
16/04/2018

What is Allegro?

Allegro is a recursive acronym which stands for

Allegro Low LEvel Game ROutines

It was started by Shawn Hargreaves in the mid-90's but has
received contributions from hundreds of people.

Target languages are C and C++

For full information, see
http://alleg.sourceforge.net

Allegro is an open source graphic library for game and
multimedia programming.

Allegro functionalities

Allegro is a good library: it is fast and has many features.
It allows you to do many things, such as:

 creating windows

 reading inputs from the keyboard

 reading inputs from the mouse

 loading data from files

 drawing images

 playing sounds

Allegro versions

Allegro 4
is the classic library, whose API is backwards compatible
with the previous versions, back to Allegro 2.0.

Allegro 5
is the latest version, designed to take advantage of
hardware accelerators. It is NOT backwards compatible
with earlier versions.

Allegro only supports 2D graphics, but it can be used along
with other 3D libraries (e.g., OpenGL and Direct3D).

NOTE: for doing the project Allegro 4 is enough.

Where to find Allegro

Allegro's source code is maintained in a GIT repository:

git://git.code.sf.net/p/alleg/allegro

By default you will be on the 5.1 branch, but you can
change the branch from your working tree as follows:

git checkout 4.4

How to install Allegro

Under Debian:
> sudo apt-get install liballegro4.2 liballegro4.2-dev

Under Red Hat:
> sudo yum install allegro allegro-devel

16/04/2018

How to compile with Allegro

Source files must contain the directive:
#include <allegro.h>

Compiling and linking
> gcc test.c -o test `allegro-config --libs`

Execution
> ./test

compile
test.c

links with the
Allegro library

produce test
as output file

NOTE: these are not apostrophes
but grave accents (ALT 96)

Initializing Allegro

allegro_init() initializes graphics data structures

allegro_exit() closes the graphic mode and returns in text mode

set_gfx_mode(GFX_AUTODETECT, w, h, vw, vh)
Enters the graphic mode (full screen) with resolution (w, h).
If vw and vh are non zero, it defines a larger virtual screen with
extra dimensions (vw, vh).

set_gfx_mode(GFX_AUTODETECT_WINDOWED, w, h, 0, 0)
Same as the previous function, but in a window.

Valid screen dimensions include:
320 x 240, 640 x 480, 800 x 600 and 1024 x 768.

Graphic coordinates

(0, 0)

(639, 479)

set_gfx_mode(GFX_AUTODETECT_WINDOWED, 640, 480, 0, 0);

(0, 479)

(639, 0)
X

Y

Graphic
Window

Colors

set_color_depth(n)
Specifies the number n of bits to be used for colors. Possible
values of n are:

8 (default) 256 colors - standard VGA
15 RGB: 5 bits for each component
16 RGB: 5-red, 5-blue, 6-green
24 RGB: 8 bits for each component (slow, not aligned)
32 RGB: 8 bits for each component (faster, aligned)

Before entering the graphic mode with set_gfx_mode,
you should set the color depth using:

Colors

 15, 16, 24, 32-bit modes are called truecolor modes,
because a color is directly represented by the
corresponding number.

For example, in 16-bit mode, we have:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1

RED GREEN BLUE

0 1 5 FExa:

Dec: 351

Making colors

color = makecol(red, green, blue);
Combines the RGB components (in the range [0, 255])
and returns an integer representing the corresponding
color code to be used in the drawing functions.

r = getr(color); g = getg(color); b = getb(color);
These functions can be used to decompose the color
value returned by getpixel into its RGB components.

color = getpixel(screen, x, y);
Returns the color code corresponding to the pixel at
position (x, y) on the screen.

16/04/2018

Colors

int r, g, b; // range [0, 255]
int color;

r = 6; g = 42; b = 255;

color = makecol(r, g, b);

NOTE: In 15- and 16-bit modes, most significant bits are
considered for the color.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1

RED GREEN BLUE

6/8 = 0 42/4 = 10 255/8 = 31

Colors

 In the 8-bit mode (standard VGA) colors are treated as
indexes of a table of 256 elements, (color palette),
containing the RGB values in the range [0, 63].

0
1
2
3
4

255

R G B

RGB black = {0, 0, 0 };
RGB white = {63, 63, 63};
RGB green = {0, 63, 0 };
RGB grey = {32, 32, 32};

Allegro defines the following types:

RGB a struct of 3 unsigned char.

PALETTE an array of 256 RGB entries.

For example, you can define:

Standard VGA

black
blue

green
cyan
red

magenta
brown

light gray

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

dark gray
light blue

light green
light cyan
light red

light magenta
yellow
white

In the 8-bit mode, the first 16 colors in the palette are:

clear_to_color(screen, 14)
clear the screen making all pixels yellow.

RGB vs. HSV

HSV (Hue, Saturation, Value) is a color representation
meant to be more intuitive than RGB, mapping color
values into a cylinder:

Value represents the
perceived luminance in
relation to saturation.

RGB vs. HSV

rgb_to_hsv(r, g, b, &h, &s, &v);
Converts a color from RGB to HSV: (r, g, b) values range
in [0, 255], h is from 0 to 360, s and v are from 0 to 1.

hsv_to_rgb(h, s, v, &r, &g, &b);
Converts a color from HSV to RGB: (r, g, b) values range
in [0, 255], h is from 0 to 360, s and v are from 0 to 1.

Allegro provides the following functions to convert colors
between the two representations:

int r, g, b; // RGB components
float h, s, v; // HSV components

Drawing functions

putpixel(screen, x, y, col);

col = getpixel(screen, x, y);

line(screen, x1, y1, x2, y2, col);

rect(screen, x1, y1, x2, y2, col);

rectfill(screen, x1, y1, x2, y2, col);

(x, y)

(x2, y2)

(x1, y1)

(x2, y2)

(x1, y1)

(x2, y2)

(x1, y1)

16/04/2018

Drawing functions

ellipse(screen, x, y, rx, ry, col);

(x, y) rxellipsefill(screen, x, y, rx, ry, col);
ry

(x, y)
rx

ry

circle(screen, x, y, r, col);

circlefill(screen, x, y, r, col);

(x, y)
r

(x, y)
r

Drawing functions

int points[10] = {100, 200, 200, 100, 400, 100, 500, 200, 300, 300};

P1 P2 P3 P4 P5

polygon(screen, 5, points, col); P1

P2 P3

P4

P5

P1

P2 P3

P4
polygon(screen, 4, points, col);

triangle(screen, x1, y1, x2, y2, x3, y3, col);

(x2, y2)

(x1, y1) (x3, y3)

#define RADIUS 50 // disc radius

int main()
{
int x = 100, y = 100, col = 4; // RED color

allegro_init();
install_keyboard();

set_color_depth(8); // VGA mode (8 bits)
set_gfx_mode(GFX_AUTODETECT,640,480,0,0);
clear_to_color(screen, 0); // black background

circlefill(screen, x, y, RADIUS, col);

readkey(); // wait for any key
allegro_exit();
return 0;

}

Draws a red disc with radius R:

Drawing functions Text functions

textout_ex(screen, font, s, x, y, col, bg);
writes string s from coordinates (x,y) with color col and
background bg. If bg = -1, background is made transparent.

textout_ex(screen, font, "Table", 300, 200, 12, 14);

Table

(300,200)
(0,0)

(0,479) (639,479)

(639,0)

Text functions

textout_centre_ex(screen, font, s, x, y, col, bg);
like textout_ex, but the coordinates (x,y) are interpreted as
the center of the string, rather than the left edge.

textout_centre_ex(screen, font, "Table", 300, 200, 12, 14);
(0,0)

(0,479) (639,479)

(639,0)

Table

(300,200)

Printing variables

sprintf(s, "format", var, …);
like printf, but puts the output in string s.

Combining sprintf with textout_ex we can write
anything in graphic mode.

char s[20];
float x = 3.14159;

sprintf(s, "x = %5.2f\n", x);
textout_ex(screen, font, s, 5, 8, 4, -1);

The following code prints 3.14 starting from coordinate (5,8) with
red color (4) on transparent background (-1):

prints only two digits
after the decimal point

16/04/2018

Keyboard functions

install_keyboard() install the keyboard manager

keypressed()

returns a positive value (true) if there are characters in
the keyboard buffer, or zero (false) otherwise. This
function does not block the program execution.

a = readkey()

returns an integer coding the next character found in
the keyboard buffer. If there are no characters.
It blocks the execution until a key is pressed.

readkey

int a;
char ascii, scan;

a = readkey();

ascii = a & 0xFF;
scan = a >> 8;

scancode ASCII code
high byte low byte

The ASCII code is a code of 7 bits identifying the pressed character.

The scancode is a code of 1 byte identifying the key pressed or
released. Such a code is the same for all PCs and it is independent of
the symbol printed on the keyboard. Its most significant bit is 0 if the
key is pressed, 1 if it is released.

The following function waits for a key pressed and extracts
the corresponding ascii code and scan code:

A useful input function

void get_keycodes(char *scan, char *ascii)
{
int k;

k = readkey(); // block until a key is pressed
*ascii = k; // get ascii code
*scan = k >> 8; // get scan code

}

Scancode Keys

KEY_A ... KEY_Z KEY_0 ... KEY_9 KEY_F1 ... KEY_F12

KEY_ESC, KEY_TAB, KEY_BACKSPACE

KEY_ENTER KEY_SPACE KEY_END KEY_HOME
KEY_LEFT KEY_RIGHT KEY_UP KEY_DOWN
KEY_LSHIFT KEY_RSHIFT KEY_ALT KEY_ALTGR
KEY_LCONTROL KEY_RCONTROL KEY_PGUP KEY_PGDN

key[] array of flags automatically updated by Allegro.

For instance, key[KEY_ESC] is 1 (true) if the ESC key is
pressed, 0 (false) otherwise.

int x, y, col;
char c;

srand(time(NULL));

do {
x = rand()%XMAX;
y = rand()%YMAX;
col = rand()%16;
putpixel(screen, x, y, col);

} while (!key[KEY_ESC]);

The following code draws some pixels of random color in
random points of the screen, until the ESC key is pressed:

Exiting by pressing ESC

void get_string(char *str, int x, int y, int c, int b)
{
char ascii, scan, s[2];
int i = 0;

do {
get_keycodes(&scan, &ascii);
if (scan != KEY_ENTER) {

s[0] = ascii; // put ascii in s for echoing
s[1] = '\0';
textout_ex(screen, font, s, x, y, c, b); // echo
x = x + 8;
str[i++] = ascii; // insert character in string

}
} while (scan != KEY_ENTER);
str[i] = '\0';

}

The following function reads a string from the keyboard and displays
the echo in graphic mode at position (x,y), color c and background b:

Another useful function

16/04/2018

Reading variables

sscanf(s, "format", var, …);
like scanf, but reads data from string s and stores them
according to parameter format in the subsequent variables.

In graphic mode, numeric data must be first read as a
string and then converted into variables using sscanf.

In graphic mode, the string s can be read using the function
get_string() previously shown.

NOTE: get_keycodes() and get_string() are NOT Allegro
functions and must be explicitly defined.

Reading variables

char str[20]; // string for data input
float x; // float to be read as input

textout_ex(screen, font, "x: ", 10, 30, 3, 0); // prompt

get_string(str, 34, 30, 3, 0); // read data with echo

sscanf(str, "%f", &x); // convert string into float

The following code reads a float from the keyboard and
stores it in the variable x:

Mouse functions

install_mouse() installs the Allegro mouse manager, which
updates the following global variables:

bit 0 Left button
bit 1 Right button
bit 2Middle button

mouse_x mouse x coordinate
mouse_y mouse y coordinate
mouse_b state of the buttons:

2 1 0
M R Lmouse_b

int x, y;
int col = 14; // yellow color

install_keyboard();
install_mouse();
do {

if (mouse_b & 1) {
x = mouse_x;
y = mouse_y;
putpixel(screen, x, y, col);

}

} while (!key[KEY_ESC]);

The following code draws a yellow trace when we press the
left button of the mouse, until the ESC key is pressed:

Mouse functions

Mouse functions

show_mouse(screen) displays the mouse on the screen.

show_mouse(NULL) disables the mouse visualization.

position_mouse(x, y) set the mouse to the specified
screen position. It does not work if
hardware cursor is enabled.

enable_hardware_cursor()

The mouse cursor is drawn by the operating system (not by
Allegro). This way is faster, but some Allegro functions
cannot be used.

Mouse functions

NOTE:
Mouse visualization can interfere with graphics functions,
hence when drawing graphics it is better to disable mouse
visualization using scare_mouse() and unscare_mouse():

if (mouse_b & 1) {

x = mouse_x;
y = mouse_y;

scare_mouse();
putpixel(screen, x, y, col);
unscare_mouse();

}

16/04/2018

Changing the mouse icon

set_mouse_sprite(myicon) replace the mouse icon
with the specified BITMAP.

BITMAP* mic;

// load the new icon from file
mic = load_bitmap("newicon.bmp", NULL);

// set the new icon and focus
set_mouse_sprite(mic);
set_mouse_sprite_focus(MFX, MFY);

position_mouse(MX0, MY0);
show_mouse(screen);

set_mouse_sprite_focus(x, y) set the mouse focus at the
specified position (x, y).

Bitmaps

A bitmap is block of memory used as a virtual screen
with a given width and height.

Allegro functions are not restricted to write to the screen;
they can write to a bitmap.

To create a bitmap you have to:
1. create a pointer to the BITMAP type defined in Allegro;
2. allocate the memory using create_bitmap.

BITMAP *buffer; // pointer to the bitmap
int width = 640;
int height = 480;

buffer = create_bitmap(width, height);

Using bitmaps

When a bitmap is created, it is not empty (black), so it
needs to be initialized:

clear_bitmap(buffer);
clear_to_color(buffer, color);

They clear the bitmap with color 0, or with a given color.

Then, a bitmap can be written like the screen. For example:

putpixel(buffer, x, y, color);

circle(buffer, x, y, r, color);
line(buffer, x1, y1, x2, y2, color);

Bitmap dimensions

Once created, the dimensions of a bitmap can be accessed
through its pointer by reading the corresponding fields of
the BITMAP structure:

buffer->w contains the bitmap width
buffer->h contains the bitmap height

The dimensions of the screen bitmap can be accessed by:

SCREEN_W contains the screen width
SCREEN_H contains the screen height

Destroying bitmaps

After usage, the bitmap memory can be de-allocated by:

destroy_bitmap(buffer);

The operating system automatically reclaims bitmap
memory on exit, so you do not need to call destroy_bitmap
on every bitmap that has been created or loaded.

However, it is very important to call destroy_bitmap on
temporary bitmaps created within functions, otherwise the
application may run out of memory.

Copying bitmaps

blit(source, dest, xs, ys, xd, yd, w, h);

BLIT stands for "BLock Image Transfer", hence this function
copies a rectangular area of the source bitmap to the dest
bitmap:

(xd, yd)

dest bitmapsource bitmap

(xs, ys)

w

h

16/04/2018

Copying bitmaps

In this example, a buffer is first created with the same size
of the screen. Then, we can draw everything on the buffer
and then copy it to the screen:

BITMAP *buf; // pointer to the buffer

buf = create_bitmap(SCREEN_W, SCREEN_H);

// after writing something on the bitmap
// you can copy it on the screen by

blit(buf, screen, 0, 0, 0, 0, buf->w, buf->h);

This technique, known as double buffering, is used to
avoid flickering due to the video refresh mechanism.

Sprites

If you have a file called fish.bmp,
you can load the image into a
bitmap using load_bitmap:

A sprite is a small bitmap that is part of a bigger bitmap.

fish.bmp

BITMAP *load_bitmap(char *filename, NULL);

It creates a bitmap (allocating memory) and writes it with
the contain of the specified file. It returns the pointer to
the bitmap, or NULL if there is an error. The second
argument is a pointer to the color palette, but can be set to
NULL if not used.

BITMAP *fish; // pointer to bitmap
int x = 300;
int y = 200;

fish = load_bitmap("fish.bmp", NULL);

if (fish == NULL) {
printf("file not found\n");
exit(1);

}

blit(fish, screen, 0, 0, x, y, fish->w, fish->h);

The following code loads a sprite from the file fish.bmp and
displays it on the screen at position (x, y):

Loading sprites Loading sprites

The result of the previous piece of code is the following:

(300,200)

FILE
fish.bmp

screen

load_bitmap

blit
BITMAP

fish

Saving sprites

Saves a sprite pointed by bmp and the corresponding
palette pal into the specified file.

int save_bitmap(char *file, BITMAP *bmp, RGB *pal);

BITMAP *bmp;
PALETTE pal;

get_palette(pal); // get current palette

mysprite = create_bitmap(width, height);

// draw something in mysprite

save_bitmap("mysprite.bmp", mysprite, pal);

In many cases, we would like some pixels of the sprite to be
transparent, so we can see the background scene:

Handling transparency

16/04/2018

draw_sprite(screen, fish, x, y);

Draws the fish bitmap on the screen at position (x, y).

It is similar to blit(fish, screen, 0, 0, x, y, fish->w, fish->h),
but it uses a masked drawing mode where transparent
pixels are skipped, so the background image will show
through the masked parts of the sprite.

 In 8-bit (VGA) mode, transparent pixels are marked by 0.

 In truecolor modes they are marked with the color
makecol(255, 0, 255), corresponding to bright pink.

Handling transparency

BITMAP *fish, *fishp; // pointers to bitmap
PALETTE pal; // color palette
int x, y, c;
int pink, white;

white = makecol(255, 255, 255);
pink = makecol(255, 0, 255);

fish = load_bitmap("fish.bmp", NULL);
fishp = create_bitmap(fish->w, fish->h);

for (x=0; x<fish->w; x++)
for (y=0; y<fish->h; y++) {

c = getpixel(fish, x, y);
if (c == white) c = pink;
putpixel(fishp, x, y, c);

}

get_palette(pal);
save_bitmap("fishp.bmp", fishp, pal);

This code loads a sprite with white background, converts white pixels
into pink, and saves the new sprite into a file:

How to make pink background

int x, y, c;
int pink;
float hue, sat, val;

for (x=0; x<fish->w; x++)
for (y=0; y<fish->h; y++) {

c = getpixel(fish, x, y);
rgb_to_hsv(getr(c), getg(c), getb(c),

&hue, &sat, &val);

val = val * 255;
if (val >= 240) c = pink;
putpixel(fishp, x, y, c);

}

get_palette(pal);
save_bitmap("fishp.bmp", fishp, pal);

If the background is not perfectly white, you can convert the colors in
HSV and replace them depending on the value V:

How to make pink background

BITMAP *fish; // pointer to bitmap
int x = 300;
int y = 50;

fish = load_bitmap("fishp.bmp", NULL);

if (fish == NULL) {
printf("file not found\n");
exit(1);

}

blit(fish, screen, 0, 0, x, y, fish->w, fish->h);
draw_sprite(screen, fish, x, y+200);

The following code loads the sprite from the file fishp.bmp
and displays it on the screen in two different modes:

Visualizing sprites

FILE
fishp.bmp

screen

load_bitmap

draw_sprite

BITMAP
fish

Handling transparency

Here is the result: while blit prints all pixels as they are,
draw_sprite interprets pink pixels as transparent.

blit

Other functions on bitmaps

draw_sprite_v_flip(bmp, sprite, x, y);
draw_sprite_h_flip(bmp, sprite, x, y);
draw_sprite_vh_flip(bmp, sprite, x, y);

stretch_sprite(bmp, sprite, x, y, width, height);

They are similar to draw_sprite, but in addition flip the
image vertically, horizontally, or both, respectively.

It is similar to draw_sprite, but stretches the image to
the specified width and height.

16/04/2018

Other functions on bitmaps

rotate_sprite(bmp, sprite, x, y, angle);

It draws the sprite image on the bitmap. The image is first
placed with its top-left corner at the specified position,
then rotated by the specified angle around its centre.

For efficiency reasons, the angle is specified as a fixed point
number, where 256 is equal to a full circle.

rotate_sprite(screen, fish, x, y, itofix(32));

Conversion can be done by itofix(n) or ftofix(x). Positive
angles correspond to clockwise rotations. For example the
following function makes a clockwise rotation of 45 degrees:

Sprite sequences

Playing cyclic sequences of sprites can make effects
like this:

Sprite sequences

#define N 12 // number of images

BITMAP *earth[N]; // array of bitmap pointers
char filename[N][20]; // array of strings of 20 chars
int i;

for (i=0; i<N; i++) // load images
earth[i] = load_bitmap(filename[i], NULL);

i = 0;
while (1) {

draw_sprite(screen, earth[i], x, y);
i = (i+1)%N;
wait_for_period(task_index);

}
}

The following code draws a new sprite every period in a cyclic
sequence of N images:

Playing sound

int install_sound(int digi, int midi, const char *cfg_path);

Initializes the sound module. The first two parameters are normally
DIGI_AUTODETECT and MIDI_AUTODETECT. This allows the user to
select different values with the setup utility. The cfg_path parameter
is only present for compatibility with previous versions of Allegro and
has no effect, so can be set to 0.
It returns 0 if the sound is successfully installed, -1 on failure.

Allegro allows you to play two types of audio files:

 wave files (consisting in a sequence of audio samples);

 MIDI files (consisting in a sequence of MIDI commands).

To do that, you have to initialize the sound module:

SAMPLE *load_sample(const char *filename);
Loads a sequence of audio samples from the specified file, allocates
into memory and returns its pointer. It supports both mono and
stereo WAV and mono VOC files, in 8 or 16-bit formats, as well as
formats handled by functions register_sample_file_type().

int play_sample(SAMPLE *s,
int vol, int pan, int freq, int loop);

Plays sample s at the specified volume, pan, and frequency. Volume
and pan values range from 0 (min/left) to 255 (max/right). Frequency
value is relative: 1000 represents the frequency that the sample was
recorded at, 2000 is twice this, etc. If loop is not zero, the sample will
repeat until you call stop_sample(), and can be manipulated while it
is playing by calling adjust_sample().

Playing samples

void set_volume(int digi_volume, int midi_volume);
Specifies volumes for both digital samples and MIDI playback, as
integers from 0 to 255. A negative value leaves it unchanged.

int adjust_sample(SAMPLE *s,
int vol, int pan, int freq, int loop);

Alters the parameters of a sample while it is playing. You can alter the
volume, pan, and frequency, and can also clear the loop flag, which
will stop the sample when it next reaches the end of its loop. The
parameters are same as those used in play_sample(). If the sample is
not playing it has no effect.

Playing samples

void stop_sample(SAMPLE *s);
Stops playing a sample.

16/04/2018

SAMPLE *sample;

allegro_init();
install_sound(DIGI_AUTODETECT, MIDI_AUTODETECT, 0);

sample = load_sample("tune.wav");
if (tune == NULL) {

printf("ERROR ON LOADING WAVE FILE\n");
exit(1);

}

play_sample(sample, 255, 128, 1000, 0);

Playing samples

The following code loads the file “tune.wav” and start playing it. To play MIDI files you first need to do the following:

1. Download the file:

http://www.eglebbk.dds.nl/program/download/digmid.dat

2. Copy it into the directory of your program

3. Rename it into patch.dat

Playing MIDI

MIDI *load_midi(const char *filename);
Loads a MIDI file, allocates it into memory ad returns its pointer, or
NULL on error. Remember to free this MIDI file later to avoid memory
leaks. It handles both Type 0 and Type 1 MIDI formats.
 In Type 1 file parts are saved on different tracks in the sequence.
 In Type 0 file everything is merged onto a single track.

Playing MIDI

int play_midi(MIDI *m, int loop);
Starts playing the specified MIDI file, first stopping whatever music
was previously playing. If the loop flag is set to non-zero, the data will
be repeated until replaced with something else, otherwise it will stop
at the end of the file. Passing a NULL pointer will stop whatever
music is currently playing. It returns non-zero if an error occurs.

MIDI *tune;

allegro_init();
install_sound(DIGI_AUTODETECT, MIDI_AUTODETECT, 0);

tune = load_midi("tune.mid");
if (tune == NULL) {

printf("ERROR ON LOADING MIDI\n");
exit(1);

}

play_midi(tune, 0);

Playing MIDI

The following code loads the file “tune.mid” and start playing it.

Playing MIDI

void midi_out(unsigned char *data, int length);
Streams a block of MIDI commands into the player, allowing you to
trigger notes over the MIDI file that is currently playing.

void load_midi_patches();
Forces the MIDI driver to load the entire set of patches ready for use.
It has to be called before sending any program change messages via
the midi_out() command.

void stop_midi();
Stops playing a midi sequence. It has the same effect as
play_midi(NULL, 0).

