11/04/2018

Handling shared
resources

Problems caused by

20is Using semaphores
» Make critical sections as short as possible.
int X, y; [// these are global shared variables
mutex s; // this is the semaphore to protect them
task reader() {
int i; // these are local variables

float d: v[DIM]; . .
Can we shorten this critical section?

wait(s);

mutual exclusion d = sareQetx + y*y); ical
for (i=0; i++; i<DIM) { critica
v[i] = i*(x + y); section
if (v[i] < x*y) v[i] = x + y; length
signal(s);
3} o 2
i Using semaphores i Using semaphores

» Make critical sections as short as possible.

task reader() {

int i; // these are local variables

float d, v[DIM];

float a, b; == // two new local variables
wait(s); // copy global vars critical
a=x;b=y; // to local vars section
signal(s); length

d = sqrt(a*a + b*b); // make computation
for (i=0; i++; i<DIM) { // using local vars
v[i] = i*(a + b);
if (v[i] < a*b) v[i] = a + b;

» Make critical sections as short as possible.

» Try to avoid nested critical sections.

» Avoid making critical sections across loops or conditional

statements. This code is very UNSAFE, since the
- signal could never be executed, and T,
wait(s): could be blocked forever!

results = x + y;

while (result > 0) {
VLi] = i*(x + y);
if (v[i] < x*y) results = results - y;
else signal(s);

4.,.. How long is blocking time?

’Cl T2 Pl > PZ

A

Tz—'—‘ e]

CSy | | g,

4., Schedule with no conflicts

It seems that the maximum blocking
time for 11 is equal to the length of the
critical section (CS,) of 12, but ...

priority

BCT I_V_V_\ l

SCT

MTI_V—V_\

11/04/2018

4.,.. Conflict on acritical section

priority B
S ==
BCT [T
SCT

MTI_HI_\!_\

%.... Conflict on a critical section

priority B

st [1 =
!

SCT |

MTI_HIT I

2 ris Priority Inversion

A high priority task is blocked by a lower priority
task a for an unbounded interval of time

Solution

Introduce a concurrency control protocol for
accessing critical sections.

i Protocol key aspects

Access Rule: Decides whether to block and when.

Progress Rule: Decides how to execute inside a critical
section.

Reiease Ruie: Decides how to order the pending

requests of the blocked tasks.
Other aspects
Analysis: estimates the worst-case blocking times.

Implementation: finds the simplest way to encode the
protocol rules.

10

. Rules for classical semaphores

The following rules are normally used for classical semaphores:

Access Rule (Decides whether to block and when):
> Enter a critical section if the resource is free, block if the
resource is locked.
Progress Rule (Decides how to execute in a critical section):

» Execute the critical section with the nominal priority.

Release Rule (Decides how to order pending requests):
» Wake up the blocked task in FIFO order.
» Wake up the blocked task with the highest priority.

Resource Access Protocols

Ls

» Classical semaphores (No protocol)
» Non Preemptive Protocol (NPP)

» Highest Locker Priority (HLP)

» Priority Inheritance Protocol (PIP)
» Priority Ceiling Protocol (PCP)

» Stack Resource Policy (SRP)

11/04/2018

z Assumption

Critical sections are correctly accessed by tasks:

%.,.,. Non Preemptive Protocol

A task never blocks at the entrance of a
critical section, but at its activation time.

Access Rule:

wait(S,)
— Progress Rule: Disable preemption when executing inside
wait(Sg) a critical section.
— Release Rule: At exit, enable preemption so that the
signal(Sg) resource is assigned to the pending task
— signal(Sg) with the highest priority.
signal(S,)
4,,,. Conflict on acritical section 22, NPP: example
(using classical semaphores)
priority B priority E.
1 . | |
7 | T ! I T 1 l
T2 T2 1

TsHm 0

4.,.. NPP: implementation notes

Each task t; must be assigned two priorities:

» a nominal priority P; (fixed) assigned by the application
developer;

» adynamic priority p; (initialized to P;) used to schedule the
task and affected by the protocol.

Then, the protocol can be implemented by changing the
behavior of the wait and signal primitives:

wait(s): p; = max(Py, ..., P,)

signal(s): p;=P;

X, sis NPP: pro & cons

ADVANTAGES: simplicity and efficiency.

» Semaphores queues are not needed, because tasks
never block on a wait(s).

» Each task can block at most on a single critical section.
> It prevents deadlocks and allows stack sharing.
»> ltis transparent to the programmer.

PROBLEMS:
1. Tasks may block even if they do not use resources.

2. Since tasks are blocked at activation, blocking could be
unnecessary (pessimistic assumption).

11/04/2018

z S NPP: problem 1

Long critical sections delay all high priority tasks:

B, B, is useless:

z S NPP: problem 2

Atask could block even if not accessing a critical section:

priority { 1, cannot preempt, Ty T, blocks justin case ...
l although it could!
T —
B, — L 1 (T
T2 | I
T2 J:-—- [l
T3 t P2
[T []
Pmax
Priority assigned to T; =p . =
i = =max(P,, ..., P P
inside critical sections: Pi = Prax = Max(Py, ... Pr) 2
19 20
4., Highest Locker Priority Boris HLP: example
priority T, is blocked, but
Access Rule: A task never blocks at the entrance of a T I_\ l T, can preempt
critical section, but at its activation time. B,
fe—————
% ! I
Progress Rule: Inside resource R, a task executes at the
highest priority of the tasks that use R. T I_ﬂ
3 M
Release Rule: At exit, the dynamic priority of the task is Ps
reset to its nominal priority P;. P,
Ps

Priority assigned to T;

inside a resource R: | Pi(R) = max {P;| zusesR}

4., HLP: implementation notes

» Each task 7 is assigned a nominal priority P, and a
dynamic priority p;.

> Each semaphore S is assigned a resource ceiling C(S):
C(S) =max {P;| 5 uses S}
Then, the protocol can be implemented by changing the
behavior of the wait and signal primitives:
wait(S): p; = C(S)
signal(S): p;=P;

Note: HLP is also known as Immediate Priority Ceiling (IPC).

23

e HLP: pro & cons

ADVANTAGES: simplicity and efficiency.

» Semaphores queues are not needed, because tasks
never block on a wait(s).

» Each task can block at most on a single critical section.
» It prevents deadlocks.
> It allows stack sharing.

PROBLEMS:

» Since tasks are blocked at activation, blocking could be
unnecessary (same pessimism as for NPP).

I » Itis not transparent to programmers (due to ceilings).

11/04/2018

%.,.. Priority Inheritance Protocol

Access Rule: A task blocks at the entrance of a critical
section if the resource is locked.
Progress Rule: Inside resource R, a task executes with the

highest priority of the tasks blocked on R.

Release Rule: At exit, the dynamic priority of the task is

reset to its nominal priority P;.

B ris PIP: example
priority) _
/ direct blocking
g 'ﬁ |
\ push-through blocking
T2 \ I " —
/ 1:; inheritﬁ the priority of 7,
T [71 /
3] -
Pl
) —

%.... PIP: types of blocking

e Direct blocking
A task blocks on a locked semaphore

¢ Indirect blocking (Push-through blocking)

A task blocks because a lower priority task inherited
a higher priority.

BLOCKING:
a delay caused by lower priority tasks

%.... PIP: implementation notes

Inside a resource R the dynamic priority p; is set as
pi(R) = max { P, | 7, blocked on R}

wait(s): if (s ==0) {
<suspend the calling task 1, in the semaphore queue>
<find the task 1, that is locking the semaphore s>
Pk = Pexe // priority inheritance
<call the scheduler>

}

elses=0;

signal(s): if (there are blocked tasks) {
<awake the highest priority task in the semaphore queue>
Pexe = Pexe
<call the scheduler>

}

elses=1;

... ldentifying blocking resources

Under PIP, a task t; can be blocked on a semaphore
S, only if:

1. S, is directly shared between t; and lower priority
tasks (direct blocking)

OR

2. S, is shared between tasks with priority lower
than t; and tasks having priority higher than t,
(push-through blocking).

... ldentifying blocking resources

Lemma 1: A task t; can be blocked at most
once by a lower priority task.

!

If there are n; tasks with priority lower than t,
then t; can be blocked at most at most n; times,
independently of the number of critical sections
that can block ;.

11/04/2018

4., ldentifying blocking resources %..,. Bounding blocking times

Lemma?2: A task t. can be blocked at most A theorem follows from the previous lemmas:

once on a semaphore S,.
Theorem: t; can be blocked at most for

l the duration of o; = min(n;,m;)
critical sections.

If there are m; distinct semaphores that can block

a task 7, then 1, can be blocked at most m; times, n; = number of tasks with priority less than
independently of the number of critical sections m,= number of semaphores that can block T,
that can block ;. (either directly or indirectly).
31 32
- Example 1 - Example 1
priority Example in which 1, is blocked on B, by push-through
u A Te[Jc[D] »
priority
L Al ¢ [}
'Cl A B C D
v [& [o [\m
w | EEm
e 1, can be blocked once by 1, (on A, or C,) and 2 ALE
once by t; (on B; or Dy) I—H)
T [B] [To]
e 1, can be blocked once by 1, (on B; or D3) 3 . >
e 1, cannot be blocked
33 34
4,,.. ldentifying blocking times 4,,.. ldentifying blocking times
To derive a general analysis, we define the following notation: C.S. of © that can block <. dir
By e i . =0, N0
Z, longest (external) critical section used by 1, protected by for direct blocking: T ' !
semaphore S,. -
_ C.S. of 7; that can block T, — 'Ul
8, worst-case duration of Z;, for push-through blocking: ﬂij = hzl{ah N O'j}
c; set of the longest critical sections used by t; for each
semaphore S,: ;= { Z; | VS, used by 7,} C.S. of g that can block g
i
. iti i X X _ pdir pt _
Bj; set of critical sections used by 1; that can block ; ﬂij — ﬂijl U AP = hLJl{Gh A O'j}
Bi set of critical sections that can block «; —
Q; maximum number of critical sections that can block t; n
C.S. that can block p=U B;
B; worst-case blocking time for «; j=il
35 36

11/04/2018

Bis For the other protocols

B ={Z, 1(Z; €o;) AND (P; <P)}

B ={Z, |(Z; eo,) AND (P, <P) anD (C(S,)=P)}

B = U{Gh noj}

%.,.. ldentifying blocking time B;

Identify the set ;; for all lower priority tasks
Identify the set B;
Compute g

P w PR

Compute B; as the highest sum of the o; durations
S of Zy €

NOTE:
The o, critical sections selected from B;

C.S. that can block 1, b= jyﬂﬂij > must belong to different tasks (for Lemma 1);
» must refer to different semaphores (for Lemma 2);
37 38
2,0 Example 2 2,0 Example 2
Consider the following application: 1 I-IBI-I

IN ouT
priority
C. T
OallB M cl —sr, &
T // 3(R) 1, |15 | 60
oAl Al & [[of] 2|%|w
. 5 m s T3 | 20 | 150
[f TET T, | 40 | 200
T ‘ | B | | D | | E ‘ | 39
12 14 10

rz|_|A|_| A I B [Ipo] From the task code
1 5 we can derive the

T3 C E following table:
10 8
wl B8 0 o [e [l
12 14 10
¢ T, |A B D E
Ty 115 60 3 4 5 - -
T2 | 30 100 6 11 - 5 -
T3 | 20 150 - - 10 - 8
T4 | 40 200 - 12 - 14 10 o

Identification of B,

c T

B, == T, 15 60

A B
3 4
T, | 30 100 @@

T3 | 20 150 -

T, | 40 200 @

Br={A, B, C5, By}

\.| oo
|
[ee]

e 1, can only experience direct blocking because it is
the highest priority task.

41

Identification of B,

¢ T [A B Cc oD E
(15 6 | 3 4 5 - -
B, == T, 30100 | 6 11 - 5 -
T3 20 150 | - - 8
T 40 200 | - (1) - (14) 10

B ={A, B,, Cs B,}
B, ={Cs B, D}

e 1, can be blocked directly by B, and D,, and
indirectly by C; and B,.

42

11/04/2018

- ldentification of B, - ldentification of B,
G T A D E ¢ T.|A B C D E
T1 |15 60 3 4 5 - - Ty 115 60 3 4 5 - -
To | 30 100 6 11 - 5 - To | 30 100 6 11 - 5 -
B, == T3 | 20 150 - - 10 - 8 T3 | 20 150 - - 10 - 8
T 40 200 | - (12 - B, == T, 40 200 | - 12 - 14 10
B1={Az B, C5, B,} B ={A, By, C5 B}
B, ={Cs B, D} B, ={Cs B, D}
e 15 can be blocked Bs={B, D, Es} Bs={B, D, Es}
directly by E, and _
indirectly by B, and D, Bs=1r
43 44
Roris Identification of a, o Identification of B,
¢ T.lA D E B, nom oo ¢ T./|/ABCDE B, o | B
T [15 603 4 5 - —|{A,B,CyB}| 3 3 3 T [15 603 4 5 - —[{A,B,C,B}| 3 | 28
7,130 1006 11 - 5 —| {CyB,D} |2 3 2 T,130 1006 11 - 5 - | {C,B,D} | 2 | 24
T3 20 150 |- - 10 - 8| {B,D,EJ} |1 3 1 T3 20 150 |- - 10 - 8| {B,D,EJ} | 1 | 14
T, 40 200 || - 12 - 14 10 o 00 0 T, |40 200 || - 12 - 14 10 o 0l o
NOTES

o; = min(n;, m;)

number of tasks with
priority less than t;

number of semaphores

that can block t; (either
directly or indirectly).

45

e For 1, if we select B,, we cannot select B,, because

each semaphore can block only once (Lemma 2).

e For 1,, we cannot select B, and D,, because each task

can block only once (Lemma 1).

46

PIP: pro & cons

ADVANTAGES:

» It removes the pessimisms of NPP and HLP (a task is
blocked only when really needed).

» ltis transparent to the programmer.

PROBLEMS:

» More complex to implement (especially to support
nested critical sections).

» Itis prone to chained blocking.
» It does not avoid deadlocks.

Looris PIP: Chained blocking
priority ‘ Spa ‘ ‘ S ‘ ‘ 8c ‘

a1, T Ha
€T I‘H [c1 m
B | T3 I‘H B 1] [
Al Ty I‘_\ A] [

NOTE:

T, can be blocked at most once
for each lower priority task.

48

11/04/2018

A Priority Ceiling Protocol %.,.. Avoiding chained blocking
priority Ss B, e
Access Rule: A task can access a resource only if it I_‘} 1 1 1 1 1
passes the PCP access test. T [ATT] [] [cTT]
Progress Rule: Inside resource R, a task executes with the 2 'Iﬂ—_/%—/ < -
highest priority of the tasks blocked on R. ’ﬁ_/
T3 [B] [
N4
Release Rule: At exit, the dynamic priority of the task is I‘W
T4 A] |

reset to its nominal priority P;.

To avoid multiple blocking of T; we must prevent 15 and T, to
NOTE: PCP can be viewed as PIP + access test enter their critical sections (even if they are free), because a
low priority task (t,) is holding a resource used by t,.

R pis Resource Ceilings Boris PCP: example
To keep track of resource usage by high-priority tasks, Sa C(sp) =P
each resource is assigned a resource ceiling: priority S C(sg) =P,
C(sy) = max {P; | T; uses s, } T, I—| (AT T8
ceiling blocking
Then a task t; can enter a critical section only if its T2 Iﬁ/ B
priority is higher than the maximum ceiling of the I_‘_‘
locked semaphores: T3 Al [] 1
t
PCP access test '
P, > max { C(s,) : s, locked by tasks =, } t;: 1, is blocked by the PCP, since P, < C(s,)
51 52

PCP: properties o Typical deadlock
Theorem 1 It can only occur with nested critical sections:
Under PCP, a task can block at most on a single P. > P
" H T T 1 2
critical section. 1 2
= = blocked
T I—H ~
Theorem 2 A B 1
blocked
‘ PCP prevents chained blocking. B A T L
el Al wlm o
Theorem 3 (I L
‘ PCP prevents deadlocks.

11/04/2018

+.... PCP: deadlock avoidance

It can only occur with nested critical sections:

O csa) =P,
Tl Tz = C(Sg) =P,
= = blocked by PCP
7 ~ e
A B
. Alll © I_V_\ [
I — 2 ’—‘
|

55

Xopis PCP: pro & cons

ADVANTAGES:
> It limits blocking to the length of a single critical section.

» It avoids deadlocks when using nested critical sections.

PROBLEMS:
» Itis complex to implement (like PIP).

» It can create unnecessary blocking (it is pessimistic like
HLP).

» It is not transparent to the programmer: resource
ceilings must be specified in the source code.

%.,;. Analysis under shared resources

1. Select a scheduling algorithm to manage tasks
and a protocol for accessing shared resources.

2. Compute the maximum blocking time B; for
each task.

3. Perform the guarantee test including the
blocking terms.

2o is Analysis under RM
preemption
by HP tasks
o - |
blocking by
LP tasks
i1)
vi 3oy GFB o u)
a T T

Looris Hyperbolic Bound
preemption
' by HP tasks
T \ |
blocking by
LP tasks
i-1
vi] S|SBy <
k=1 _ 'k T;

4.,., Response Time Analysis

i-1 R
R = ci+Bi+z(T—ﬂ C,

k=1 k

Iterative solution:

0o iterate while
Ri = Ci + Bi RS > RGD
i i

i-1 R_(S—l)
R® = Ci+Bi+Z{ ' WCK
k=1 Tk

10

