
17/04/2018

Periodic tasks
+

Aperiodic tasks

2

Handling aperiodic tasks

 Aperiodic tasks are typically activated by the
arrival of external events (notified by interrupts).

 From one hand, one objective of the kernel is to
reduce the response time of aperiodic tasks
(interrupt latency).

 On the other hand, aperiodic task execution
should not jeopardize schedulability.

3

Aperiodic Scheduling

t1

t2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

Consider a simple example with 2 periodic tasks (scheduled by
RM) and a single aperiodic job with Ca = 2 arriving at time t = 2:

4

Background service

t1

t2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

Response Time = 9

If aperiodic jobs are scheduled in background (i.e., during idle
times left by periodic tasks) their response times are too long:

5

Immediate service

t1

t2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

deadline miss

Response Time = 2

On the other hand, if interrupts service routines are scheduled
at the highest priority, the other tasks can miss their deadlines:

6

 Aperiodic tasks with HARD deadlines must be
guaranteed under worst-case conditions.

 Off-line guarantee is only possible if we can
bound interarrival times (sporadic tasks).

 Hence sporadic tasks can be guaranteed as
periodic tasks with Ci = WCETi and Ti = MITi

WCET = Worst-Case Execution Time
MIT = Minimum Interarrival Time

HARD aperiodic tasks

17/04/2018

7

SOFT aperiodic tasks

 Aperiodic tasks with SOFT deadlines should be
executed as soon as possible, but without
jeopardizing HARD tasks.

 We may be interested in

 minimizing the response time of each aperiodic request

 performing an on-line guarantee

How can we achieve these goals?

8

Aperiodic Servers

 A server is a kernel activity aimed at controlling the
execution of aperiodic tasks.

 Normally, a server is a periodic task having two
parameters:

Cs capacity (or budget)

Ts server period

To preserve periodic tasks, no more than Cs

units must be executed every period Ts

9

Aperiodic service queue

Service queue

Server

READY queue

periodic/sporadic
HARD tasks

aperiodic
SOFT tasks

CPU

 The server is scheduled as any periodic task.

 Priority ties are broken in favor of the server.

 Aperiodic tasks can be selected using an arbitrary
queueing discipline.

10

Polling Server (PS)

 At the beginning of each period, the budget is
recharged at its maximum value.

 Budget is consumed during job execution.

 When the server becomes active and there are
no pending jobs, Cs is discharged to zero.

 When the server becomes active and there are
pending jobs, they are served until Cs > 0.

11

Background service

t1

t2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

Response Time = 9

Let’s take the previous example:

12

t1

t2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

RM + Polling Server

0

PS
Cs = 1
Ts = 4

Response Time = 7

4 8 12

17/04/2018

13

PS properties

 In the worst-case, the PS behaves as a periodic
task with utilization Us = Cs/Ts

 Aperiodic tasks execute at the highest priority if
Ts = min(T1, … , Tn).

 Liu & Layland analysis gives that:

 1
1

2
)(

/1

lub

n

s
s

PSRM

U
nUnU

14

1

2
)1(

1

 s

n

i
i U

U

Analysis with Hyperbolic Bound

A set of periodic tasks is schedulable by Rate Monotonic
in the presence of a Polling Server with utilization Us if

n

i
iUP

1

)1(Defining

the maximum server utilization that guarantees the
schedulability of the periodic task set is

1
2max
P

U s

)(ssaaaa CTFCR
15

Response time under PS

Consider a PS running at the highest priority and an
aperiodic job arriving when the server is idle:

ape

initial delay # full service periods final chunk

Ca

(Cs, Ts)

ra

a = Ts ra

ra

Ts

1
s

a
a C

C
F saaa CFC

16

Deferrable Server (DS)

 Is similar to the PS, but the budget is not
discharged if there are no pending requests.

 Keeping the budget improves responsiveness,
since jobs can be served within a period.

ape

0 4 8 1262 10

0 4 8

DS
Cs = 1
Ts = 4

12

17

RM + Deferrable Server

t1

t2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 2

C2 = 1

0 4 12

DS
Cs = 1
Ts = 5

Response Time = 3

8

18

 However, DS does not behaves like a periodic task and it is
more invasive than PS.

 Keeping the budget decreases the utilization bound.

ape

0 4 8 1262 10

0 4 8

DS
Cs = 1
Ts = 4

Deferrable Server (DS)

There can be two server
executions close to each other

17/04/2018

19

0 4 8

DS
Cs = 2
Ts = 4

0 4 8 1262 10

0 5 10

t1

t2

0 4 8 1262 10

0 5 10

ape

t2

deadline
miss

Deferrable Server (DS)

20

Analysis of RM + DS

 1
12

2
)(

1

lub

n

s

s
s

DSRM

U

U
nUnU

 In the worst-case, the DS is more invasive than a
periodic task with utilization Us = Cs/Ts

 Liu & Layland analysis gives that:

21

12

2
)1(

1

 s

s
n

i
i U

U
U

Analysis with Hyperbolic Bound

A set of periodic tasks is schedulable by Rate Monotonic
in the presence of a Deferrable Server with utilization Us if

n

i
iUP

1

)1(Defining

the maximum server utilization that guarantees the
schedulability of the periodic task set is

12

2max

P

P
U s

22

Response time under DS

Consider a DS running at the highest priority and an aperiodic
job arriving when the server is idle:

ape

full service periods final chunk

Ca

(Cs, Ts)

asaaa TFR

a = Ts ra

ra

Ts
1

s

rem
a

a C

C
F sa

rem
aa CFC

initial delay

ra

qs

qs

sa
rem
a qCC

23

Response time under DS

If a task arrives close to the next server period, a value a < Cs

is executed. In general, the initial execution is:

ape

full service periods final chunk

Ca

(Cs, Ts)

initial delay

ra

in a sin = min(a, qs)

asaaa TFR

a = Ts ra

ra

Ts
1

s

rem
a

a C

C
F sa

rem
aa CFC

a

ina
rem
a CC

24

Designing server parameters

1. Determine Us using

2. Define Us Us

3. Define Ts = min (T1, …, Tn)

4. Compute Cs = UsTs

max

max

server

n

i
i KU

1

)1(

17/04/2018

25

Sporadic Server (SS)

 It preserves the budget like DS, but it is less
aggressive than DS, since the budget is replenished
only Ts units after its consumption.

 SS is not activated periodically, but from the analysis
point of view it behaves like a period task with
computation time Cs and period Ts.

ape

0 4 8 1262 10

0 4 8

SS
Cs = 1
Ts = 4

12

2

Ts Ts+1 +1

26

Sporadic Server rules

Rule 1
At time tA, at which the following event occurs:

(qs > 0) AND (pending aperiodic requests)

set the replenishment time in the future at time RT = tA + Ts

Assumptions:
qs = current server budget

SS has the highest priority: Ts min(T1, …, Tn)

Rule 2
At time tI, at which the following event occurs:

(qs 0) OR (pending aperiodic requests)

set the replenishment amount equal to the budget Cape(tA, tI)
consumed in the interval [tA, tI].

28

Total Bandwidth Server (TBS)

 It is a dynamic priority server, used with EDF.

 Aperiodic jobs are assigned a deadline so that the
server does not exceed a given bandwidth Us.

 Aperiodic jobs are inserted in the ready queue
and scheduled together with the HARD tasks.

READY queue

periodic/sporadic
tasks

aperiodic
tasks

CPU

Deadline
assignment

29

Deadline assignment rule

 Deadline has to be assigned not to jeopardize
periodic tasks.

 A safe relative deadline is equal to the minimum
period that can be assigned to a new periodic
task with utilization Us:

Us = Ck / Tk Tk = dk rk = Ck / Us

 Hence, the absolute deadline can be set as:

dk = rk + Ck / Us

30

dk = max (rk , dk-1) + Ck / Us

 To keep track of the bandwidth assigned to
previous jobs, dk must be computed as:

C1 C2

d1 d2r2r1

C1/Us C2/Us

Deadline assignment rule

17/04/2018

31

EDF + TBS schedule

Us = 1 Up = 1/4

t1

t2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

1

d1 d2r1 r2

d1 = r1 + C1 / Us = 1 + 2 4 = 9

d2 = max(r2 , d1) + C2 / Us = 9 + 1 4 = 13
32

Problems with the TBS

 Without a budget management, there is no
protection against execution overruns.

 If a job executes more than expected, hard tasks
could miss their deadlines.

1 overrun

deadline miss
t1

Us = 1/4

4 8

0 4 8 1262 10

C1 = 1

33

Overrun handling

 If a job executes more than expected (i.e.,
consumes its budget) it must be delayed by
decreasing its priority or postponing its deadline.

t1

Us = 1/4

0 4 8 1262 10

1

34

Solution: task isolation

 In the presence of overruns, only the faulty task
should be delayed.

 Each task ti should not consume more than its
declared utilization (Ui = Ci/Ti).

 If a task executes more than expected, its priority
should be decreased (or its deadline postponed).

35

Achieving isolation

 Isolation among tasks can be achieved through a
bandwidth reservation.

 Each task is managed
by a dedicated server
having bandwidth Us

10 %

45 %
25 %

20 %

t1

t2t3

t4

 The server assigns priorities (or deadlines) to tasks so that
they do not exceed the reserved bandwidth.

36

Implementation

CPU

server
Ready queue

EDF

t1

t2

t3

Us1

Us2

Us3

Us1 + Us2 + Us3 1

server

server

17/04/2018

37

Constant Bandwidth Server

 It assigns deadlines to tasks as the TBS, but keeps track
of job executions through a budget mechanism.

 When the budget is exhausted it is immediately
replenished, but the deadline is postponed to keep the
demand constant.

Maximum budget: Qs

Server period: Ts

Server bandwidth: Us = Qs/Ts

CBS parameters

assigned
by the user

maintained
by the server

Current budget: qs (initialized to 0)

Server deadline: ds (initialized to 0)
38

Basic CBS rules

Arrival of job Jk at time rk assign ds

if (pending ape. requests) then <enqueue Jk>

else if (qs > (ds – rk)Us) then qs = Qs

ds = rk + Ts

qs = Qs

ds = ds + Ts

Budget exhausted postpone ds

39

EDF + CBS schedule

CBS: Qs = 2, Ts = 6

t1

t2

ape

6

0

12 18 24

9 2718

0

8 2714

d0
3

d1

r1

3

r2

d2

1

d3 d4

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

r3 2418

