
Introduction to C++

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

April 27, 2009

Course content
This course will cover advanced programming concepts with
C/C++ language. It is divided in three parts:

Part 1:
Intro to programming and software engineering
Recollection of C++ basics
Classes, Inheritance
Templates
The Standard Templates Library

Part 2: Patterns
Basic Patterns
Singleton, Composite
Abstract factory, Prototype, Builder
Visitor, Adaptor, Observer

Parte 3: Advanced Libraries and tools
Overview of the Boost Library
Unit testing with CPPUNIT
Autotools
Metaprogramming techniques

http://retis.sssup.it/~lipari


Books and material

Books on C++
Stroustup (Language reference)
Bruce Eckel (Basic of C++)
Exceptional C++ (Tips and Tricks)
Modern C++ programming

Books on patterns
Design Patterns
Extreme Programming

Web resources
STL reference
Boost library
Guru of the week

Slides
Part of the slides are courtesy of Alex Liu (Associate
Professor at Michigan State University MSU)
alexliu@cs.msu.edu

Exam

The class can bedivided in groups of 2-3 students each

During the course, I will give some assignments. The
assignment can be done (at least partially) during the lab
lectures.

The assignments may be fragments (i.e. modules, classes)
where I will ask you to apply some of the techniques
studied during the course

At the end, each group will produce a part of a program,
and we will try to integrate everything to realize one single
program.
Grading:

50% will be on the intermediate assignments
40% on the final project
10% will be on the integration

alexliu@cs.msu.edu


How to become a good software designer

How to become a software design master?
Engineering approach
Lot of experience

Learning to develop good software is similar to learning to
play good chess

How to become a chess master

First, learn the rules
e.g., names of pieces, legal movements,
captures, board geometry, etc.

Second, learn the principles
e.g., relative value of certain pieces,
power of a threat, etc.
But principles are abstract. How to apply
them in practice?

Third, learn the patterns by studying
games of other masters

These games have certain patterns that
must be understood, memorized, and
applied repeatedly until they become
second nature.



To become a software design master

First, learn the rules
e.g., programming languages, data structures, etc.

Second, learn the principles
e.g., software engineering principles such as separation of
concerns, etc.
But principles are abstract. How to apply them in practice?

Third, learn the patterns by studying designs of other
masters

These designs have certain patterns that must be
understood, memorized, and applied repeatedly until they
become second nature.

Organization of the course

Review of C++ syntax (learn the rules)

C++ programming techniques and Software Tools (learn
the principles)

Object Oriented Design Patterns (learn the patterns)


	Summary of the course

