Scuola Superiore Sant’Anna

?etis

Real-Time System Laboratory

Advanced Course on C++
11

Giuseppe Lipari

Inheritance

Are you ready for object oriented
programming?

So far, we were kidding...

Code re-use

e In C++ (like in all OO programming), one of the
goals is to re-use existing code

« There are two ways of accomplishing this goal:
composition and inheritance

— Composition consists defining the object to reuse
iInside the new object

— Composition can also expressed by relating different
objects with pointers each other

— Inheritance consists in enhancing an existing class
with new more specific code

— Until now you've seen only composition

Inheritance syntax

« The syntax is the following:

B is derived
from A
class A { class B : public A {
inti; inti; W Constructor
protected: public: —
nt B() - ATI0) ﬂ inherited
public: ~B() {} 1 mermber
A() :1(0),j(0) {}; void set(int a) {j = a; i+= j}
~A() {}; int g() const {return i;}
int get() const {return i;} 3
int f() const {return j;}
b

Inheritance

« Now we can use B as a special version of A

int main()

{
B b:

cout << b.get() << “\n”; I calls A::get();

b.set(10);
cout << b.g() <<“\n’

A *a = &b; /I Automatic type conversion

Constructor call order

o See ord-constr/

« Watch out for the order in which things are done
Inside a constructor...

« Of course, destructors are called in reverse
order...

Redefinition and name hiding

. Of course, we can re-define some function

member

class A { class B : public A { int main()
inti; inti: {

protected: public: B b;
int j; B() : A(), i(0) {

public: ~B() {}; cout << b.get() << “\n”;
A() :1(0),j(0) {}; int get() const {return i;} b.set(10);
~A() {}; void set(int a) {j = a; i+=j} cout << b.f() << “\n’”
int get() const {return i;} int f() const {return i;}]
int f() const {return j;} >

¥

Overloading and hiding

« There is no overloading across classes

class A{ i{nt main() ﬁ A::f() has been

hidden by B::f
oublic: B b: / dden by B:f)
int f(int, double); b.f(2,3.0); ~// ERROR!

))

GassBpBICAl ither you redefine exactly the base

oublic: version:
} void f(double); or you will hide all the base members
with the same name

Scoping

« Suppose that B refines function f()
— B::f() wants to invoke A::f()

class A { class B : public A { We must use the scope
public: public: resolution

int f(int i); int f(int i) { return AZf(I) + 1;}
; };

Not everything is inherited

o Constructors and similar are not inherited
— constructors
— assignment operator

— destructor

« Default constructor, copy constructor and
assignment are automatically synthesized, if the
programmer does not provide its own
— when writing these functions, remember to call

corresponding function in the base class!

Example

« Wherever you can use

class A {
inti A, you can use B...
public:
AGnt ii) : i(ii) §: — an object of class B isA
A(const A&a) :i(a.i) {}
A &operator=(const A&a) {i = a.i;} subtype of A
?

— This is called up-casting

class B : public A {
int j;

public: :
. L Notice how
B(int ii) : A(ii), j(ii+1) {}; .
B(const B& b) : A(b),W/I IS WorS-

B &operator=(const B& b) {
A:.operator=(b); j = b;
}

¥

Graphical representation

« The term upcasting is used because of the way
iInheritance is often represented

| : void;

A Base class

+ () : void

A Derived class

j : void;

+g() : int

This is UML

If we have a
reference to B, we
can cast implicitly to
a reference to A

a reference to A
cannot be cast
implicitly to B
(downcast)

Upcasting and downcasting

« Upcasting is a fundamental activity in OO
programming (and it is safe)

« Downcasting is not safe at all, so the compiler
will issue an error when you try to implicitly
downcast

« To better understand upcasting, we need to
introduce virtual functions

Virtual functions

« Let’s introduce virtual functions with an example

Shape
X,y . int;
+draw() : void
Circle Rect Triangle
intr:int; inta,b:int; inta,b : int;

+ draw() : void +draw() : void +draw() : void

We would like to collect shapes

« Let’'s make a vector of shapes

vector<Shapes *> shapes;
shapes.push_back(new Circle(2,3,10));
shapes.push_back(new Rect(10,10,5,4));
shapes.push_back(new Triangle(0,0,3,2));

/I now we want to draw all the shapes...

for (int i=0; i<3; ++i) shapes|[i]->draw();

We would like that the
right draw function is
called

However, the problem
is that Shapes::draw()
IS called

The solution is to make
draw virtual

Virtual functions

class Shape { class Circle : public Shape {

protected: int rr;
int xx,yy; public:

public: Circle(int x,y,int r);
Shape(int x,y); virtual void draw();
void move(int x,int y); virtual void resize(int scale);
virtual void draw(); virtual void rotate(int degree);
virtual void resize(int scale); }
virtual void rotate(int degree);

)

« move() is a regular function

« draw(), resize() and rotate() are virtual
« see shapes/

Virtual table

« When you put the virtual keyword before a
function declaration, the compiler builds a vtable
for each class

void draw()
Circle / void resize(int)
vptr —| void rotate(int)
void draw()
Rect / void resize(int)
vptr —| void rotate(int)
. void draw()
Triangle / void resize(int)
vptr —| void rotate(int)

Calling a virtual function

« When the compiler sees a call to a virtual
function, it performs a late binding, or dynamic
binding

— each class derived from Shape has a vptr as first
element. It is like a hidden member variable

« S0, the virtual function call is translated into
— get the vptr
— move to the right position into the vtable

— call the function

Equivalent in C

 |tis easy to replicate this behaviorin C
— It suffices to use array of pointers to functions
— However, in C this has to be done explicitly
— It is not nice code, it is error-prone
e In C++, it is automatic!
— It is quite efficient,

- if you look at the generated assembler code, it is just two
assembler instructions more than a regular function
call

— let’s go back to upcasting and downcasting

Examples

« See shapes/

« See virtual/

When inheritance is used

e Inheritance should be used when we have a isA
relation between objects

— you can say that a circle is a kind of shape

— you can say that a rect is a shape

« What if the derived class contains some special
function that is useful only for that class?

— Suppose that we need to compute the diagonal of a
rectangle

ISA VS. ISLikeA

o |f we put function diagonal() only in Rect, we
cannot call it with a pointer to shape

— In fact, diagonal() is not part of the interface of shape

o If we put function diagonal() in Shape, it is
inherited by Triangle and Circle

— diagonal() does not make sense for a Circle... we
should raise an error when diagonal is called on a
Circle

« \What to do?

The fat-interface

« one solution is to put the function in the Shape
interface

— it will return an error for the other classes like
Triangle and Circle

« another solution is to put it only in Rect and then
make a downcasting when necessary

— see diagonal/ for the two solutions

« This is a problem of inheritance! Anyway, the
second one it probably better

Overloading and overriding

« When you override a virtual function you cannot
change the return value

— when the function is not virtual, you can do it!!
« There is an exception to the previous rule:

— If the base class virtual method returns a pointer or a
reference to an object of the base class...

— ... the derived class can change the return value to a
pointer or reference of the derived class

Overload and override

« An example

class A {
public:
virtual A& f();
int g();
}

class B: public A {
public:
virtual B& f();
double g();

5

Private inheritance

« A base class can be inherited as private,
iInstead of public:

class A {

protected:
void f();

public:

int g();

¥

class B : public A {
public:

int h();

}

class C : private A {
public:

int h();

}

int main() {

B b1;

b1.f(); //NO
b1.9(); //OK

}

int main() {
Ccf;

c1.f(); //NO
cl.g(); //NO

}

Destructors

« What happens if we try to destruct an object
through a pointer to the base class?

class A { class B : public A {
public: public:
A(); B();
~A(); ~B();
))
int main() {
A*p;
P = new B;
a'é’lete p;
}

Virtual destructor

« In this case, we have to declare a virtual
destructor

— If the destructors are virtual, they are called in the
correct order

« Never call a virtual function inside a destructor!

Restrictions

« You can not call a virtual function inside a
constructor

— In fact, in the constructor, the object is only half-built,
SO you could end up making a wrong thing

— during construction, the object is not yet ready! The
constructor should only build the object
« Same thing for the destructor

— during destruction, the object is half destroyed, so
you will probably call the wrong function

Restrictions

« Example

class Base {

public:

Base(const string &n) : name(n) {} /

3

string name;

virtual string getName() { return name;
virtual ~Base() { cout << getName() << “\n”;}

class Derived : public Base {
string name2;
public:
Derived(const string &n) : Base(n), name(n + “2”) {}
virtual string getName() {return name2;}
virtual ~Derived() {}

)

which function is
called? Suppose
we are destroying a
object of Derived

An exercise on inheritance

« You have to build a list of shapes;
— every shape has a position, a name, and a dimension
— you can add a circle, a rectangle or a triangle
— Re-use your List container!
« The user can
— ask to add a shape, or remove a shape;

— Ask for info on a particular shape

* name, position, area, dimensions

— Operate a transformation on a shape

31

Exercise

« Re-write the SmartPointer, for dealing with
inheritance

32

Multiple inheritance

o A class can be derived from 2 or more base classes

A B
+f() : void +g() : void
/\ /\
C
+h() : void

C inherits the members of A and B

Multiple inheritance

« Syntax
class C : public A, public B class A { class B {
{ public: public:
void f(); void f();
}; }; It

If both A and B define two functions with the same
name, there is an ambiguity
it can be solved with the scope operator

Cc1;

c1.A:f();
c1.B::f();

class A{...};

class B : public A{...};

class C : public A{...};

class D : public B, public C{...};

With public inheritance
the base class is
duplicated

If we want only one base
class (diamond), we have
to specify virtual

Virtual base class

[

35

Virtual base class

class A{...}; A

class B : virtual public A{...}; /\
class C : virtual public A{...};
class D : public B, public C{...};

With virtual public

Inheritance the base
class is inherited only A
once

36

The diamond problem

. |f the base class calls a virtual function, this
function must be “finalized” in the last derived
class

— otherwise the compiler will raise an error

— see multiple-inheritance/

37

