Scuola Superiore Sant’/Anna

?etis

Real-Time System Laboratory

Advanced course on C++

Giuseppe Lipari

Scuola Superiore S. Anna

Classes

“Those types are not abstract:
they are as real as int and float”

-Doug Mcllroy

Abstraction

* An essential instrument for OO programming is
the support for data abstraction

« C++ permits to define new types and their
operations

« Creating a new data type means defining:
— Which elements it is composed of (internal structure);
— How it is built/destroyed (constructor/destructor)

— How we can operate on this type
(methods/operations)

Abstraction

« Abstraction is a very powerful instrument
— By composing predefined data types (int, double,
char, etc.) we create higher level entities;
« OO programming is based on data abstraction

« Given a complex problem:
— decomposition in objects (data types)
— define relationship and interactions between objects
— decompose each object in smaller objects

— the decomposition ends when every low level obje40t
can be represented with a predefined data-type

Data abstraction in C

 We can do data abstraction in C (and in almost
any language)

— however, the syntax is awkward

typedef struct __complex { we have to pass the main
double real_; ,
double imaginary_ data to every function

} Complex; name clashing: if another

void add_to(Complex *a, Complex *b); abstrlact type defines a
void sub_from(Complex *a, Complex *b); function add_to(), the names

double get_module(Complex *a); will clash!
No protection: any user can
access the internal data
using them improperly

Classical example

» Let’'s define the same data type in C++

class Complex {
double real_;
double imaginary_;
public:
Complex(); /I default constructor
Complex(double a, double b); /] constructor
~Complex(); /] destructor
double real() const; /I member function to get the real part
double imaginary() const; /I member function to get the imag. part
double module() const; /I member function to get the module
Complex &operator =(const Complex &a); /| assignment operator
Complex &operator+=(const Complex &a); // sum operator
Complex &operator-=(const Complex &a)); // sub operator
¥

How to use Complex

« Example:

Complex cf; /I default constructor

Complex ¢2(1,2); // constructor

Complex ¢3(3,4); // constructor

cout << “c1=(* << c1.real() << *,” << c¢1.imaginary() << “)’<< endl;
cl=c2; /[assignment

c3 +=cf; /| operator +=

c1=c2+ c3; //ERROR: operator + not yet defined

Using new data types

« The new data type is used just like a predefined
data type

— It is possible to define new functions for that type:
* real(), imaginary() and module()

— It is possible to define new operators
e =, +=and -=

— The compiler knows automatically which
function/operator must be invoked

« C++ is a strongly typed language

— the compiler knows which function to invoke by
looking at the type! 8

Class

 Class is the main construct for building new

types in C++
— A class is almost equivalent to a struct with functions
inside
* In the C-style programming, the programmer
defines structs, and global functions to act on

the structs

* In C++-style programming, the programmer
defines classes with functions inside them

Class

A class contains members

* A member can be
— any kind of variable (member variables)
— any kind of function (member functions or methods)

class MyClass {

ijntat;)l N member variables
ouble b; |
pUbi:i?C' L membervariable

d f(); _
;/n?ge&(); %A member functions
int modify(double b);

¥

Accessing members

« A member can be accessed with the dot
notation (or with the arrow in case of a pointer).

MyClass obj;
obj.c = 10; /[assigning to a member variable
obj.modify(8); /I invoking @ member function

MyClass *p = &obj; // pointer to obj
p->f(); /I invoking member f() through p;

cout << p->getA() << endl; //invokes member getA()

11

Implementing member functions

* You can implement a member function in a
separate .cpp file

class Complex { double Complex::module() const
double real_; {
double imaginary_; double temp;
public: temp = real_ * real_ + imaginary_ * imaginary_;
return temp;
double module() const; }
¥
complex.cpp
complex.h

12

Accessing internal members

double Complex::module() const
{ /L S T local
double temp: resolution W

variable
temp = real_ * real_ + imaginary_ * imaginary_;

return temp;] access to internal
} variables

The :: operator is called scope resolution operator
like any other function, we can create local variables

member variables and functions can be accessed
without dot or arrow

13

Access control

« A member can be:

— private: only member functions of the same class
can access it; other classes or global functions can'’t

— protected: only member functions of the same class

or of derived classes can access it: other classes or
global functions can't

— PHRHECRYETY function can-access i

orivate: MyClass data;
int a; -
)] . |
public: cout << data.a; /[ERROR: a is private!

int c: cout << data.c; /I OK: cis public;

b

14

Access control

» Default is private

* An access control keyword defines access until
the next access control keyword

class MyClass {
int a;

— double b;
private (default) T/ pubﬁé‘: €

int c;

public |~ void ()

int getA();
private:

private int modify(double b);
again §T

15

Access control and scope

« Member functions can access any other member

int xx;

class A {

int xX;
public:
void f();

5

global
variable

member
variable

dCCeSS

access
global xx

Iocalxx‘ / R
XX = UXX + 2

16

Why access control?

* The technique of declaring private members is
also called encapsulation
— In this way we can precisely define what is interface
and what is implementation
— The public part is the interface to the external world
— The private part is the implementation of that
interface
— When working in a team, each group take care of a
module

— To ensure that the integration is done correctly and
without problems, the programmers agree on 17

mmtarfanne

Private

« Some people think that private is synonym of
secret

— they complain that the private part is visible in the
header file

* private means not accessible from other classes
and does not mean secret

« The compiler needs to know the size of the
object, in order to allocate memory to it

— In an hypothetical C++, if we hide the private part,1 8’[he
compiler cannot know the size of the object

Friends

 Access control rules can be broken with the
friend keyword

— a friend class can access the private members of the
current class

class A { class B { void B::f(A &a)
friend class B; int x; {
inty; public: X=aly,
void f(); void f(A &a); a.f();
public: ¥ }
int g(); .
5
B is friend of A B can access private

members of A

19

Friend functions and operator

« Even a global function or a single member
function can be friend of a class

class A { :
friend B::f() /ﬂ friend
friend h(): member function

\

Inty;
void f(); friend global
public: function

int g();
¥

It is better to use the friend keyword only when it is
really necessary

Nested classes

It is possible to declare a class inside another class

* Access control keywords apply

class A { | Class B is private to class A: it is not part of the

class B { interface of A, but only of its implementation.
int a;

public: However, A is not allowed to access the private
} int b; part of B!! (A::f() cannot access B::a).

puil?ct?j; To accomplish this, we have to declare A as
void f(); friend of B

¥

21

Time to do an example

« Let us implement a Stack of integers class

At this point, forget about the std library

— This is a didactic example!

Stack stack;

stack.push(12);
stack.push(7);

&)Ut << stack.pop();

cout << stack.pop(); 37

54

First, define the interface

class Stack {

public:
Stack(); -
~Stack();

void push(int a);
int pop();

int peek();

int size();

constructor
&
destructor

23

Now the implementation

 Now we need to decide:
— how many objects can our stack contain?
— we can set a maximum limit (like 1000 elements)
— we can dynamically adapt
« computer memory is the limit
 Let’s first choose the first solution

— notice that this decision is actually part of the
interface contract!

24

Implementation

class Stack {
public:
Stack(int size);
~Stack();

int push(int a);

void pop();

int size();
private:

int *array_;

int top_;

int size_;

b

25

Constructor

* The constructor is the place where the object is
created and initialized

— Every time an object is defined, the constructor is
called automatically

— There is no way to define an object without calling
the constructor

— Sometime the constructor is called even when you
don’t suspect (for example for temporary objects...)

* |t's a nice feature

— it forces to think about initialization 26

Constructor for Stack

 The constructor is a function with the same
name of the class and no return value

|t can have parameters:
— In our case, the max_size of the stack

class Stack { Stack::Stack(int size)
public: {
Stack(int size); array_ = new inf[size];
top = 0;
};)

The new operator

* In C, if you needed memory from the heap, you

would use malloc()

* In C++, there is a special operator, called new

Stack::Stack(int size)
{
array_=new inffsize], —
size_ = size;
top_ =0;

—

}

creates an array of
Size integers

28

Destructor

* When the object goes out of scope, it is destructed

— among the other things, its memory is de-allocated

A special function, called destructor, is defined for every
class
— its name is a ~ followed by the class name

— takes no parameters

class Stack { Stack::~Stack()

{
~Stack(); delete [Jarray_;

}

29

The delete operator

« The opposite of new is delete

— It frees the memory allocated by new

Stack::~Stack()

{ deallocates size
0 /
} delete [Jarray. 4 integers

this operation is needed because otherwise the memory
pointed by array would remain allocated
this problem is called memory leak

30

class Stack {

public:
Stack();
~Stack();

5

When are they called?

Stack::Stack(int size)
{
size_ =size;
array_ = new int[size_];
top_ =0;
cout << “Constructor has been called\n!™:

}

Stack::~Stack()
{

delete [Jarray_;
cout << “Destructor has been called\n”:

)

int main()

{

cout << “Before block\n”;

{
Stack mystack(20);

cout << “after constructor\n’;

.c.c.>ut << “before block end\n”;

}

cout << “After block\n”;

31

Default constructor

A constructor without parameters is called
default constructor

— if you do not define a constructor, C++ will provide a
default constructor that does nothing

— if you do provide a constructor with parameters, the
compiler does not provide a default constructor

_____ Error!! No default
Stack s2(20); constructor for Stack! alling the

usei-defined
constructor

32

Default constructor

 We did not define a default constructor on
purpose
— we cannot construct a Stack without knowing its size

— see how C++ forces a clean programming style?

 However it is possible to define different
constructors using overloading

— usually, we need to provide several constructors for a
class

« The compiler always provide a destructor,
unless the nroarammer orovides it

33

Implementing the Stack interface

* see the code in directory stack1/

34

Improving Stack

 |et's get rid of the size (see stack?2/)

35

Initializing internal members

 Another feature of C++ is the initialize-list in the

constructor

— each member variable can be initialized using a

special syntax

Stack::Stack()
{ Stack::Stack() : head_(0), size_(0)

head_ = 0: h {
size_ =0 }

}

It is like using a constructor for each internal member

36

Function overloading

* In C++, the argument list is part of the name of the
function
— this mysterious sentence means that two functions with the
same name but with different argument list are considered
two different functions and not a mistake
 If you look at the internal name used by the compiler
for a function, you will see three parts:
— the class name
— the function name

— the argument list
37

Function overloading

class A {
public:
void f(int a);

void f(double g);
¥
class B {
public:

void f(int a);
b

void f(int a, int b); —

/

A fint

A fint.int
__A_f double

B fint

« To the compiler, they are all different functions!
— beware of the type...

38

So, which one is called?

« The compiler looks at the type of the actual
arguments to know which one is going to be

called!

class A { Aa;

public: B b;
void f(int a);
void f(int a, int b); a.f(5);
void f(double g);

}; b.f(2);

class B {

public: a.f(3.0);
void f(int a); a.f(2,3);

) a.f(2.5, 3);

Beware of hidden

/casti ng!!
— A fint
/
— __ B fint
/
— | _A f double
// A e nn
— A

39

Return values

* Notice that return values are not part of the
name

— the compiler is not able to distinguish two functions
that differs only on geturn values!

It is not possible to overload the return value

40

Default arguments in functions

« Sometime, functions have long argument lists

« Sometime, some of these arguments do not change
often
— we would like to set default values for some argument

— this is a little different from overloading, since it is the same
function we are calling!

int f(int a, int b = 0);

f(12); //itis equivalent to f(12,0);

41

Example

e see overload/

* You have also seen some debugging trick

— when you cannot use more sophisticated
debugging...

« Simple exercise:

— write another constructor that takes a char* instead of
a string

42

Constants

* In C++, when something is const it means that it
cannot change. Period.
* Now, the particular meanings of const are a lot:

— Don't to get lost! Keep in mind: const = cannot
change

* Another thing to remember:

— constants must have an initial (and final) value!

43

Constants - |

e As a first use, const can substitute the use of
#define in C

— whenever you need a constant global value, use
const instead of a define, because it is clean and it is

typeassad®is e /cstyle

const double pi = 3.14; // C++ style

In this case, the compiler does not allocate storage
for pi

44
In any case, the const object has an internal linkage

Constants - |l

 YOu can use constfor variables that never
change after initialization. However, their initial

value is decided at run-time
const inti = 100; ’ '7 compile-time

constintj =i+ 10; constants

int main()

{ run-time
cout << “Type a characterV constants

const char ¢ = cin.get();
constcharc2=c+‘a”;
cout << ¢2;

C2++; [ERROR! ¢2 is const!

45

Constant pointers

« There are two possibilities
— the pointer itself is constant

— the pointed object is constant

inta the pointer i
int I pointer is
int * const u = &a; /‘ constant

constint*v; —
the pointed object
is constant (the pointer can change
and point to another const int!)

Remember: a const object needs an initial value!

46

const function arguments

« An argument can be declared constant. It
means the function can’t change it

— particularly useful with references

class A {

public:
inti;

¥

void f(const A &a) {
a.l++; /] error! cannot modify a;
)

You can do the same thing with a pointer to a constant,
but the syntax is messy. 47

Passing by const reference

« Remember:

— we can pass argument by value, by pointer or by
reference

— In the last two cases we can declare the pointer or
the reference to refer to a constant object: it means
the function cannot change it

— Passing by constant reference is equivalent, from the
user point of view, to passing by value

— From an implementation point of view, passing by

const reference is much faster!! 46

Constant member functions

 |f we want to say: “this member function does
not modify the object” we can use const at the
end of the function prototype

class A The compiler can call
public: only const member

int f() const; _

void g(); functions on a const
% .
void A::f() const ObJ @ocﬁy Aa=..:
{

i++: /| ERROR! this function cannot af(); 1/ Ok

/I modify the object ag(); //ERROR!

return i; // Ok

}

49

Constant return value

« This is tricky! We want to say: “the object we are
returning from this function cannot be modified”

— This is meaningless when returning predefined types

const int f1(int a) {return ++a;}
int f2(int a) {return ++a;}

inti=f1(5); //legal
i = 2(5);

const intj = f1(5); // also legal
const int k = f2(5); //also legal

these two functions
are equivalent!

50

Return mechanism

« When returning a value, the compiler copies it
iInto an appropriate location, where the caller

Caig .LtISG tlt . 1) ais allocated on the stack
intf2(int a) {return ++a;} 2) the compiler copies 5 into a
nti = 2(5): 3) a is incremented
inti = 12(5); 4) the modified value of a is then copied directly
into /
5) a is de-allocated (de-structed)

why const does not matter?
since the compiler copies the value into the new
location, who cares if the original return value is
constant? It is deallocated right after the copy! 5

Returning a reference to an object

« Things get more complicated if we are returning
an object, by value or by address, that is by
pointer or by reference

 But before looking into the problem, we have to
address two important mechanisms of C++
— COpYy constructors

— assignment and temporary objects

52

Copy constructor

* When defining a class, there is another hidden
default member we have to take into account

class X {
int ii: copy

public: constructor
X(int i) {ii = i;}
X(const &X x);

it get() fretur i) If we don’t define it, the compiler
intinc() {return ++i;} will define a standard version
The standard version will perform
a copy member by member
(bitwise copy)

¥

53

Copy constructor

* An example

X x1(1);
Kxol) ———— | |Copy

Kt Wcontructor
cout << x1.get() <<“ “<<x2.get() << endl;

x1.inc();
cout << x1.get() <<“ “<<x2.get() << endl;

We should be careful when defining a copy constructor
for a class
we will address more specific issues on copy

constructors later o4

Copy constructor

» The copy constructor is implicitly used when
passing an object by value

void f(X x)
{

when calling f(), the
} / actual argument x1

X x1: is copied into formal
parameter x by using
f(x1); the copy constructor

This is another reason to prefer passage by const
reference!

55

The complex example

class Complex {

double real_;
double imaginary_;
public:
Complex(); /I default constructor
Complex(const Complex& c); /I copy constructor
Complex(double a, double b); /I constructor
~Complex(); /] destructor
double real() const; /I member function to get the real part
double imaginary() const; /I member function to get the imag. part
double module() const; /I member function to get the module

Complex& operator =(const Complex& a); /| assignment operator
Complex& operator+=(const Complex& a); // sum operator
Complex& operator-=(const Complex& a)); // sub operator

56

How to implement the copy constructor

this is equivalent
to the default one!

Complex::Complex(const Complex& c)
| A

real_ = c.real_;
imaginary_ = c.imaginary_;

}

 Now we can invoke it for initializing c3:

Complex ¢1(2,3);
Complex c2(2);
Complex c3(c1);

cout<< ¢l <<“ “<<e2<<® “<<c3<<n”

o7

Copy constructor and assignment operator

 Remember that we also defined an assignment

operator for

Complex:

Complex ¢1(2,3);
Complex c2(2);
Complex ¢3 = c1;

cl +=c¢2;

cout<<c¢cl<<”

i

c2 = ¢3:]

“<<02<<“ “<<C3<<“\n”;

copy
constructor

assignment

The difference is that c3 is being defined and initialized,
SO a constructor is necessary;
c2 is already Iinitialized

58

The add function

* Now suppose we want to define a function
add that returns the sum of two complex
numbers

— the return type is Complex

.+ a firsttry could ™"

Complex z(a.real() + b.real(), a.imaginary() + b.imaginary());
return z;

}

This is not very good programming style for many
reasons!
can you list them?

Using the add

« Let's see what happens when we use our add

Complex ¢1(1,2),¢2(2,3),¢3; the temporary object
] is destroyed

c3 = add(c1,c2); the temporary object
- is assigned to ¢3

calling the assignment

operator
Complex add(Complex a, Complex b)
{
Complex z(a.real() + b.real(), a.imaginary{.+ b.imaginary());
return z;
)
temp is copied into \ z is constructed c1 and c2 are copied (through the
a temporary object copy constructor), into aand b

7 function calls are involved!
(not considering real() and imaginary()) ... o0

First improvement

« Let's pass by const reference:

Complex ¢1(1,2),c2(2,3),¢3; only the addresses are copied:
much faster!

c3 = add(c1,c2);

Complex add(const Complex& a, const Complexé& b)

{

Complex temp(a.real() + b.real(), a.imaginary() + b.imaginary());
return temp;

}

We already saved 2 function calls!
notice that ¢c1 and c2 cannot be modified anyway...

61

Temporaries

« Why the compiler builds a temporary?

— because he doesn’t know what we are going to do

with that object

— consider the following expression:

Complex ¢1(1,2), c2(2,3), ¢3(0,0);

c3 += add(c1,c2);

first, the add is called
second, operator+= is called
operator+=(const Complex &c);

So, the compiler is forced to build a temporary object of
type Complex and pass it to operator+= by reference,
which will be destroyed soon after operator+=

completes

62

Temporary objects

« A temporary should always be constant!

— otherwise we could write things like:

add(c1,c2) +=cf;

It is pure non-sense!
To avoid this let us, return a const

const Complex add(const Complex& a, const Complex& b)

{

Complex temp(a.real() + b.real(), a.imaginary() + b.imaginary());
return temp;

}

63

Returning a const

« Thus, now it should be clear why sometime we
need to return a const object

— the previous example was trivial, but when things get
complicated, anything can happen

— by using a const object, we avoid stupid errors like
modifying a temporary object

— the compiler will complain if we try to modify a const
object!

64

More on add

e Ok, that was clean, but did not save much

 However, there is a way to save on another
copy constructor

const Complex add(const Complex& a, const Complex& b)

{
)

return Complex(a.real() + b.real(), a.imaginary() + b.imaginary());

It means: create a temporary object and return it

Now we have 4 function calls:
add, temporary constructor, assignment, temporary
destructor 65

* let’'s make an exercise.

More on copy constructors

class A { int main()
int ii; {
public: Aal(3);
A(int i) - ii(i) { cout << “A(int)\n";} B b1(5);
A(const A& a) { i = a.ii; cout << “A(A&)\n";} B b2(b1);
?)
class B { A(int)
int ii; A(int)
Aa; B(int)
public: A(A&)

B(int i) :ii(i), a(i+1) {cout << “B(int)\n”; }
}

66

Changing the copy constructor

« We can change the behavior of B...

B(B& b) - ii(b.ii), a(b.ii+1) {cout << “B(B&)\n":)

b

class A { int main()
int ii; {
public: Aal(3);
A(int i) - ii(i) { cout << “A(int)\n”;} B b1(5);
A(const A& a) { ii = a.ii; cout << “A(A&)\n";} B b2(b1);
};)
class B { A(int)
int ii; A(int)
Aa; B(int)
public: A(int)
B(int i) :ii(i), a(i+1) {cout << “B(int)\n”; } B(B&)

67

Static

« gtatic is another keyword that is overloaded with
many meanings

* Here, we will discuss only one of them: how to
build static class members

— sometime, we would like to have a member that is
common to all objects of a class

— for doing this, we can use the static keyword

68

static members

« We would like to implement a counter that
keeps track of the number of objects that are

around

— we could use a global variable, but it is not C++ style

class Ma

static ir:v‘?%r‘]?;an/um

int index;

public:

¥

ManyObj();
~ManyObj();

int getndex();
static int howMany(); —

4

ﬁlmtgt‘??” abf@“c int ManyObj::count = 0;
variable

ManyObj::ManyObj() { index = count++;}
ManyQbj::~ManyQbj() {count--;}

int ManyObj::getindex() {return index;}
int ManyObj::howMany() {return count;}

static member
function

69

static members

Index of p: 4
Number of objs: 10
ManyObj a, b, ¢, d; Number of objs: 6
ManyQbj *p = new ManyQbj; Number of objs: 4
ManyQbj *p2 = 0;

int main()

{

calling a static
member function

cout << “Index of p: “ << p->getindex() << “\n”;
{

ManyQObj a, b, ¢, d;

p2 = new ManyQbj;

cout << “Number of objs: “ << ManyObj::howMany() << “\n”;
}
cout << “Number of objs: “ << ManyObj::howMany() << “\n”;
delete p2; delete p;
cout << “Number of objs: “ << ManyQbj::howMany() << “\n”;

70

static members

« There is only one copy of the static variable for
all the objects

 All the objects refer to this variable

« How to initialize a static member?
— cannot be initialized in the class declaration

— the compiler does not allocate space for the static
member until it is initiliazed

— S0, the programmer of the class must define and

Initialize the static variable
71

Initialization

* |tis usually done in the .cpp file where the class
IS Implemented

— — initialization of
static int ManyObj::count = 0; //l fhe static

ManyObj::ManyObj() { index = count++;} member

ManyQbj::~ManyQbj() {count--;}
int ManyObj::getindex() {return index;}
int ManyObj::howMany() {return count;}

There is a famous problem with static members, known
as the static initialization order failure

we will not study it here. See the book on page 432
72

Copy constructors and static members

« What happens if the copy constructor is called?

void func(ManyQbj a)
{

-

void main()

{
ManyQbj a;
func(a);
cout << “How many: “ << ManyQbj::howMany() << “\n”;

)

What is the output?

73

Solution in manyobj/

74

Again on copy constructors

 If we want to prevent passing by value we can hide the
copy constructor

* You hide copy constructor by making it private
— In this way the user of the class cannot call it

class ManyQbj { void func(ManyQbj a)

static int count; {

int index;

ManyObj(ManyObj &); }
public:

ManyQbj(); void main()

~ManyObj(); {

ManyQbj a;

static int howMany(); func(a); /IERROR! No copy constructor

5)

75

Singleton object

« A singleton is an object that can exist in only
one copy

— we want to avoid that a user creates more than one
of these objects

« We can make a singleton by combining static

PPy FP I IR - g

members and constructor-hiaing

static Singleton s;

Singleton();

Singleton(Singleton &);
public:

static Singleton & instance();
5

76

Singleton object

* First, we hide both constructors, so no user can
create a singleton object
— we also hide assignment operator

« We define one singleton object as static
« To obtain the singleton object, users must
INvQke, mesmRernstance();

Singleton s2 = Singleton::instance(); // ERROR! No copy constructor!

see oneobj/

77

Last thing on copy constructors

* |If you are designing a class for a library,
always think about what does it mean to copy
an object of your class
— a user could try to pass the object to a function by

value, and obtain an inconsistent behavior

« For example, consider that your class
contains pointers to objects of other classes

— when you clone your object, do you need to copy
the pointers or the pointed classes? Depends on

the class! 78

TI/\I\ AI‘\""\I II+ "N S\ I\I\If\f\"‘lﬁl II\"‘I‘\I’ \AI:II " N\ +I/\I\ If\f\:lf\"‘f\lf

 First option (default):

Second option:

Quite different, don’t you think?

Last on copy constructors

A / B
copy of A

A B
copy of A ~copy of B

79

How to copy an unknown object??

e to be discussed when we talk about inheritance...

80

Ownership

 Last argument introduce the problem of ownership

« A class can contain pointers to other objects;

— suppose they were created dynamically (with new), so they
are allocated on the heap

« At some point, your object is deallocated (destructed)
— should your object destroy the other objects?

— |t depends on ownership: if your object is owner of the other
objects, then it is responsible for destruction

81

Example

* Here the caller of the function is responsible for
deleting the string:

ft”r‘g “getNewName() Inside the function call, the
string "t = new string(...) function is the owner
return t After the return, the main

} function becomes the owner

i{”t main(Ownership is very important in
string *s = getNewName(); order to avoid memory leaks
a-élete S;

}

82

See owner/

* Notice that compiler does not know anything
about ownership!
— It's the logic of the program that says who is the
owner of the object each time
« The general rule that | apply is

— If an object creates another object, he is responsible
for destruction

— of course there are zillion of exceptions to this rule...

— pay attention to ownership!!
83

Inlines

« Performance is important

— if C++ programs were not fast, probably nobody
would use it (too complex!)

— Instead, by knowing C++ mechanisms in depth, it is
possible to optimize a lot

— One possible optimizing feature is inline function

84

Complex inlines

class Complex {

double real_;
double imaginary_;

public:
Complex(); /I default constructor
Complex(const Complex& c); Il copy constructor
Complex(double a, double b =0); // constructor
~Complex(); Il destructor

inline double real() const {return real_;}

inline double imaginary() const {return imaginary;}

inline double module() const {return real_*real_ + imaginary_*imaginary_;}
Complex& operator =(const Complex& a); /| assignment operator
Complex& operator+=(const Complex& a); // sum operator

Complex& operator-=(const Complex& a)); // sub operator

85

What is inlining

« when the compiler sees inline, tries to substitute the
function call with the actual code

— in the complex class, the compiler substitute a function call
like real() with the member variable real

Complex ¢1(2,3), c2(3,4), ¢3;
/ substituted by
cout <</¢1.real() << "\n” cl.real_
we save a function call!
in C this was done through macros
macros are quite bad. Better to use the inlining!

again, the compiler is much better than the pre-
compiler

86

Inline

 Of course, inline function must be defined in the
header file

— otherwise the compiler cannot see them and cannot
make the substitution

— sometime the compiler refuses to make inline
functions

87

Excessive use of inlines

* People tend to use inlines a lot

— first, by using inline you expose implementation
details

— second, you clog the interface that becomes less
readable

— Finally, listen to what D.Knuth said:
“Premature optimization
Is the source of all evil”

So, first design and program, then test, then optimize

and test again
88

Operator overloading

 After all, an operator is like a function
— binary operator: takes two arguments
— unary operator: takes one argument
« The syntax is the following:
— Complex &operator+=(const Complex &c);

« Of course, if we apply operators to predefined types, the
compiler does not insert a function call

inta=0; Complex a = 0;

at+=4, a+=9;

89

To be member or not to be...

* In general, operators that modify the object (like ++, +=,
--, etc...) should be member

« Operators that do not modify the object (like +, -, etc,)
should not be member, but friend functions

« Let's write operator+ for complex (see complex/)

* Not all operators can be overloaded

— we cannot “invent” new operators, we can only overload
existing ones

— we cannot change number of arguments
— we cannot change precedence

— . (dot) cannot be overloaded 90

Strange operators

 You can overload

— new and delete

 used to build custom memory allocate strategies

— operator|]

 for example, in vector<>...

— operator,

 not very useful, it’s there for consistency. You can write
funny programs!

— operator->

- used to make smart pointers!! 91

How to overload operator []

* the prototype Is the following:

class A {

pu.tl)llic:
A& operatorf](int index);
5

exercise: add operator [] to you List class
the operator must never go out of range

92

How to overload new and delete

« This is the way to do it:

class A {

public:
void* operator new(size_t size);
void operator delete(void *);

¥

You can also overload the global version of new and
delete

93

How to overload * and ->

« This is the prototype

class lter {

oublic:
Obj operator*() const;
Obj *operator->() const;

b

Why should | overload operator*() ?
to implement iterators!

Why should | overload operator->() ?

to implement smart pointers

94

Example

« A simple iterator for stack

— It is a forward iterator

95

Exercise

 Build a lterator class for your list of strings

— You can define an object of type lterator, that can
point to objects inside the List container

— Write operator++() the lterator

— Write operator” for Iterator that de-reference the
pointed object;

— Compare your implementation with the list<>
container of the std library

— Try to call foreach() on your container. What

happens? o

A more complex exercise

« Define a SmartPointer for objects of class A

— This pointer must always be initialized

— When no object points to the object, the object is

automatically destroyed

classA{... };
class SSP{ ... };

SSP p1 = A::getNew(); // p1 points to a new obj

SSP p2 = pf1; /I p1 and p2 point to obj
p1=0; Il only p2 points to obj
p2 =0; /] destroy the object

Hint:
you should create a
static repository...

This will become a

template soon! .

