Introduction to C++

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

April 27, 2009

Course content

This course will cover advanced programming concepts with
C/C++ language. It is divided in three parts:

@ Part 1:

@ Intro to programming and software engineering
@ Recollection of C++ basics

o Classes, Inheritance

o Templates

@ The Standard Templates Library

@ Part 2: Patterns

@ Basic Patterns

@ Singleton, Composite

@ Abstract factory, Prototype, Builder
@ Visitor, Adaptor, Observer

@ Parte 3: Advanced Libraries and tools

@ Overview of the Boost Library
@ Unit testing with CPPUNIT

@ Autotools

@ Metaprogramming techniques


http://retis.sssup.it/~lipari

Books and material

@ Books on C++

@ Stroustup (Language reference)
@ Bruce Eckel (Basic of C++)
@ Exceptional C++ (Tips and Tricks)
@ Modern C++ programming

@ Books on patterns

@ Design Patterns
@ Extreme Programming

@ Web resources

@ STL reference
@ Boost library
@ Guru of the week

@ Slides

@ Part of the slides are courtesy of Alex Liu (Associate
Professor at Michigan State University MSU)

al exliu@s. nsu. edu

Exam

@ The class can bedivided in groups of 2-3 students each

@ During the course, | will give some assignments. The
assignment can be done (at least partially) during the lab

lectures.

@ The assignments may be fragments (i.e. modules, classes)
where | will ask you to apply some of the techniques

studied during the course

@ At the end, each group will produce a part of a program,
and we will try to integrate everything to realize one single

program.
@ Grading:

@ 50% will be on the intermediate assignments

@ 40% on the final project
@ 10% will be on the integration


alexliu@cs.msu.edu

How to become a good software designer

@ How to become a software design master?
o Engineering approach
@ Lot of experience

@ Learning to develop good software is similar to learning to
play good chess

How to become a chess master

@ First, learn the rules

@ e.g., names of pieces, legal movements,
captures, board geometry, etc.

@ Second, learn the principles

@ e.g., relative value of certain pieces,
power of a threat, etc.

@ But principles are abstract. How to apply
them in practice?

@ Third, learn the patterns by studying
games of other masters

@ These games have certain patterns that
must be understood, memorized, and
applied repeatedly until they become
second nature.



To become a software design master

@ First, learn the rules
@ e.g., programming languages, data structures, etc.

@ Second, learn the principles
@ e.g., software engineering principles such as separation of
concerns, etc.
@ But principles are abstract. How to apply them in practice?
@ Third, learn the patterns by studying designs of other

masters
@ These designs have certain patterns that must be
understood, memorized, and applied repeatedly until they
become second nature.

Organization of the course

@ Review of C++ syntax (learn the rules)

@ C++ programming techniques and Software Tools (learn
the principles)

@ Object Oriented Design Patterns (learn the patterns)



	Summary of the course

