
12/04/2018

1

Keep in mind

Just working is not enough. A good software
program is one that is

A good program is not one that just works

p g

 Easy to read

 Easy to understand

 Well organized

 Well commented and documented

Why paying attention to style?

1. It simplifies program reading & comprehension;

2. It facilitates program maintenance;

3 It d th ibilit f ki i t k

Programming style is fundamental for many reasons:

3. It reduces the possibility of making mistakes;

4. It allows quickly identifying syntactic and
semantic errors;

5. It avoids irritating project reviewers.

Hence, adopt these rules since the beginning!

Style rules

For all these reasons, programmers should follow
some general guidelines aimed at improving source
readability.

In particular, they concern the following aspects:

1. Horizontal spacing

2. Vertical spacing

3. Indentation

4. Comments

5. Code organization

It refers to a set of rules to follow to separate objects
contained in the same line of code.

A TAB is not equivalent to a set of spaces!!!

···|···|···|···|···|···|···|···|···|

Horizontal spacing

| | | | | | | | |
int i;
char c;
floatx;

int····k;
char····a;
float····y;

Use an editor that does not
replace TABs with spaces.

Declarations

Insert a TAB after each type identifier.

int i;
float x;

Horizontal spacing

Multiple declarations

Insert a SPACE after each comma.

int i,·j,·k;
float x,·y,·z;

12/04/2018

2

Expressions

operators with 2 operands must have a space in
both sides:

 x = (a + 2) * (b - 1);

Horizontal spacing

Parentheses

Never put a space after a left parenthesis or before
a right one.

 a=(a+5)*(b- 2); // AVOID

 a = (a + 5) * (b - 2); // CORRECT

Semicolons (;)

 Never put a space before a semicolon;

 Always put a space after a semicolon if it is not
the last character of the line.

Horizontal spacing

 for(i= 0;i <10 ;i++) // AVOID

 for (i=0; i<10; i++) // CORRECT

Horizontal spacing

Conditional statements

 Always put a space between the instruction name
and the parenthesis specifying the condition.

 if(a < b)x = a; // AVOID if(a < b)x = a; // AVOID

 if (a < b) x = a; // CORRECT

 while (v[i] < 0) i = i + 1;

 for (i=0; i<10; i++) v[i] = 0;

int i, n;
int sum, v[10];

good vertical spacing

Vertical spacing

It refers to the use of newline to separate groups of
statements.

for (i=0; i<n; i++) v[i] = 0;

i = 0;
while (i < n) {

v[i] = i;
i++;

}
}

int i, n;

int sum, v[10];

It refers to the use of newline to separate groups of
statements.

bad vertical spacing

Vertical spacing

, [];
for (i=0; i<n; i++) v[i] = 0;
i = 0;
while (i < n) {

v[i] = i;
i++;

}
}

Indentations

int main()
{
int i, k;

It refers to the space put at the beginning of a line.
Each nested section must be right-shifted of a TAB.

good indentation

for (k=0; k<dim; k++) {
i = 0;
while (v[i] < w[k]) {

if (v[i] > max)
max = v[i] + w[k];

i = i + 1;
}

}

12/04/2018

3

int main()
{
int i, k;

It refers to the space put at the beginning of a line.
Each nested section must be right-shifted of a TAB.

bad indentation

Indentations

for (k=0; k<dim; k++) {
i = 0;
while (v[i] < w[k]) {

if (v[i] > max)
max = v[i] + w[k];
i = i + 1;

}
}

Parentheses

for (k=0; k<dim; k++) {
i = 0;
while (v[i] < w[k]) {

if (v[i] > max) {
max = v[i];

for (k=0; k<dim; k++)
{

i = 0;
while (v[i] < w[k])
{

There are two religions. As all religions, both are fine.

max = v[i];
m = i;

}
i = i + 1;

}
}

{
if (v[i] > max)
{

max = v[i];
m = i;

}
i = i + 1;

}
}

But this allows you to save
more vertical space.

int main()
{

for (int k=0; k<dim; k++) v[k] = rand();

int max = 0;

Keep variable declarations before the code:

Separate declarations from code

int max 0;
int m = 0;

for (int i=0; i<dim; i++) {
if (v[i] > max) {

max = v[i];
m = i;

}
}

}

TO BE AVOIDED

int main()
{
int k, i, m; // array indexes
int max; // maximum array element

Keep variable declarations before the code:

Separate declarations from code

Preferred way

for (k=0; k<dim; k++) v[k] = rand();

for (i=0; i<dim; i++) {
if (v[i] > max) {

max = v[i];
m = i;

}
}

}

Comments

They must be:

1 short;

Comments must be used to explain the meaning of
variables and functionality of parts of the program.

1. short;

2. meaningful;

3. updated with code changes.

Do not exagerate! Long and trivial comments can
worsen readability!

a = b + c; // computes a as b+c

count++; // increment the counter

Example of useless comments

Comments

z = f(x,y); // f requires 2 arguments

Such comments are not only useless, but even
dangerous, because increase the amount of text to
read and obscure the structure of the program.

12/04/2018

4

1. at the beginning of a file, to explain its contain
and functionality;

2 next to each declaration of variable constant or

They should be inserted in the following situations:

Comments

2. next to each declaration of variable, constant, or
data structure, to explain its meaning;

3. before each function, to explain its functionality,
the meaning of each argument and the return
value (if any);

4. before non trivial operations;

Types of comments

Depending on their position and length, different
styles should be used to write a comment.

Comments to variables

Should be on the right of the declaration separated

int r; // circle radius
int x, y; // center coordinates

Should be on the right of the declaration, separated
by one or more TABs:

One line comments

They should be written just before the instruction (or
group of instructions) to be explained:

// i iti li

Types of comments

// initialize array v
for (i=0; i<dim; i++) v[i] = 0;

Long comments

They should be written before the code to be
explained, highlighting them with some border.

//---
// Function even(n) returns 1 if n

Types of comments

// Function even(n) returns 1 if n
// is an even number, 0 otherwise
//---

int even(int n)
{

if (n % 2 == 0) return 1;
else return 0;

}

MISRA-C 2004

C can be used to write well structured and expressive
programs, but can also be used to write perverse and

extremely hard-to-understand code.

The latter is not acceptable in a safety-related system.

The Motor Industry Software Reliability Association,
provided some guidelines for the use of C language
in safety-critical systems.

URL: http://caxapa.ru/thumbs/468328/misra-c-2004.pdf

Example of MISRA rules

56: The goto statement shall not be used.

57: The continue statement shall not be used.

58: The break statement shall not be used, except to
terminate the cases of a switch statement.

61: Every non‐empty case clause in a switch statement
shall be terminated with a break statement.

62: All switch statements shall contain a final default
clause.

63: A switch expression should not represent a Boolean
value.

12/04/2018

5

Example of MISRA rules

65: Floating point variables shall not be used as loop
counters.

67: Numeric variables being used within a for loop for
iteration counting should not be modified in the body
of the loop functions.of the loop functions.

69: Functions with a variable number of arguments shall
not be used.

82: A function should have a single exit point.

101: Pointer arithmetic shall not be used.

118: Dynamic heap memory allocation shall not be used.

Organize code according to the following order:

1. Header files (standard first, yours later)

2. Global constants (separate them into groups)

3 Function prototypes

Code organization

3. Function prototypes

4. Global data structures

5. Functions definitions

6. Tasks definitions

7. Main function

Code organization

Very important programming rule

Any function (including main) should
NOT be longer than one page.

 If a function is longer than one page, it means
that you should define a new auxiliary function.

 A program should be self explanatory by the
sequence of functions it contains.

General approach
The idea is to implement each library in a different file providing
a set of functions for using it.

Static global
data structures

 Static global data can only
be accessed through the
provided library functions.

mylib.c

28

f1()

f3()

f2()

f4()

Main
program

data st uctu es

project.c

Use of header files
C programs are normally organized into separately compiled modules.

Except for the main module, each module X consists of a

source file (X.c): contains global variable definitions, initializations and

Module: group of declarations and functions that are developed and
maintained separately and possibly reused in different projects.
Good examples are the math and string Standard Libraries.

 The X.c file must include the X.h file

 Global variables must be declared as extern in the X.h file

 Other modules can access the functionality in module X by inserting
#include "X.h"

 X.c has to be compiled only if changed; the rest of the times the linker will
link X’s code into the final executable without needing to recompile it.

function definitions.

header file (X.h): contains only: structure type declarations, function
prototypes, and extern global variable declarations.

 Keep a module’s internal declarations out of the header file

Global variables or functions that are used only in module X must be
declared as static in X.c and must not be mentioned in the X.h file.

 Always use include “guards” in a header file

When several source files include the same header files, the compiler
generates an error if the same entities are defined multiple times.

Use of header files

g p

To avoid this, you can make sure that a given include file is only included
in a particular source code once with the #ifndef directive. For example
“geometry.h” would start with:

#ifndef GEOMETRY_H
#define GEOMETRY_H

and end with:

#endif

Do not start the guard symbol with an underscore! Leading underscore
names are reserved for internal use by the C implementation.

12/04/2018

6

 A.h should include all strictly needed header files, but no more

If a structure type defined in module X is used as a member variable of a
structure type A, then you must include X.h in A.h, so that the compiler
knows how large the X member is.

However, do not include header files needed only by the .c file.

For instance <math.h> is usually needed only by the function definitions,
therefore it should be included in the c file not in the h file

Use of header files

therefore it should be included in the .c file, not in the .h file.

Read more on:

http://www.umich.edu/~eecs381/handouts/CHeaderFileGuidelines.pdf

 File A.c should first include its A.h, then the other required headers

 Never include a source .c file for any reason!

Makefile

#---
Target file to be compiled by default
#---
MAIN = balls
#---
CC is the compiler to be used
#---
CC = gcc
#---
CFLAGS th ti d t th il

32

CFLAGS are the options passed to the compiler
#---
CFLAGS = -Wall -lpthread –lrt -lm
#---
OBJS are the object files to be linked
#---
OBJ1 = mylib1
OBJ2 = mylib2
OBJS = $(MAIN).o $(OBJ1).o $(OBJ2).o
#---
LIBS are the external libraries to be used
#---
LIBS = `allegro-config --libs`

Makefile

#---
Dependencies
#---
$(MAIN): $(OBJS)

$(CC) -o $(MAIN) $(OBJS) $(LIBS) $(CFLAGS)

$(MAIN).o: $(MAIN).c
$(CC) -c $(MAIN).c

33

$(OBJ1).o: $(OBJ1).c
$(CC) -c $(OBJ1).c

$(OBJ2).o: $(OBJ2).c
$(CC) -c $(OBJ2).c

#---
Command that can be specified inline: make clean
#---
clean:

rm -rf *o $(MAIN)

Important guidelines

1. Write code according to the given style rules

2. Do not use dynamic memory allocation

3. Define all local variables at the beginning of a function

Your project will be evaluated also based on the
level of compliance with the following guidelines

4. Avoid using nested critical sections (use more local variables)

5. Avoid numeric constants in the code (exceptions: 0, 0.5, 1, 2, …)

6. Avoid functions longer than one page (use new functions)

7. Avoid lines longer than 80 characters (lines can be split)

8. Never use the goto and continue statements

9. Use break only in the switch statement

10. Organize your program in different source files (no more than 3)

