
1

Other causes of overloads

 Optimistic system design (based on average
rather than worst-case behavior)

 Malfunctioning of input devices (sensors may
send sequence of interrupts in bursts)

 Variations in the environment

 Simultaneous arrivals of events

 Exceptions raised by the kernel

td

tc

td

dtg
t

k

dd
i

k
k

k

k

ki










)(

max
),(

max)(

Maximum processor demand among those
intervals from the current time and the deadlines
of all active tasks.

Instantaneous load (t)

)(max)(tt k
k

 

td

tc

t
k

i
dd

k
ki






)(

)(

We can have at most one deadline for each active
task k, hence:

Instantaneous load (t)

Example

1(4) = 2/4 = 0.5

2(4) = 5/6 = 0.83

3(4) = 7/9 = 0.78

(4) = 0.83
0 2 4 6 8 10 12 14

1

2

3

1

(t)

0 2 4 6 8 10 12 14

0.5

Load and design assumptions

System designed under
worst-case assumptios

1

0.75

0.5

0.25

0
time

load

1

0.75

0.5

0.25

0
time

load

System designed under
average-case assumptios

2

Predictability vs. efficiency

efficiency predictability

Allocated resources

SAFEUNSAFE

Pessimistic
design

Optimistic
design

A matter of cost

 High predictability and low efficiency means
wasting resources  high cost

– it can be justified only for very critical systems

 High efficiency in resource usage requires a
the system to:

– handle and tolerate overloads

– adapt for graceful degradation

– plan for exception handling mechanisms

Definitions

Overrun: Situation in which a task exceeds its
expected utilization.

Execution Overrun

The task computation time exceeds its expected value:

Activation Overrun

The next task activation occurs before its expected time:

expected interarrival time

Transient Overload

max > 1 but avg  1

Permanent Overload

avg > 1

Overload: Situation in which (t) > 1.

1

0.75

0.5

0.25

0



time

1

0.75

0.5

0.25

0



time

Definitions

Overload handling methods

Reactive
Let the overload to
occur and react to
contain its effects.

Proactive
Prevent the overload to
occur by reducing the

computational request.

Local
Are implemented as an

adaptive behavior of
application tasks.

Global
Are part of the system

and can act on the task
set and on the kernel.

Local Policies

ei Ri dmissi …

i mechanisms probes

Real-Time System

state variables

Controlled
Plant

sensors

They are implemented inside specific application tasks as an
adaptive behavior to reduce their computational demand:

adaptive
task

3

Global Policies

Load
estimator

Policy

mechanisms probes

(t)
task set

parameters

Real-Time System

They are implemented as a component (Overload Manager)
that can operate both on the kernel and on the entire task set:

Task
Set actual exec. times ei

response times Ri

deadline misses

Overload Manager

Reactive methods

They let the overload to occur, detect it and react with a proper
action aimed at containing its effects.

They must handle three phases:
1. Overload detection: this is done by proper kernel probes and

timers for catching deadline misses, execution overruns, etc.

2. Exception notification: this is done by generating an interrupt for
the kernel and a message for the user.

3. Exception handling: depending on the criticality of the exception,
possible actions are:

 system reset

 abortion of the running task

 rejection of least important tasks

 performance degradation

 no action: just notification

Example of reactive approach

If * is a critical task that has to finish by a deadline d,
a timer can be set at its activation to interrupt after d.

If the task finishes before d, the timer is canceled,
otherwise an exception is raised:

*

exception handler

timer
canceled

In the worst case, the exception handler can reset the system.

Proactive methods

They prevent the overload to occur by proper admission tests
and by reducing the computational demand of the application.

The computational demand can be reduced by:

 rejecting tasks

 reducing computation

 reducing priority (under fixed priority systems)

 postponing the deadline (under deadline-based systems)

 skipping specific jobs

 reducing the activation rate of periodic tasks

Depending on the type of performed action, the following
proactive approaches can be distinguished:

 Admission control methods

The load is reduced by rejecting one or more tasks.

 Performance degradation methods

The load is reduced by degrading the system performance
acting on the task set parameters (computation times,
periods, or skipping specific jobs).

Existing proactive approaches Simple admission control

Real-Time
System

The load is estimated at every task activation based on worst-
case task set parameters: if   1, the task is accepted,
otherwise it is rejected:

Task
Set

 > 1Load
estimator

NO

YES

i

reject i

Pros: Simplicity (like the telephone system).

Accepted tasks are guaranteed to receive full service.

Cons: Load estimation is pessimistic (using WCETs and MITs)
so tasks could be unnecessarily rejected.

Task importance is not taken into account.

4

Admission by feedback

Real-Time
System

The load is estimated at every task activation based on actual
execution behavior detected by kernel probes [Stankovic, '99]:

Task
Set

 > 1Load
estimator

NO

YES

i

reject i

Pros: It increases system efficiency, accepting more tasks.

Cons: Tasks can experience deadline misses (not good for
safety-critical systems).

Task importance is not taken into account.

probes
ei Ri dmissi …

Performance degradation

The load can be decreased not only by rejecting
tasks, but also by reducing their performance
requirements. This can be done by:

 Degrading functionality (reducing task code)

 Skipping specific jobs

 Increasing periods

Functional degradation

In many applications, computation can be performed
at different level of precision: the higher the precision,
the longer the computation. Examples are:

 Binary search algorithms

 Image processing and computer graphics

 Neural learning

 Any time control

Imprecise computation

In this model, each task i (Ci, Di, wi) is divided in two
parts:

 a mandatory part: m
i (Mi, Di)

 an optional part: o
i (Oi, Di)

Mi Oi

Di

 Ci = Mi + Oi

 wi = importance weight

In this model, a schedule is said to be:

 feasible, if all mandatory parts complete within Di

 precise, if also the optional parts are completed.

Mi Oi

si

error: i = Oi  si average error: 



n

i
iia w

1

GOAL: minimize the average error

Imprecise computation

i

Multiple versions

If a task does not comply with the imprecise
computational model, another option is to implement
a function in multiple versions (operational modes):

Mode 1

Mode 2

Mode 3

Ci
1

Ci
2

Ci
3

decreasing
performance

PID

Sliding mode

Model-predictive

5

Sensitivity Analysis

Given an unschedulable task set, the problem is:

WCET2

WCET1

T2

T1

iWhich Ci’s should be changed and how much?

dU
T

C

T

C


2

2

1

1










2

2
11 T

C
UTC d

If we require the total utilization to be equal to a
desired value Ud we have:

UdT2

UdT1

Feasible
region

EDF bound

C1

C2

Still we have to select one among
the infinite number of solutions

Functional degradation

This method can be implemented both:
 globally: if the mode is selected by the overload manager

 locally: if the mode is selected by the task itself

while (1) { // periodic loop

i = 0; // modes m  [1,M]

do { // select the best feasible mode
i = i + 1;
rho = estimate_load(mode[i]);

} while ((rho > 1) && (i < M));

if (rho > 1) exception(UNFEASIBLE);

execute(mode[i]);
wait_for_next_period();

}

Example of local overload management

Global methods

Global methods can find the optimal solution taking
task constraints into account:

WCET2

WCET1

T2

T1

UdT2

UdT1

Feasible
region

Input: C = vector of computation times

f = vector of activation rates

dc = direction versor for downgrading C
U = actual task set utilization (U > 1)

Ud = final desired utilization (Ud  1)

C

C2

C1

C’

dc

Output:  = amount of
downgrading

Global methods

WCET2

WCET1

T2

T1

UdT2

UdT1

Feasible
region

1. Given computation times C and rates f
2. Select a direction dc for downgrading C
3. Set a desired utilization Ud

4. Compute a feasible point C’ = C + dc

such that C’  f = Ud

C

C2

C1

C’

dc

General approach:

Ud – Cf
dcf

 =

Local methods

Local methods cannot find the optimal solution and
can downgrade more than needed.

T2

T1

UdT2

UdT1

Feasible
region

C1

WCET2

WCET1


2

case in which 1
reacts before 2

Local methods cannot find the optimal solution and
can downgrade more than needed.

T2

T1

C2

Local methods

WCET2

WCET1


1

case in which 2
reacts before 1

UdT2

UdT1

C1 Feasible
region

6

Local methods cannot find the optimal solution and
can downgrade more than needed.

T2

T1

C2

Local methods

WCET2

WCET1

 case in which 1 and 2
react simultaneously

UdT2

UdT1

C1 Feasible
region

Imprecise computation

WCET2

WCET1

T2

T1

UdT2

UdT1

C

C2M2

C1

M1

case in which the local
method does not work

The variability range is continuous but limited by the
mandatory parts.

Multiple versions

WCET2

WCET1

T2

T1

UdT2

UdT1

C

case in which the local
method does not work

The variability range is larger, but discrete.

C2
1

C3
1

C1
1

C3
2 C2

2 C1
2

Job skipping

Periodic load can also be reduced by skipping some
jobs, once in a while.

Many systems tolerate skips, if they do not occur too often:

 multimedia systems (video reproduction)

 inertial systems (robots)

 monitoring systems (sporadic data loss)

skip skip skip

Example

117.1
6

4

2

1
pU

The system is overloaded, but tasks can be
schedulable if 1 skips one instance every 3:

1
skip skip skip

2

FIRM task model

 Every job can either be executed within its
deadline, or completely rejected (skipped).

 A percentage of task instances must be
guaranteed off line to finish in time.

 Each task i is described by (Ci, Ti, Di, Si):

Si is the minimum number of jobs that must be executed
between two consecutive skips.

7

 Every instance can be red or blue:
– red instances must finish within their deadline

– blue instances can be aborted

 If a blue instance is aborted, the next Si  1
instances must be red.

 If a blue instance is completed within its deadline,
the next instance is still blue.

 The first Si  1 instances of every task must be red.

FIRM task model

i

Ci = 1 Ti = 2 Di = 2 Si = 3

skip skip skip skip

i
skip skip skip

Example

 

Local adaptation

A local adaptation approach is also possible for a task
to comply with the assigned reservation:

i
Reservation

Ci Ti Si

Local PolicyLocal Policy probes

Real-Time
System

Equivalent utilization factor

L

Lg
U

n

i
i

L
p





 1

0

*

),0(
max

i
iii

i C
ST

L

T

L
Lg 








),0(

Schedulability Analysis

Theorem: A set of firm periodic tasks is
schedulable by EDF if

1* pU

A sufficient condition

A necessary condition

Theorem: A set of firm periodic tasks is not
schedulable if

1
)1(

1






n

i ii

ii

ST

SC

NOTE: the sum represents the utilization of the
computation that must take place.

8

Relaxing timing constraints

 The idea is to reduce the load by increasing task
periods.

 Each task must specify a period range [Tmin, Tmax]
compatible with its function.

 Periods are increased during overloads, and
reduced when the overload is over.

Many control applications require tasks running at
variable rates, to cope with changing conditions.

Lot of feasible solutions

In general, there can be a lot of feasible solutions with
periods inside the specified range, the problems is:

How do we select a solution
among all feasible ones?

T1

T2

C2

C1 T1-min T1-max

T2-min

T2-max
Feasible region

Sensitivity Analysis

f2

f1

1/C2

1/C1
dUfCfC  2211

1

22
1 C

fCU
f d 

If we require the total utilization to be equal to a
desired value Ud we have:

Ud/C2

Ud/C1

Feasible
region

EDF bound

We can follow the same approach used for reducing
computation times, in the rate-space:

f

f2

f1

1/C2

1/C1

Ud/C2

Ud/C1

Feasible
region

1. Given computation times C and rates f
2. Select a direction df for downgrading f
3. Set a desired utilization Ud

4. Compute a feasible point f’ = f + df

such that C  f’ = Ud

f

f2

f1

f’

df

General approach:

Ud – Cf
C df

 =

Sensitivity Analysis

How do we choose
the direction df?

 Tasks’ utilizations are treated as elastic springs and can be
changed by period variations.

 The flexibility of a task to a period variation is controlled by
an elastic coefficient Ei (the higher Ei the greater the elasticity).

 A periodic task i is characterized by: (Ci, Ti , Ti , Ei)

Ei

ri Ti
t

i

TiTi

Elastic task model

min max

min max

Special cases

 A task with T min = T max is equivalent to a hard task.

 A task with Ei = 0 can intentionally change its
period but does not allow the system to do that.

Definitions

min
max

i

i
i T

C
U 

max
min

i

i
i T

C
U 





n

i
iUU

1

maxmax





n

i
iUU

1

minmin

9

Compression algorithm

1 2 3 4

1 Up

1 Up

1 2 3 4

During overloads, utilizations must be compressed to
bring the load below one.

The spring analogy

xi0

x
0

x

xi

F

0

An elastic task can be compared with a linear spring:

spring length  task utilization

xi
min

xi0 Ui
max =

Ci

Ti
min

Ui
min =

Ci

Ti
max

ki
1
Ei

A periodic task set with maximum utilization Umax that
must be reduced to a desired utilization Ud

can be treated as

a set of linear springs with initial length L0 that must
be compressed to reach a desired length Ld.

The spring analogy

1 2 3 4

1 UUmax

1 U

1 2 3 4

Ud

Solving a linear spring system

x

x1o
x2o x3o

L00

x

x1 x2 x3

F

0 Ld

F = k1(x1o - x1)

F = k2(x2o - x2)

F = k3(x3o - x3)

x1 + x2 + x3 = Ld

x1o + x2o + x3o = L0

Solution assuming xmin = 0

)()()
111

(321321
321

xxxxxx
kkk

F ooo 

Summing the equations, we have:

)(0 dLL 

That is:

321

0

111
)(

kkk

LL
F d






Substituting F in the equations, we have:

That is:
321

0
111 111

)(
)(

kkk

LL
xxkF d

o






321

1
011 111

1

)(

kkk

k
LLxx do




Solution assuming xmin = 0

10

 


n

i
ik

K

1

// 1
1

i
dioi k

K
LLxx //

0)(

And defining: Ei = 1/ki





n

i
is EE

1s

i
dioi E

E
LLxx)(0 

Solution assuming xmin = 0

s

i
dii E

E
UUUU)(maxmax 

Solution assuming Tmax = 

s

i
dioi E

E
LLxx)(0 Interpreting the solution

for a task set we have:

i

i
i U

C
T 

Once the various Ui have been derived, task periods
can be set as:

Solution with constraints

xL00

x

F

0 Ld

x

F

0 Ld

If Tmax <  (i.e., xmin > 0), the solution becomes iterative,
requiring at most n iterations:

v

i
fdviivi E

E
UUUUU)(maxmax 

After each step, the set  can be divided into two subsets:

 a set f of fixed springs that reached the minimum length;

 a set v of variable springs that can still be compressed.





vi

iv UU


maxmax 



fi

if UU


min 



vi

iv EE


If for some task Ui < Ui
min, then set Ui = Ui

min, update
v and f and repeat the process.

Solution with constraints

 Feasibility condition

Observations (1)

 The computational complexity of the elastic
compression algorithm is O(n2)

 Initialization values of the iterative process:

v

{}f

maxmax UU v 
0fU

sv EE 

d

Given a task set with Umax > Ud, a compressed
solution always exists if and only if Umin  Ud.

Observations (2)

 The compression algorithm can be used to adjust
periods every time a task is added to the system, or
a task requests to adapt its period.

 The compression algorithm can also be used to
increase utilizations when the overload is over or
when a task set underutilize the processor.

 Elastic compression can also be used to compute
how to reduce computation times (Ci = UiTi).

