Scuola Superiore Sant’/Anna

?etis

Real-Time System Laboratory

Advanced course on C++

Giuseppe Lipari

Scuola Superiore S. Anna

Introduction

Perfection is achieved
only on the point of
collapse

- C. N. Parkinson

What is C++

« A programming language, built on top of C
* It provides:

— object oriented programming

— generic programming
 ltis very different from C !

— Strongly typed

— Very powerful (sometimes too much)

Features

« C++ is an extensible language
* The user can define

— new types (classes)

— generalizations (with templates)
« The user can also re-define

— operators

— memory allocation strategies

— ... and many more features

Complexity

« C++ is a complex language
— It Is considered a difficult language

— It takes years of experience to be able to manage
all the different aspects of the language

« Don’t be scared!

— You don’t need to know every aspect of C++ to be
able to start programming

— You will probably never use some aspect of the
language

— | like C++ because it is challenging!!

Advices

« Focus on concepts; do not get lost in technical
detalils.

* You don’t have to know every detail of C++ to write
good programs.

* Never say “l| know C++ perfectly”; there is always
something to learn.

From C to C++

“Don’t reinvent the wheel:
use libraries”

- B. Stroustrup

Declarations and definitions

» A declaration introduces the name and the type of an
“entity” to the compiler
int func(int a); // function declaration (prototype)

— a declaration does not imply a memory allocation

* A definition says to the compiler: here is the entity
int func(int a)

{

return a+1;

}

— a definition implies a memory allocation

Declarations and definitions

« Sometimes a declaration can also be a definition

* It happens with variables
extern int a; // declaration
int a; // definition and declaration

 InC/C++ extern means “this is just a declaration and

not a definition

* For functions, extern is not needed

Functions

« Syntax
ret_type fun_name(argl _type argl _name,
arg2_type arg2_name, ...);
« Warning:
int f();
In C, itmeans -> intf(int arg);
in C++, it means -> int f(void);

« The return type is always mandatory!

10

Function declaration

 Function declaration is not essential in C.

— ltis possible in C to call a non-declared function. The
compiler will “guess” the prototype

— However, if the compiler make a wrong guess, only
the linker can find the problem, maybe!!

— Functions should always be declared in C!

 Function declaration is essential in C++

— Using a non-declared function is a compiler error

11

Translation unit

« Each separate .c or .cpp file is a translation unit

— It means that it is compiled separately from the other
files to produce an object file (.o or .obj)

« S0, whatever you declare in a .c or .cpp file is not visible
to the compiler when it compiles other .c or .cpp files

» The linker will then put together all object files for
making the executable

— If there are inconsistencies, the linker can find them

12

Problems with C

* As said, in C function declaration can be omitted

int a; void func(double) {
int b;
}
b = func(a);
file2.c
The compiler produces code for a
function
filel.c void func(double)
The compiler guesses it does not know that another module
that there must be a function will call a function
int func(int); int func(int)

The linker is not able to find out this problem
This is a subtle error!

13

Header files

 All declarations related to a certain part of a program
(module) are often collected in header files

— Header files define the interface of a module
— Especially useful for libraries

— They are used with the #include < > directive

#include <stdlib.h>

#include “mymodule.h”

14

Using header files

 Headers are a way to ensure consistency in the
declarations

* They also facilitate the documentation of a module, by
collecting all interface definition in a single file

15

Variables in C++

« In C, variables must be defined global or at the
beginning of a function definition

ned pvprvwh ere

* In C++ they can be defil
{

double f(double b)
int i,j,k=0;

for (i=0; i<100; ++i) {
j=1i"4-1;
if (j%i==31)k=
}

return k * b;

i+;

double f(double b) {
int k=0;

for (inti=0; i<100; ++i) {
intj=i"4-1;
if (j %i==2381)K=i+j;
}
// we cannot use i or | here
return k * b;

16

Scope

« The scope of an object is the piece of program between
its declaration and the end of the block where the

declarationis done
int x; // global x
void f() {
int x; // local x
X=1; // assign to local x
{
int x; // another x
X =2; // assign to second local x
}
X = 3; // assign to first local x
X =4; // assign to global x
} 17

Boolean values

* In C, every expression that evaluates to 0 is considered
false, every other expression is considered true

* In C++, there is a Boolean type and two Boolean
constants:

bool var;
var = true;

if (var == false)
if (lvar) ...

18

Pointers

* A pointeris a variable that holds a memory address

« Pointers have type:

int *p; // pointer to integer
double *p2; // pointer to double
struct data *p3; // pointer to structure

We can obtain the address of a variable using &var;
We can obtain the value of the memory location pointed by a
pointer with *p;

inta = 5;
int *p = &a;

cout << “a ="“<<a<<endl;
cout << “*p = “ << *p << end|;

19

Array

* An array is a set of consecutive locations in memory

int arrayOfint[10]; // 10 integers (from 0 to 9)
double arrayOfDouble[25]; // 25 doubles (from 0 to 24)
struct MyData {

int a;

int b;
} arrayOfStruct[50]; // 50 structs (from 0 to 49)

for (int i=0; i<10; ++i)
arrayOfInt[i] = i*2;

cout << arrayOfStruct[7].a << “ - “ << arrayOfStruct[7].b << endl;

20

Array I

* The size of the array must be a constant expression

void f(int i)

{
int v[i]; // this is an error!!
vector<int> v(i) // ok

}

int vi[] = {1,2,3,4};

| | Array initializer
char v2[] = “Ciao ragazzi!”;

char v2|
v2 =“Ciaor

No assignment!

Array and pointers

« The name of an array can be used like a constant

pointer

void funi(int *a);
void fun2(int a[]);

equivalent declarations

arrayOfDouble[5];
*(arrayOfDouble + 5);

equivalent expressions

int *p = &arrayOfInt[0];

for (inti=0; i<10; ++i, ++p)
cout << *p << endl;

another way of going through an
array

22

Pointers |l

Pointers can be incremented/decremented. The number
of location a pointer is incremented by depends on the
pointer type

int *p; // pointer to integer
double *p2; // pointer to double
MyData *p3; // pointer to structure

P++; // incremented by sizeof(int)
P2 += 2; // incremented by 2*sizeof(double)
p3--; // decremented by sizeof(MyData);

23

Structs

A structure is a collection of variables

struct Entry {
string name;
string surname;
int phone_number;
string address;

b

Entry phone_book[1000];

There is a big difference btw C and C++ structs

iIn C++ structs can also contain functions and
operators. They are almost like classes

24

Structs

 To indicate a variable inside a struct, we use the .

Entry entry;

entry.name = “Giuseppe”;
entry.surname = “Lipari”;
entry.number = 1234;
entry.address = “Via Carducci, 407;

phone_book[12] = entry;
We can also initialize a struct with {}

Entry entry = {“Giuseppe”, “Lipari’, 1234, “Via Carducci, 407};

25

Re-declaration

 |In C and C++, it is not allowed to declare a structure
(and a class in C++) more than once

— however, it is possible to declare functions more than
once, if they match

* In a complicated program, however, it can happen that a
header file is included twice

— S0, unexpectedly, a struct can be declared twice

« To avoid this problem, programmers use guards

26

Header file guards

« Suppose we have a myheader.h file:

#ifndef _ MYHEADER_H__
#define_ MYHEADER_H_

. /] declarations here

#endif

This technique is also called conditional
inclusion

Pointers to structs

* To reference a variable inside a struct with a pointer to
the struct, use operator ->

Entry *p;
p = &phone_book[0];

for (int i=0; i<50; ++i,++p)
cout << p->name << “ - “ << p->surname << endl;

28

Passing parameters to functions

« In C, we can pass parameters by value or by pointer

void my_func(int a, int *b)
{
a +=95;

*b = a+1;

}

| is passed by value: it is not :::J' - 2
modified by my_func |

| IS passed by pointer: it is my_func(i, &);

modified by my_func

References

* In C++, there is another way of referencing variables

void my_func(int a, int &b)
{
a+=>5;

b =a+1;

}

| is passed by value: it is not
modified by my_func
j iIs passed by reference: it is
modified by my_func

notice how b is declared !

inti=2;
intj = 3;
my_func(i, j);

30

References

* A reference is an alternative void f (
name for an object {
inti=1;
— Another definition: a pointer int & = i;
that is automatically de- ntx=r - /inowx=1;
r=2; /[nowi=1;
referenced }
inti=1; A f |
nt&rt —i ok reference must always be
int &r2; // wrong !!! initialized!

r1 ++; //now i =2

A reference is not a pointer!

31

References vs. pointers

Pointers are more general

— References have a clear syntax
It is possible to have pointers to void: void *p

— It is not possible to have references to void
It is possible to do pointer arithmetic

— No reference arithmetic

Try to use references whenever you can!

32

References vs. Pointers |l

« Another difference: structs (and classes)

void my_func(struct data *pd){
pd->a = pd->b / 2;
pd->b = pd->a + 10;

}

passing by reference (C++-
style)

passing by pointer (C
style)

void my_func(struct data &rd)

{
rd.a=rd.b/2;
rd.b=rd.a+ 10;

}

33

Pointers to functions

« The portion of memory where the code of a function
resides has an address;

« we can define a pointer to this address:

void (*funcPtr)();
int (*anotherPtr)(int)

// pointer to void f();
// pointer to int f(int a);

Assigning

void f(){...};

funcPtr = &f(); // now funcPtr points to f()

(*funcPtr)();

invoking

34

Arrays of function pointers

 ltis also possible to define arrays of pointers to
functions:

void f1(int a) {...}
void f2(int a) {...}
void f3(int a) {...}
;/-(.)id (*funcTable []) (int) = {f1, {2, {3}

1.‘;).r (inti =0; i<3; ++i) (*funcTable[i])(i + 5);

35

Constants

« Constantsin C #define Pl 3.14159

There is no type checking!

Constants in C++ const double pi = 3.14159;

In C++ constis a type modifier

It is not only a directive, but “modifies” the meaning of
the type, by saying “this cannot be changed”

A const must always have an initial value! "

Using const

« constis often used when passing a parameter by

reference,;
int f(const MyClass &p);

It means: variable p will not be modified by this function

— In fact, passing a parameter by reference does not mean
automatically that we want to modify it! Maybe we want
just to save time and space...

— There is no way to understand from the prototype if the
function will modify the parameter or not, unless we use
const. So, you should always use const if the function
does not modify the parameter! 37

Casting

« Sometime we want to assign a variable of type T a value
of another type

inta =4;

double ¢ = 3.5;

a=c; //implicit casting now a = 3; compiler issues a warning
c=a; //implicit casting now c = 3.0; compiler does not warn

boolb =(a<c); //nocastinginvolved

int b1 = (a==c); //implicit casting compiler does not warn

38

Explicit cast

« We can force an explicit cast with the () operator

inta=4;

double ¢ = 3.5;

a = (double) c; /I G style no compiler warning
a = double(c); // C++ style no compiler warning

Cast between pointers:

struct MyData {
double a, b;

3

MyData data;
void *p = &data; /[implicit casting no compiler warning

Casting

« Casting is dangerous

struct MyData {
double a;
double b;

};

void *m = malloc(10);

MyData *p = (MyData *) m; // explicit cast
// this is an error! m points to a memory buffer of 10 bytes;
// p points to a data structure of 16 bytes!
// soon, a segmentation fault...

There is no way for the compiler to check this problem

40

C++ cast operators

« static_cast<>

— It Is analogous to the old cast; it is easier to find in a
program. For “safe” casts.

e const_cast<>
— to get rid of the const type modifier
* reinterpret_cast<>

— to cast to a completely different meaning; very
dangerous!

* dynamic_cast<>

— for type safe downcasting 41

A tour of the standard library

“No significant program is written in just a bare
programming language.

First a set of supporting libraries are developed.
These then form the basis for further work”

- B. Stroustrup

42

Introduction

 Here we introduce the basic classes of the C++ std
library

* You will need them when writing your programs and
exercise

« Don'’t panic: you don’t need to understand how these
objects are implemented, but only how they can be used

43

A few words on hamespaces

* In C, there is the name-clashing problem
— cannot declare two entities with the same name

« One way to solve this problem in C++ is to use
namespaces

— A name space is a collection of declarations

— We can declare two entities with the same name in
different namespaces

— All the standard library declarations are inside
namespace std;

44

Using entities inside namespaces

« There are two ways:

— Using the scope resolution operator ::

— the using namespace xx directive

std::string a;

mylib::string b;

// declaring an object of type
// string from the std namespace

// declaring an object of type
// string from the mylib namespace

using namespace std; // from now on use std

string a; // declaring an object of type
// string from the std namespace

45

Basic input/output

#include <iostream>
int main()

{

std::cout << “Hello world!”;

}

Basic |I/O function are declared within iostream

cout is the standard output stream

std::cout means that the cout object is contained in a

namespace called stad.::
all the std library is contained in std

we can also use the using directive

46

Basic I/O

#include <iostream>
using namespace std;
int main()

{

cout << “Hello world\n”;

}

« operator << sends its right part to the stream to the left

* it can send many kinds of variables or constants:
int age = 30;

cout << “l am “ << age << “ years old\n”;

47

Basic I/O

#include <iostream>
using namespace std;
int main()
{
int age;
cout << “Enter your age:”;
cin >> age;
cout << “Next year your age will be “ << (age + 1) << “\n”;

}

« cinis used for input;

« operator >> can read many kinds of variables;

48

Strings

 the std library provides a string type

#include <string>
using namespace std;
int main()

{
string s1 = “Hello”;
string s2 = “world”;

strings3 =s1 + ““ +s2;

cout << 83 << “\n™;

}

void respond(const string &answer)
{
if (answer == “yes”) {...}
else if (answer == “no”) {...}
else cout << “Please answer y/n\n”;

49

Strings

« Some useful function with strings:

string name = “Giuseppe Lipari”;

void substitute() {
string s = name.substr(9,6);

}

name.replace(0,8, “Roberto”); // name becomes “Roberto Lipari”

cout << name[0] << name[1] << hame[2] << “\n”;

// prints “Rob”

void f() {
printf(“name : %s\n”, name.c_str());

50

String can be
compared with std
operators;

The order is
alphabetical

Strings

string b = “Gianni”;
string ¢ = “Gianni”;

void cmp(const string &s1, const string &s2) {
cout << s1;
if (51 ==s2) cout << “ ==
else if (s1 < s2) cout << “<
else cout << “ >
cout << s2 << “\n”;

cmp(a,b); // prints “Peppe > Gianni”
cmp(b,c); // prints “Gianni == Gianni”
cmp(c,a); //prints “Gianni < Peppe”

51

 reading a word

« reading the entire line

Input/Output and strings

int main () {
string str;
cout << “please, enter your name 7;
cin >> str;
cout << “Hello “ << str << “\n”;

int main () {
string str;
cout << “please, enter your name 7;
getline(cin, str);
cout << “Hello “ << str << “N\n”;

52

Files

* An input file can be opened with ifstream
 then, it can be used as cin

* For output file, use ofstream, that can be used as cout

int main () {
ifstream in(“input.txt”);
ofstream out(“output.txt”);

string str;
while (in >> str) out << str;

}

53

Containers: vector

« sometimes we do not know how many element an array

will contain
struct Entry {

string name;
int number;

3

Entry phone_book[1000];

void print_entry(int i) {
cout << phone_book]i].name << ‘ * <<phone_book[i].number << “\n”;

}

what if phone_book overflows?
54

Containers: vector

* we can use the vector<Entry> container

struct Entry {
string name;
int number;

b
vector<Entry> phone_book(10); //initially, only 10 elements
void print_entry(int i) {

cout << phone_book][i].name << ‘ * << phone_book[i].number << “\n”;

void add_entry(const Entry &e) {
phone book.push_back(e); // after 10 elements, expands automatically

(€]
(@]

Containers: vector

What is the push_back() function?

— inserts a new element at the end of the vector. If there is not

enough space, the vector is enlarged

How can we know the actual number of elements?

— using the size() function

void add_entry(const Entry &e) {
phone_book.push_back(e); // expands automatically
cout << “Now the numer of elements is “ << phone_book.size() << “\n”;

}

56

Containers: vector

« for efficiency reasons, operator [] is not checked for out-
of-range

* however, we can use the function at() instead of []

// this causes a segmentation fault if i is out of range
void print_entry(int i) {
cout << phone_book][i].name << ‘ * << phone_book[i].number << “\n”;

// this throws an out_of range exception
void print_entry_with_exc(int i) {
cout << phone_book.at(i).name << * * << phone_book.at(i).number <<
“\n”;
} 57

First example

» We will write a program that:
— reads a file line by line
— stores each line in a vector;

— outputs the file upside/down (from the last line to the
first) into another file

58

« A program can read
the command line
through its main
function

$> Jargs joe 5.0 12 india
Num of args: 5

Jargs

joe

5.0

12

india

Reading the command line

int main(int argc, char* argv(])

{

cout << “Num of args: " << argc << “\n”;
for (int i =0; i<argc; ++i)
cout << argv[i] << “\n’;

}

argc contains the number of args+ 1

argv[i] contains the i-th argument

argv|[0] is always equal to the name

of the program

59

Now the code...

#include <iostream>
#include <fstream>
#include <string>
#include <vector>

using namespace std;

int main(int argc, char *argv(])
{
if (argc < 3) {
cout << "Usage: ";
cout << argv[0] << " <input file> <output_file>" << endl;
exit(-1);
}
ifstream in(argv[1]);
ofstream out(argv[2]);

60

Now the code...

vector<string> lines;

string str;
while (getline(in, str)) lines.push_back(str);

int n = lines.size();
cout << "The size of the input file is " << n << " lines\n";
for (inti=n; i > 0; --i)

out << lines[i-1] << endl;

cout << "Done!!" << endl;

61

Containers: map

« what if we want to search the phone_book by name?

* we have to perform a linear search

int get_number(const string &name)
{

for (int i=0; i<phone_book.size(); ++i)
if (phone_book[i].name == name) break;

if (i== phone_book.size()) {
cout << “not found!\n”:
return O;

}

else return phone_book[i].number;

}

62

Containers: map

* Another (more optimized) way is to use map<string, int>

map<string, int> phone_book;

void add_entry(const string &name, int number)

{
phone_book[name] = number;
}
int get_number(const string &name)
{

int n = phone_book[name];
if (n == 0) cout << “not found!\n’;

return n;

}

63

Containers: map

* You can think of map<> as an associative array
— In our example, the index is a string, the content is an
integer
 How map is implemented is not our business!
— Usually implemented as hash tree, or red-black tree
— linear search in a vector is O(n)
— searching a map is O(log(n))

* Very usefull!

64

lterators

« What if we want to print all elements of a map?

« we need an iterator...

map<string, int> phone_book;

void print_all()
{

map<string, int>:iterator i;

for (i = phone_book.begin(); i = phone_book.end(); ++i);
cout << “Name : “ << (") first << “ %
cout << “Number : “ << (*i).second << “\n’;

}

}

What the ?@#$ is an iterator?

« An iterator is an object for dealing with sequence of
objects inside containers

* You can think of it as a special pointer

phone_book.begin(); /] the beginning of the sequence
phone_book.end(); /l the end of the sequence
Abe Dan | Chris | Matt Zoe

A 4
A
A
A 4
A 4

3456 5789 2109 4567 2904

/

phone_book.begin() phone_book. end()

lterators

* Here is how the for() works:

void print_all() {
map<string, int>::iterator i;
for (i = phone_book.begin(); i I= phone_book.end(); ++i);
cout << “Name : “ << (*i).first << * %
cout << “Number : “ << (*i).second << “\n”;

}
)
| \ | \ | \ | \ | \ | \
Abe Dan Chris Matt Zoe

L L L L L

3456 5789 2109 4567 2904

/

phone_book.begin() phone_book. end() 4

lterators

« There are iterators for all containers
— vector, string, list, map, set, etc.
— all support begin() and end()

* lterators are also used for generic algorithms on
containers

— find, foreach, sort, etc.

68

sort()

« Let’'s get back to the vector example

struct Entry {
string name;
int number;

¥

vector<Entry> phone_book(10); //initially, only 10 elements

what if we want to order the entries alphabetically ?
In the old C / C++ programming, we would take a good book of
algorithms (like “The art of computer programming” D. Knuth)
and write perhaps a shell-sort
With the standard library, this has already been done by
someone else and it is fast and optimized; all we have to dgds
to customize the algorithm for our purposes.

sort()

« We have to specify an ordering function
— the algorithm needs to know ifa < b
— We re-use operator < on strings

bool operator <(const Entry &a, const Entry &b)

{
)

return a.name < b.name;

Now we can use the sort algorithm:

template<class Iter> void sort(lter first, lter last);

sort(phone_book.begin(), phone_book.end());

70

The complete program

bool operator < (const Entry &a, const Entry &b) { return a.name < b.name;}

void add_entry(const string &n, int num) {
Entry tmp;
tmp.name = n; tmp.number = num;
phone_book.push_back(tmp);

}

int main() {
add_entry
add_entry

"Lipari Giuseppe", 1234);

"Ancilotti Paolo", 2345);
add_entry("Cecchetti Gabriele", 3456);
add_entry("Domenici Andrea", 4567);
add_entry("Di Natale Marco", 5678);
sort(phone_book.begin(), phone_book.end());

P e

71

Generic algorithms

 sort is an example of generic algorithm

— to order objects, you don'’t really need to know what
Kind of objects they are, nor where they are
contained

— all you need is how they can be compared
— (the < operator)

* S0, to customize the sort algorithm, you have to specify
what does it mean A < B

* You will learn later how to write a generic algorithm, that
does not rely on the type of objects

72

Generic algorithms

« Another example: for_each()

void print_entry(const Entry &e)
{

}

int main(){

cout << e.name << “\t “ << e.number << “\n™

fé)lr_each(phone_book.begin(),phone_bOOK-end(),print_e”trY)i
}

Try to change the container from vector<> to map<>.
The for_each does not need to be changed!
for_each() works as long as it has a couple of iterators

Another example

« Suppose we want to print only the first 5 elements of the
sequence:

for_each(phone_book.begin(),
phone_book.begin()+min(3,phone_book.size()),
print_entry);

It is all that simple!
We will show in the next lessons how it is possible to
combine these objects to do almost everything.

74

Exercises

» Write a program that reads a file line by line, add a line
number at the beginning of each line, and outputs the
results on a new file.

« Write a program that reads a file line by line, reverts
each line and output the results on a new file

« Write a simple phone book program using map<> and
string: it should allow to

— add a new entry,
— look for a number, given a name,
— look for a name given a number.

75

Exercises

» Let us begin to build the first brick of our project: a
simple parser

* The program has data structures (you decide which
type) to hold

— a set of verbs with their past tense: take/taken,
drop/dropped, move/moved, use/used, open, opened, etc.

— a set of objects

« The program reads from the std input a sentence
verb+object and responds with object+past-tense

— If the verb is not found, say “what should | do with the
<object>?”

— If the object is not found, say “l don’t see any <object>"?

— If nothing is found say a random phase like “say it again” of®

€. o e LYY

Makefiles

« When building a large program with several files, we can
use the make utility

— see “Thinking in C++”, page 202

77

