Definitions

A schedule σ is said to be feasible if it satisfies a set of constraints.

A task set Γ is said to be feasible, if there exists an algorithm that generates a feasible schedule for Γ.

A task set Γ is said to be schedulable with an algorithm A, if A generates a feasible schedule.

Examples of constraints

- Timing constraints: activation, period, deadline, jitter.
- Precedence: order of execution between tasks.
- Resources: synchronization for mutual exclusion.

Feasibility vs. schedulability

The scheduling problem

Given a set Γ of n tasks, a set P of p processors, and a set R of r resources, find an assignment of P and R to Γ that produces a feasible schedule under a set of constraints.

Complexity

- In 1975, Garey and Johnson showed that the general scheduling problem is NP hard.

In practice, it means that the time for finding a feasible schedule grows exponentially with the number of tasks.

Fortunately, polynomial time algorithms can be found under particular conditions.

Why do we care about complexity?

- Let's consider an application with $n = 30$ tasks on a processor in which the elementary step takes 1 μs.

- Consider 3 algorithms with the following complexity:

 - A_1: $O(n)$
 - A_2: $O(n^8)$
 - A_3: $O(8^n)$

 30μs
 182 hours
 40,000 billion years
Simplifying assumptions
- Single processor
- Homogeneous task sets
- Fully preemptive tasks
- Simultaneous activations
- No precedence constraints
- No resource constraints

Algorithm taxonomy
- Preemptive vs. Non Preemptive
- Static vs. dynamic
- On line vs. Off line
- Optimal vs. Heuristic

Static vs. Dynamic
Static

scheduling decisions are taken based on fixed parameters, statically assigned to tasks before activation.

Dynamic

scheduling decisions are taken based on parameters that can change with time.

Off-line vs. On-line
Off-line

all scheduling decisions are taken before task activation; the schedule is stored in a table (table-driven scheduling).

On-line

scheduling decisions are taken at run time on the set of active tasks.

Optimal vs. Heuristic
Optimal

They generate a schedule that minimizes a cost function, defined based on an optimality criterion.

Heuristic

They generate a schedule according to a heuristic function that tries to satisfy an optimality criterion, but there is no guarantee of success.

Optimality criteria
- **Feasibility:** Find a feasible schedule if there exists one.
- Minimize the maximum lateness
- Minimize the number of deadline miss
- Assign a value to each task, then maximize the cumulative value of the feasible tasks
Task set assumptions

We consider algorithms for different types of tasks:

- Single-job tasks (one shot)
 tasks with a single activation (not recurrent)
- Periodic tasks
 recurrent tasks regularly activated by a timer (each task potentially generates infinite jobs)
- Aperiodic/Sporadic tasks
 recurrent tasks irregularly activated by events (each task potentially generates infinite jobs)
- Mixed task sets

Graham’s Notation

\[\alpha | \beta | \gamma \]

- \(\alpha \) denotes the number of processors
- \(\beta \) denotes the constraints on tasks
- \(\gamma \) denotes the optimality criterion

Examples:

1. \(\text{preem.} \ R_{\text{avg}} \) Uniprocessor algorithm for preemptive tasks that minimizes the average response time.
2. \(\text{sync.} \ L_{\text{max}} \) Dual-core algorithm for synchronous tasks that minimizes the maximum lateness.
3. \(\text{preem.} \ L_{\text{max}} \) Quad-core algorithm for preemptive tasks that minimizes the maximum lateness.

Classical scheduling policies

- First Come First Served
- Shortest Job First
- Priority Scheduling
- Round Robin

Not suited for real-time systems

First Come First Served

It assigns the CPU to tasks based on their arrival times (intrinsically non-preemptive):

First Come First Served (SJF)

- Very unpredictable
 response times strongly depend on task arrivals:

Shortest Job First (SJF)

- Static \((C_i \text{ is a constant parameter}) \)
- It can be used on line or off-line
- Can be preemptive or non-preemptive
- It minimizes the average response time
SJF - Optimality

\[\sigma \rightarrow \sigma' \rightarrow \sigma'' \rightarrow \ldots \rightarrow \sigma^* \]

\[R(\sigma) \geq R(\sigma') \geq R(\sigma'') \ldots \geq R(\sigma^*) \]

\[\sigma^* = \sigma_{SJF} \]

The minimum response time achievable by any algorithm

SJF - Optimality

\[f_s' + f_l' \leq f_s + f_l \]

\[R(\sigma') = \frac{1}{n} \sum_{i=1}^{n} (f_i' - r_i) \leq \frac{1}{n} \sum_{i=1}^{n} (f_i - r_i) = R(\sigma) \]

Priority Scheduling

- Each task has a priority \(P_i \), typically \(P_i \in [0, 255] \)
- The task with the highest priority is selected for execution.
- Tasks with the same priority are served FCFS

NOTE:

\[P_i \propto \frac{1}{C_i} \Rightarrow SJF \]

\[P_i \propto \frac{1}{a_i} \Rightarrow FCFS \]

Is SJF suited for Real-Time?

- It is not optimal in the sense of feasibility

- **A \(\neq \) SJF feasible**
 - \(d_1 \)
 - \(d_2 \)
 - \(d_3 \)

- **SJF not feasible**
 - \(\tau_1 \)
 - \(\tau_2 \)
 - \(\tau_3 \)

Round Robin

The ready queue is served with FCFS, but...

- Each task \(\tau_i \) cannot execute for more than \(Q \) time units (\(Q = \) time quantum).
- When \(Q \) expires, \(\tau_i \) is put back in the queue.

Problem: starvation

Low priority tasks may experience long delays due to the preemption of high priority tasks.

A possible solution: aging

Priority increases with waiting time.
Round Robin

\[T = \frac{nQ}{Q} \]

Time sharing

Each task runs as if it was executing alone on a virtual processor \(n \) times slower than the real one.

\[R_i \approx \frac{(nQ)C}{Q} = nC_i \]

Round Robin

- if \(Q > \text{max}(C_i) \) then \(RR = \text{FCFS} \)
- if \(Q \approx \text{context switch time (\(\delta \))} \) then

\[R_i \approx \frac{n(Q + \delta)C}{Q} = nC_i \left(\frac{Q + \delta}{Q} \right) \]

Multi-Level Scheduling

CPU

- High priority
- Medium priority
- Low priority

PRIORITY

RR

FCFS

Real-Time Scheduling Algorithms

They can either schedule tasks by

- relative deadlines \(D_i \) (static)
- absolute deadlines \(d_i \) (dynamic)
Earliest Due Date

Problem
- 1 sync \(L_{\text{max}} \)

Algorithm [Jackson 55]
- Order the ready queue by increasing deadline.

Assumptions
- All the tasks are simultaneously activated
- Preemption is not needed.
- Static (\(D_i \) is fixed)

Property
- It minimizes the maximum lateness (\(L_{\text{max}} \))

Lateness

\[
L_i = f_i - d_i
\]

\[
L_i > 0
\]

- \(L_i < 0 \)

Maximum Lateness

\[
L_{\text{max}} = \max_i (L_i)
\]

- if \(L_{\text{max}} < 0 \) then
- no task exceeds its deadline

EDD - Optimality

\[
\sigma \rightarrow \sigma' \rightarrow \sigma'' \rightarrow \ldots \rightarrow \sigma^*
\]

\[
L_{\text{max}} (\sigma) \geq L_{\text{max}} (\sigma') \geq L_{\text{max}} (\sigma'') \geq \ldots \geq L_{\text{max}} (\sigma^*)
\]

\[
\sigma^* = \sigma_{\text{EDD}}
\]

\[
L_{\text{max}} (\sigma_{\text{EDD}}) \text{ is the minimum value achievable by any algorithm}
\]

EDD guarantee test (off line)

A task set \(\Gamma \) is feasible iff

\[
\forall i \quad f_i \leq d_i
\]

\[
f_i = \sum_{k=1}^{i} C_k \quad \forall i \quad \sum_{k=1}^{i} C_k \leq D_i
\]
Earliest Deadline First

Problem

1 \(|\text{preem.}| \mid L_{\text{max}} \)

Algorithm [Horn 74]
- Order the ready queue by increasing absolute deadline

Assumptions
- Tasks can be activated dynamically
- Dynamic algorithm (\(d_i \) depends on \(a_i \))
- Tasks can be preempted at any time

Property
- It minimizes the maximum lateness (\(L_{\text{max}} \))

EDF Guarantee test (on line)

\[
\forall i, \sum_{k=1}^{i} c_k(t) \leq d_i - t
\]

Complexity

EDD
- Scheduler (queue ordering): \(O(n \log n) \)
- Feasibility Test (guarantee test): \(O(n) \)

EDF
- Scheduler (insertion in the queue): \(O(n) \)
- Feasibility Test (guarantee single task): \(O(n) \)

EDF optimality

⇒ In the sense of feasibility [Dertouzos 1974]

An algorithm A is **optimal** in the sense of feasibility if it generates a feasible schedule, if there exists one.

Demonstration method

It is sufficient to prove that, given an arbitrary feasible schedule, the schedule generated by EDF is also feasible.

Dertouzos Transformation

\[
\begin{align*}
\sigma(t) &= \text{task executing at time } t \\
E(t) &= \text{task with min } d \text{ at time } t \\
t_E &= \text{time at which } E \text{ is executed}
\end{align*}
\]

for \(t = 0 \) to \(D_{\text{max}} - 1 \)

\[
\text{if } (\sigma(t) = E(t)) \{
\begin{align*}
\sigma_{\text{DF}}(t) &= \sigma(t) \\
\sigma(0) &= E(t)
\end{align*}
\}
\]
Dertouzos Transformation

\[\sigma(t) = \text{task executing at time } t \]
\[E(t) = \text{task with min } d \text{ at time } t \]
\[t_ε = \text{time at which } E \text{ is executed} \]

For \(t = 0 \) to \(D_{max} - 1 \)
\[
\begin{align*}
 &\text{if } (\sigma(t) \neq E(t)) \\
 &\quad \sigma(t_ε) = \sigma(t) \\
 &\quad \sigma(t) = E(t)
\end{align*}
\]

Dertouzos Transformation

\[\sigma(t) = \text{task executing at time } t \]
\[E(t) = \text{task with min } d \text{ at time } t \]
\[t_ε = \text{time at which } E \text{ is executed} \]

For \(t = 0 \) to \(D_{max} - 1 \)
\[
\begin{align*}
 &\text{if } (\sigma(t) \neq E(t)) \\
 &\quad \sigma(t_ε) = \sigma(t) \\
 &\quad \sigma(t) = E(t)
\end{align*}
\]

A property of optimal algorithms

If a task set \(\Gamma \) is not schedulable by an optimal algorithm, then \(\Gamma \) cannot be scheduled by any other algorithm.

If an algorithm A minimizes \(L_{max} \) then A is also optimal in the sense of feasibility. The opposite is not true.

Non Preemptive Scheduling

Under non preemptive execution, EDF is not optimal:

Feasible schedule

EDF
Non Preemptive Scheduling

To achieve optimality, an algorithm should be clairvoyant, and decide to leave the CPU idle in the presence of ready tasks:

If we forbid leaving the CPU idle in the presence of ready tasks, then EDF is optimal. We say that:

NP-EDF is optimal among non-idle scheduling algorithms

Bratley's Algorithm [Bratley 71]

\[(1 \mid \text{no-preem} \mid \text{Lmax}) \]

Reduces the average complexity by a pruning rule:

Do not expand unless the partial schedule is found to be strongly feasible.

A partial schedule is said to be strongly feasible if adding any of the remaining nodes it remains feasible.

Heuristic search

Spring algorithm [Stankovic & Ramamritham 87]

1. The schedule for a set of N tasks is constructed in N steps
2. The search is driven by a heuristic function H
3. At each step the algorithm selects the task that minimizes the heuristic function

Backtracking is possible

Heuristic functions

Spring algorithm [Stankovic & Ramamritham 87]

Example of heuristic functions:

1. \(H = t_i \) \(\Rightarrow \) FCFS
2. \(H = C_i \) \(\Rightarrow \) SJF
3. \(H = D_i \) \(\Rightarrow \) DM
4. \(H = d_i \) \(\Rightarrow \) EDF

Composite heuristic functions:

\[H = w_1 t_i + w_2 D_i \]
\[H = w_1 C_i + w_2 d_i \]
\[H = w_1 V_i + w_2 d_i \]
Heuristic functions

Spring algorithm [Stankovic & Ramamritham 87]

Possibility to handle precedence constraints:

Eligibility

\[E_i = \infty \quad \text{or} \quad E_i = 1 \]

Heuristic functions:

\[H = E_i (w_1 r_i + w_2 D_i) \]
\[H = E_i (w_1 C_i + w_2 d_i) \]

Heuristic algorithm

Spring algorithm [Stankovic & Ramamritham 87]

Complexity:

- Exhaustive search: \(O(N!N!) \)
- Heuristic search: \(O(N^2) \)
- Heuristic w. k btracks: \(O(kN^2) \)

Handling precedence constraints

1 | prec, sync | \(L_{\max} \)

Latest Deadline First (LDF) [Lawler 73]

Given a precedence graph, it constructs the schedule from the tail: among the nodes with no successors, LDF selects the task with the latest deadline:

![LDF Diagram]

Handling precedence constraints

EDF* [Chetto & Chetto 89]

- Assumes that arrival times are known a priori;
- Transforms precedence constraints into timing constraints by modifying arrival times and deadlines based on the precedence graph;
- Applies EDF to the modified task set.

Handling precedence constraints

EDF* [Chetto & Chetto 89] 1 | prec, preem | \(L_{\max} \)

The idea is to:
- postpone the arrival time of a successor
- advance the deadline of a predecessor
Handling precedence constraints

EDF* [Chetto & Chetto 89] 1 | prec, preem | L_{max}

The idea is to:

- Postpone the arrival time of a successor: $r^*_B = r_A + C_A$
- Advance the deadline of a predecessor: $d^*_A = d_B - C_B$

Arrival time modification

1. For all root nodes, set $r^*_i = r_i$.
2. Select a task τ_i such that all its immediate predecessors have been modified, else exit.
3. Set $r^*_i = \max \{ r_i, \max (r^*_k + C_k) \}$.
4. Repeat from line 2.

Deadline modification

1. For all leaves, set $d^*_i = d_i$.
2. Select a task τ_i such that all its immediate successors have been modified, else exit.
3. Set $d^*_i = \min \{ d_i, \min (d^*_k - C_k) \}$.
4. Repeat from line 2.

Summary

<table>
<thead>
<tr>
<th>activ</th>
<th>prec</th>
<th>preem</th>
<th>algorithm</th>
<th>authors</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync</td>
<td>N</td>
<td>*</td>
<td>EDD</td>
<td>Jackson '55</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Asyn</td>
<td>N</td>
<td>Y</td>
<td>EDF</td>
<td>Horn '74</td>
<td>$O(n) \land \tau$</td>
</tr>
<tr>
<td>Asyn</td>
<td>N</td>
<td>N</td>
<td>NP-EDF</td>
<td>Jeffay '91</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Asyn</td>
<td>Y</td>
<td>N</td>
<td>Tree search</td>
<td>Bratley '71</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Asyn</td>
<td>Y</td>
<td>N</td>
<td>Spring</td>
<td>Stankovic '87</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sync</td>
<td>Y</td>
<td>*</td>
<td>LDF</td>
<td>Lawler '73</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>Asyn</td>
<td>Y</td>
<td>Y</td>
<td>EDF*</td>
<td>Chetto '89</td>
<td>$O(n \log n)$</td>
</tr>
</tbody>
</table>