
Software Development Process

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

April 27, 2009

http://retis.sssup.it


Acknoledgements

These slides are an extract of Alex Liu’s slides:

Alex X. Liu
Assistant Professor

Department of Computer Science and Engineering
Michigan State University

East Lansing, MI 48824-1266
http://www.cse.msu.edu/~alexliu/

CSE 335 Software Engineering Course
http://www.cse.msu.edu/~alexliu/courses/335Fall2008/

http://www.cse.msu.edu/~alexliu/
http://www.cse.msu.edu/~alexliu/courses/335Fall2008/


Programming vs. Engineering

Programming

Small project

You

Build what you want

One product

Few sequential
changes

Short-lived

Cheap

Small consequences

Engineering

Huge project

Teams

Build what they want

Family of products

Many Parallel changes

Long-lived

Costly

Large Consequences



Software Engineering

Software engineering is a special type of engineering

Software is extremely complex

Software construction is human-intensive

Software is intangible and invisible

Software is constantly subject to pressures for change

Software needs to conform to arbitrary interfaces and
contexts

E.g., business rules and processes vary dramatically from
business to business
E.g., existing databases of information.



Software development process

The waterfall model is the oldest and most common Software
Development Process



Requirements

Problem Definition→ Requirements Specification
determine exactly what the customer and user want
develop a contract with the customer
specifies what the software product is suppose to do

Difficulties
client asks for wrong product
client is computer/software illiterate
specifications are ambiguous, inconsistent, incomplete



Architecture/Design
Requirements Specification & Architecture/Design

architecture: decompose software into modules with
interfaces
design: develop module specifications (algorithms, data
types)
maintain a record of design decisions and traceability
specifies how the software product is to do its tasks

Difficulties
miscommunication between module designers
design may be inconsistent, incomplete, ambiguous

Architecture vs. Design
Architecture is concerned with the selection of architectural
elements, their interactions, and the constraints on those
elements and their interactions necessary to provide a
framework in which to satisfy the requirements and serve
as a basis for the design.
Design is concerned with the modularization and detailed
interfaces of the design elements, their algorithms and
procedures, and the data types needed to support the
architecture and to satisfy the requirements.



Implementation & Integration

Design→ Implementation
implement modules; verify that they meet their
specifications
combine modules according to the design
specifies how the software product does its tasks

Difficulties
module interaction errors
order of integration may influence quality and productivity



Verification & Validation

Analysis
Static
“Science”
Formal verification
Informal reviews and walkthroughs

Testing
Dynamic
“Engineering”
White box vs. black box
Structural vs. behavioral
Issues of test adequacy



Deployment & Maintenance

Operation→ Change
maintain software during/after user operation
determine whether the product still functions correctly

Difficulties
lack of documentation
personnel turnover



Economic and Management Aspects

Software production = development + maintenance
(evolution)

Maintenance costs > 60% of all development costs
Quicker development is not always preferable

higher up-front costs may defray downstream costs
poorly designed/implemented software is a critical cost
factor



Cost of producing software

The cost is low during the first phases
It increases as the development progresses

making a change at a later phase may be very costly
for example, changing a design decision is critical at the
testing phases
it is important to not be forced to change major portions of
code during testing



Ideal Software Failure Curve



Actual Software Failure Curve



Failures

The failures are due to changes in the software
implementation
Maintainance means

Fix bugs this means write new code that can introduce
other bugs!
Add new features again, this may introduce bugs
Modify/improve existing parts again, this may introduce
bugs

The problem is when you want to introduce new features
that do not fit well with the existing design!



Problems of the Waterfall model

The waterfall model is also called Big Design Up Front
The waterfall model is argued by many to be a bad idea in
practice

too difficult to “get it right” in one single lifecycle without
ever going back
For example, clients may not be aware of exactly what
requirements they want before they see a working
prototype and can comment upon it
Designers may not be aware of future implementation
difficulties when writing a design for an unimplemented
software product.

David Parnas, in “A Rational Design Process: How and
Why to Fake It”, writes:

Many of the [system’s] details only become
known to us as we progress in the [system’s]
implementation. Some of the things that we learn
invalidate our design and we must backtrack.



V-model

The V-model (mostly used in industrial software
development) is similar to the waterfall model



Other models
The spiral model tries to improve over the waterfall model
by introducing iterations



Design

The architecture and design activities are crucial to the
success of the software

A wrong design choice would cause lot of problems in the
implementation
A design too much focused on the current requirements
may preclude future extensions
Bad design is very costly!



Software Engineering principles

Rigor and formality

Separation of concerns

Modularity

Abstraction

Anticipation of change

Generality

Incrementality



Rigor and formality

Software development is a creative design process.
But creativity implies informality, imprecision, and
inaccuracy

Rigor and formality are necessary:
to improve quality and assurance of creative results
to ensure accuracy in defining and understanding problems

Rigor and formality influence reliability and verifiability
Evident in:

Design notations, requirements, specifications, process
definitions



Separation of concerns

We cannot deal with all aspects of a problem
simultaneously
To conquer complexity, we need to separate issues and
tasks

Separate functionality from efficiency
Separate requirements specification from design
Separate responsibilities

Divide conquer
Today’s applications involve interoperability of

Client/Server, Legacy system, COTS, databases, etc.
Multiple programming languages (C, C++, Java, etc.)
Heterogeneous hardware/OS platforms

Separation of Concerns is Critical!



Modularity

A complex system may be divided into simpler pieces
called modules

A system that is composed of modules is called module
Supports separation of concerns

when dealing with a module we can ignore details of other
modules

Three goals with modularity
Decomposability: break problem into small sub-problems
(divide & conquer)
Composability: construct solution from sub-solutions
Understandability: understand system by understanding
sub-systems

Two essential properties
Cohesion: degree to which parts of a module are related
(within a module)
Coupling: amount of interdependence between modules
(among modules)



Abstraction

Identify the important aspects and ignore the details
Supports separation of concerns

Divide & conquer vertically (Modularity: divide & conquer
horizontally)

Abstractions dominate computing
Design Models (ER, UML etc )
Programming Languages (C, C++, Java, etc.)



Anticipation of change

Software changes and evolves throughout all stages from
specification onward

Changes are inevitable
Requirement changes
Programmer changes
Technology changes

Anticipation of change supports software evolution
Separation of concerns
Modularization: encapsulate areas for potential changes



Generality

When given a specific problem, try to discover if it is an
instance of a more general problem whose solution can be
reused in other cases

Supermarket System vs. Inventory Control
Hospital Application vs. Health Care Product
C++ template (link list of integers, link list of floats, . . . )

Reuse: adapt general solution to specific problem
Inventory Control for Supermarket, Auto Parts, Video Tape
Rental, etc.
Health Care Product for Hospital, MD Office, Dental Office,
etc.

Additional short-term effort vs. long-term gains
(maintenance, reuse, . . . )



Incrementality

Move towards the goal in a stepwise fashion (increments)
Software should be built incrementally

Identify useful subsets of an application and deliver in
increments
Deliver subsets of a system early to get early feedback
Focused, less errors in smaller increments
Phased prototypes with increasing functions

Separation of concerns (in terms of functionality)



Just learning the principles is not enough

You need to learn Design Patterns of other masters
Example:

Composite pattern,
Visitor pattern,
Abstract factory pattern
Builder pattern
Adaptor pattern
Observer pattern
Mediator pattern
Template method
and more . . .

At the end of the course, you should be able to apply these
principles with proficiency in real design contexts



Example of bad design

class Employee {
public:

string firstName;
string lastName;
Date hiring_date;
short department;

};

class Manager {
public:

Employee emp;
list<Employee*> group;
short level;

};



Example of bad design

class Employee {
public:

string firstName;
string lastName;
Date hiring_date;
short department;

};

class Manager {
public:

Employee emp;
list<Employee*> group;
short level;

};

Why this design is bad?
Inconsistent with domain knowledge: a manager is always
an employee (Domain knowledge is stable over time.)
A manager may have another manager in their group
What if you want to add another role “vice president” above
manager?
What if you want to print out the name of every employee?



Improving the previous design

class Employee {
public:

string firstName;
string lastName;
Date hiring_date;
short department;

};

class Manager: public Employee {
public:

list<Employee*> group;
short level;

};


	Acknoledgements
	Introduction to Software Engineering
	Learn software design

