_3 = \beta_3 = \beta_3$	$= \{A_2 = \{C_3 = \{B_4\}\}$	$_{2}^{2}, B_{2}^{2}$ $_{3}^{3}, B_{4}^{3}, B_{4}^{3}, B_{4}^{3}$, C_3 , , D_4 } , E_4 }	B ₄ }
				β₄ =	= { }			
				r -4	U			

\underline{X}_{etis} Identification of α_i										
[Ci	T _i	А	В	С	D	Е	β,	n _i m _i	α_{i}
τ_1	15	60	3	4	5	_	_	$\{A_2, B_2, C_3, B_4\}$	3 3	3
τ ₂	30	100	6	11	_	5	_	$\{C_3, B_4, D_4\}$	2 3	2
τ3	20	150	-	_	10	_	8	$\{B_4, D_4, E_4\}$	1 3	1
τ ₄	40	200	_	12	-	14	10	{}	0 0	0
$\alpha_{i} = \min(n_{i}, m_{i})$ number of tasks with priority less than τ_{i} number of semaphores that can block τ_{i} (either directly or indirectly).										
45										

Identification of B _i										
	C _i	Ti	А	В	С	D	Е	β _i	α	B _i
τ_1	15	60	3	4	5	-	-	$\{A_2, B_2, C_3, B_4\}$	3	28
τ ₂	30	100	6	11	_	5	_	$\{ \mathbf{C_3}, \mathbf{B_4}, \mathbf{D_4} \}$	2	24
τ ₃	20	150	-	_	10	_	8	$\{B_4, \mathbf{D_4}, E_4\}$	1	14
τ ₄	40	200	-	12	_	14	10	{}	0	0
 NOTES For τ₁, if we select B₂, we cannot select B₄, because each semaphore can block only once (Lemma 2). 										
 For τ₂, we cannot select B₄ and D₄, because each task can block only once (Lemma 1). 										
										46

Retis PI	iority Ceiling Protocol									
Access Rule:	A task can access a resource only if it passes the PCP access test.									
Progress Rule:	Inside resource R, a task executes with the highest priority of the tasks blocked on R.									
Release Rule:	At exit, the dynamic priority of the task is reset to its nominal priority P_i .									
NOTE: PCP can be viewed as PIP + access test										
	49									

