
11/04/2018

1

Problems caused by

mutual exclusion

Using semaphores

 Make critical sections as short as possible.

task reader() {
int i; // these are local variables
float d, v[DIM];

int x, y; // these are global shared variables
mutex s; // this is the semaphore to protect them

C h t thi iti l ti ?

2

...

wait(s);
d = sqrt(x*x + y*y);
for (i=0; i++; i<DIM) {

v[i] = i*(x + y);
if (v[i] < x*y) v[i] = x + y;

}
signal(s);
...

}

critical
section
length

Can we shorten this critical section?

Using semaphores

 Make critical sections as short as possible.

task reader() {
int i; // these are local variables
float d, v[DIM];
float a, b; // two new local variables

...

i i l

3

wait(s); // copy global vars
a = x; b = y; // to local vars
signal(s);

d = sqrt(a*a + b*b); // make computation
for (i=0; i++; i<DIM) { // using local vars

v[i] = i*(a + b);
if (v[i] < a*b) v[i] = a + b;

}
...

}

critical
section
length

Using semaphores

 Make critical sections as short as possible.

 Try to avoid nested critical sections.

This code is very UNSAFE, since the
i l ld b t d d

 Avoid making critical sections across loops or conditional
statements.

4

...

wait(s);
results = x + y;
while (result > 0) {

v[i] = i*(x + y);
if (v[i] < x*y) results = results - y;
else signal(s);

}
}

signal could never be executed, and 1
could be blocked forever!

How long is blocking time?

CS

1 2
P1 > P2

1



5

CS1 CS2

2

It seems that the maximum blocking
time for 1 is equal to the length of the
critical section (CS2) of 2, but …

Schedule with no conflicts

BCT

priority

6

SCT

MT

11/04/2018

2

Conflict on a critical section

BCT

Bpriority

7

SCT

MT

BCT

B

Conflict on a critical section

priority

8

SCT

MT

Priority Inversion

A high priority task is blocked by a lower priority
task a for an unbounded interval of time

9

Solution

Introduce a concurrency control protocol for
accessing critical sections.

Protocol key aspects

Access Rule: Decides whether to block and when.

Progress Rule: Decides how to execute inside a critical
section.

R l R l D id h t d th di

10

Release Rule: Decides how to order the pending
requests of the blocked tasks.

Other aspects

Analysis: estimates the worst-case blocking times.

Implementation: finds the simplest way to encode the
protocol rules.

Rules for classical semaphores

Access Rule (Decides whether to block and when):

 Enter a critical section if the resource is free, block if the
resource is locked.

The following rules are normally used for classical semaphores:

11

Progress Rule (Decides how to execute in a critical section):

 Execute the critical section with the nominal priority.

Release Rule (Decides how to order pending requests):

 Wake up the blocked task in FIFO order.

 Wake up the blocked task with the highest priority.

Resource Access Protocols

 Classical semaphores (No protocol)

 Non Preemptive Protocol (NPP)

 Highest Locker Priority (HLP)

12

 Priority Inheritance Protocol (PIP)

 Priority Ceiling Protocol (PCP)

 Stack Resource Policy (SRP)

11/04/2018

3

Assumption

Critical sections are correctly accessed by tasks:

wait(SA)

wait(S)

wait(SA)

13

signal(SA)

signal(SB)

wait(SB)

signal(SA)

signal(SB)

wait(SB)

Non Preemptive Protocol

Access Rule: A task never blocks at the entrance of a
critical section, but at its activation time.

Progress Rule: Disable preemption when executing inside
a critical section

14

a critical section.

Release Rule: At exit, enable preemption so that the
resource is assigned to the pending task
with the highest priority.

1

Bpriority

Conflict on a critical section

(using classical semaphores)

15

2

3

NPP: example

B
priority

1

16

2

3

Each task i must be assigned two priorities:

 a nominal priority Pi (fixed) assigned by the application
developer;

 a dynamic priority pi (initialized to Pi) used to schedule the
task and affected by the protocol

NPP: implementation notes

17

task and affected by the protocol.

wait(s): pi = max(P1, …, Pn)

signal(s): pi = Pi

Then, the protocol can be implemented by changing the
behavior of the wait and signal primitives:

NPP: pro & cons

ADVANTAGES: simplicity and efficiency.

 Semaphores queues are not needed, because tasks
never block on a wait(s).

 Each task can block at most on a single critical section.

 It prevents deadlocks and allows stack sharing

18

 It prevents deadlocks and allows stack sharing.

 It is transparent to the programmer.

PROBLEMS:

1. Tasks may block even if they do not use resources.

2. Since tasks are blocked at activation, blocking could be
unnecessary (pessimistic assumption).

11/04/2018

4

NPP: problem 1

B1priority

1

Long critical sections delay all high priority tasks:

B1 is useless:
1 cannot preempt,
although it could!

B

19

Priority assigned to i
inside critical sections:

2

3

pi = Pmax = max(P1, …, Pn)

B2

NPP: problem 2

A task could block even if not accessing a critical section:

test

1 2

1

1 blocks just in case ...

20

CS CS 2

p2

Pmax

P2

Highest Locker Priority

Access Rule: A task never blocks at the entrance of a
critical section, but at its activation time.

Progress Rule: Inside resource R, a task executes at the

21

highest priority of the tasks that use R.

Release Rule: At exit, the dynamic priority of the task is
reset to its nominal priority Pi.

HLP: example

priority
1

2

2 is blocked, but

1 can preempt

B2

22

3

Priority assigned to i
inside a resource R: pi(R) = max {	Pj | j uses R }

P2

P3

p3

 Each task i is assigned a nominal priority Pi and a
dynamic priority pi.

 Each semaphore S is assigned a resource ceiling C(S):

HLP: implementation notes

C(S) = max {	Pi | i uses S }

23

wait(S): pi = C(S)

signal(S): pi = Pi

Then, the protocol can be implemented by changing the
behavior of the wait and signal primitives:

Note: HLP is also known as Immediate Priority Ceiling (IPC).

HLP: pro & cons

ADVANTAGES: simplicity and efficiency.

 Semaphores queues are not needed, because tasks
never block on a wait(s).

 Each task can block at most on a single critical section.

 It prevents deadlocks

24

PROBLEMS:

 Since tasks are blocked at activation, blocking could be
unnecessary (same pessimism as for NPP).

 It is not transparent to programmers (due to ceilings).

 It prevents deadlocks.

 It allows stack sharing.

11/04/2018

5

Priority Inheritance Protocol

Access Rule: A task blocks at the entrance of a critical
section if the resource is locked.

Progress Rule: Inside resource R, a task executes with the

25

highest priority of the tasks blocked on R.

Release Rule: At exit, the dynamic priority of the task is
reset to its nominal priority Pi.

PIP: example

push-through blocking

direct blocking
priority

1



26

2

3
3 inherits the priority of 1

P1

P3

PIP: types of blocking

 Direct blocking

A task blocks on a locked semaphore

 Indirect blocking (Push-through blocking)

A task blocks because a lower priority task inherited

27

A task blocks because a lower priority task inherited
a higher priority.

BLOCKING:

a delay caused by lower priority tasks

Inside a resource R the dynamic priority pi is set as

PIP: implementation notes

pi(R) = max {	Ph | h blocked on R }

wait(s): if (s == 0) {
<suspend the calling task exe in the semaphore queue>
<find the task k that is locking the semaphore s>
p = P // priority inheritance

28

pk = Pexe // priority inheritance

<call the scheduler>
}

else s = 0;

signal(s): if (there are blocked tasks) {
<awake the highest priority task in the semaphore queue>
pexe = Pexe

<call the scheduler>
}

else s = 1;

Identifying blocking resources

Under PIP, a task i can be blocked on a semaphore
Sk only if:

1. Sk is directly shared between i and lower priority
tasks (direct blocking)

29

OR

2. Sk is shared between tasks with priority lower
than i and tasks having priority higher than i

(push-through blocking).

Lemma 1: A task i can be blocked at most
once by a lower priority task.

Identifying blocking resources

30

If there are ni tasks with priority lower than i,

then i can be blocked at most at most ni times,

independently of the number of critical sections

that can block i.

11/04/2018

6

Lemma 2: A task i can be blocked at most
once on a semaphore Sk.

Identifying blocking resources

31

If there are mi distinct semaphores that can block

a task i, then i can be blocked at most mi times,

independently of the number of critical sections

that can block i.

Bounding blocking times

A theorem follows from the previous lemmas:

Theorem: i can be blocked at most for
the duration of i = min(ni,mi)
critical sections.

32

critical sections.

ni = number of tasks with priority less than i

mi = number of semaphores that can block i

(either directly or indirectly).

Example 1

priority

B C1

2



A

C

DB

A

D

33

3 DB

 1 can be blocked once by 2 (on A2 or C2) and
once by 3 (on B3 or D3)

 2 can be blocked once by 3 (on B3 or D3)

 3 cannot be blocked

priority

1 A B C D

Example in which 2 is blocked on B3 by push-through

Example 1

34

2

3 B

P1

A C

D

Identifying blocking times

To derive a general analysis, we define the following notation:

Zik longest (external) critical section used by i protected by
semaphore Sk.

ik worst-case duration of Zik

set of the longest critical sections used by for each

35

i set of the longest critical sections used by i for each
semaphore Sk: i = { Zik | Sk used by i }

ij set of critical sections used by j that can block i

i set of critical sections that can block i

i maximum number of critical sections that can block i

Bi worst-case blocking time for i

Identifying blocking times

ji
dir
ij  C.S. of j that can block i

for direct blocking:

}{
1

1
jh

i

h

pt
ij  






C.S. of j that can block i

for push-through blocking:

36

}{
1

jh

i

h

pt
ij

dir
ijij  




C.S. of j that can block i

ij

n

ij
i 

1
 C.S. that can block i

11/04/2018

7

For the other protocols

)}()(|{ AND ijjjkjk
NPP

ij PPZZ  

i

)})(()()(|{ ANDAND ikijjjkjk
HLP
ij PSCPPZZ  

37

}{
1

jh

i

h

PIP
ij  




ij

n

ij
i 

1
 C.S. that can block i

Identifying blocking time Bi

1. Identify the set ij for all lower priority tasks

2. Identify the set i

3. Compute i

4. Compute Bi as the highest sum of the i durations

38

ik of Zik  i

NOTE:

The i critical sections selected from i

 must belong to different tasks (for Lemma 1);

 must refer to different semaphores (for Lemma 2);

Example 2

1

A

B

C

D

E

IN OUT

2

3

4

Consider the following application:

i it

39

Ci Ti

15 60

30 100

20 150

40 200

1

2

3

4

priority

B C1

2

3

A

D

EC

A

DB

BA

4 E

3 4 5

3 6 11 5

10 8

12 14 10

(Ri)

Example 2

From the task code
we can derive the
following table:

B C1

2

3

A

D

EC

A BA

3 4 5

3 6 11 5

10 8

DB4 E
12 14 10

40

Ci Ti A B C D E

15 60 3 4 5  
30 100 6 11  5 
20 150   10  8

40 200  12  14 10

1

2

3

4

Identification of 1

Ci Ti A B C D E

15 60 3 4 5  
30 100 6 11  5 
20 150   10  8

40 200  12  14 10

1

2

3

4

B1

41

1 = {A2, B2, C3, B4}

 1 can only experience direct blocking because it is
the highest priority task.

Ci Ti A B C D E

15 60 3 4 5  
30 100 6 11  5 
20 150   10  8

40 200  12  14 10

1

2

3

4

B2

Identification of 2

42

1 = {A2, B2, C3, B4}

2 = {C3, B4, D4}

 2 can be blocked directly by B4 and D4, and
indirectly by C3 and B4.

11/04/2018

8

Ci Ti A B C D E

15 60 3 4 5  
30 100 6 11  5 
20 150   10  8

40 200  12  14 10

1

2

3

4

B3

Identification of 3

43

1 = {A2, B2, C3, B4}

2 = {C3, B4, D4}

3 = {B4, D4, E4}  3 can be blocked
directly by E4 and
indirectly by B4 and D4

Ci Ti A B C D E

15 60 3 4 5  
30 100 6 11  5 
20 150   10  8

40 200  12  14 10

1

2

3

4B4

Identification of 4

44

1 = {A2, B2, C3, B4}

2 = {C3, B4, D4}

3 = {B4, D4, E4}

4 = {}

Ci Ti A B C D E i ni mi i

15 60 3 4 5   {A2, B2, C3, B4} 3 3 3

30 100 6 11  5  {C3, B4, D4} 2 3 2

20 150   10  8 {B4, D4, E4} 1 3 1

40 200  12  14 10 {} 0 0 0

1

2

3

4

Identification of i

45

40 200 12 14 10 {} 0 0 04

number of semaphores
that can block i (either
directly or indirectly).

i = min(ni, mi)

number of tasks with
priority less than i

Ci Ti A B C D E i i Bi

15 60 3 4 5   {A2, B2, C3, B4} 3 28

30 100 6 11  5  {C3, B4, D4} 2 24

20 150   10  8 {B4, D4, E4} 1 14

40 200  12  14 10 {} 0 0

1

2

3

4

Identification of Bi

46

40 200 12 14 10 {} 0 04

NOTES

 For 1, if we select B2, we cannot select B4, because
each semaphore can block only once (Lemma 2).

 For 2, we cannot select B4 and D4, because each task
can block only once (Lemma 1).

PIP: pro & cons

ADVANTAGES:

 It removes the pessimisms of NPP and HLP (a task is
blocked only when really needed).

 It is transparent to the programmer.

47

p p g

PROBLEMS:

 More complex to implement (especially to support
nested critical sections).

 It is prone to chained blocking.

 It does not avoid deadlocks.

PIP: Chained blocking

priority

A B

A4

1

2 C

CA, B, C

C

B3 C2

48

B3

A4

B

A

NOTE: 1 can be blocked at most once
for each lower priority task.

11/04/2018

9

Priority Ceiling Protocol

Access Rule: A task can access a resource only if it
passes the PCP access test.

Progress Rule: Inside resource R, a task executes with the
highest priority of the tasks blocked on R

49

highest priority of the tasks blocked on R.

Release Rule: At exit, the dynamic priority of the task is
reset to its nominal priority Pi.

NOTE: PCP can be viewed as PIP + access test

Avoiding chained blocking

priority

A B

A4

1

2 C

C

B3 C2

50

To avoid multiple blocking of 1 we must prevent 3 and 2 to

enter their critical sections (even if they are free), because a

low priority task (4) is holding a resource used by 1.

B3

A4

Resource Ceilings

To keep track of resource usage by high-priority tasks,
each resource is assigned a resource ceiling:

C(sk) = max {	Pi | i uses sk }

51

Then a task i can enter a critical section only if its
priority is higher than the maximum ceiling of the
locked semaphores:

Pi > max { C(sk) : sk locked by tasks  i }

PCP access test

A sA C(sA) = P1

B sB C(sB) = P1priority

1 A B

PCP: example

ceiling blocking

52

2

3 A

B

t1

t1: 2 is blocked by the PCP, since P2 < C(sA)

Theorem 1

Under PCP, a task can block at most on a single
critical section.

Theorem 2

PCP: properties

53

Theorem 2

PCP prevents chained blocking.

Theorem 3

PCP prevents deadlocks.

1 2

1

P1 > P2

Typical deadlock

blocked

It can only occur with nested critical sections:

54

1

2

A

B

B

A
blocked

11/04/2018

10

1 2

1

P1 > P2

PCP: deadlock avoidance

blocked by PCP

It can only occur with nested critical sections:

C(SA) = P1

C(SB) = P1

55

1

2

A

B

B

A

PCP: pro & cons

ADVANTAGES:

 It limits blocking to the length of a single critical section.

 It avoids deadlocks when using nested critical sections.

56

PROBLEMS:

 It is complex to implement (like PIP).

 It can create unnecessary blocking (it is pessimistic like
HLP).

 It is not transparent to the programmer: resource
ceilings must be specified in the source code.

Analysis under shared resources

1. Select a scheduling algorithm to manage tasks
and a protocol for accessing shared resources.

2. Compute the maximum blocking time Bi for
each task

57

each task.

3. Perform the guarantee test including the
blocking terms.

Analysis under RM

preemption
by HP tasks

i

blocking by

58

LP tasks

 121
1

1




 




/i

i

ii
i

k k

k i
T

BC

T

C
i

Hyperbolic Bound

preemption
by HP tasks

i

blocking by

59

LP tasks

211
1

1




















 



 i

ii
i

k k

k

T

BC

T

C
i

Response Time Analysis

k
k

i
i

k
iii C

T

R
BCR 






1

1

60

Iterative solution:

k
k

s
i

i

k
ii

s
i C

T

R
BCR

)1(1

1

)(





iii BCR 0 iterate while
)1( s

i
s
i RR

