C++ classes

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna — Pisa

April 27, 2009

Classes

Those types are not abstract: they are as real as int
and float

Doug Mcllroy

http://retis.sssup.it

Abstraction

@ An essential instrument for OO programming is the support
for data abstraction

@ C++ permits to define new types and their operations

@ Creating a new data type means defining:

@ Which elements it is composed of (internal structure);
@ How it is built/destroyed (constructor/destructor);
@ How we can operate on this type (methods/operations).

Data abstraction in C

@ We can do data abstraction in C (and in almost any
language)
@ however, the syntax is awkward
We have to pass the
main data to every

typedef struct __ conplex { function name clashing:
e e if another abstract type
doubl e i magi nary_;))
} Conpl ex: defines a function
S - corrl 5 add_t o(), the names will
VOl aaa_to npl ex *a, nmpl ex =* ; . .
voi d sub_from Conpl ex a, Conplex *b): clash! No protection: any
doubl e get _nodul e(Conpl ex *a); user can access the

internal data using them
Improperly

Classical example

class Conpl ex {
doubl e real _;
doubl e i magi nary_;
publi c:
Conpl ex() ;
Conpl ex(doubl e a,
~Conpl ex();

doubl e b);

doubl e real () const;

doubl e i magi nary() const;

doubl e nodul e() const;

Conpl ex &operator =(const Conpl ex &a);
Conpl ex &oper at or +=(const Conpl ex &a);

Conpl ex &operat or-=(const Conpl ex &a));

default constructor
const ruct or
dest ruct or

menber function to get the real part
menber function to get the inmag. part
menber function to get the nodul e
assi gnnent operator

sum oper at or

sub operator

How to use complex

Compl ex c1,; /1l default constructor

Conmpl ex c2(1, 2); [l constructor

Compl ex c3(3,4); /'l constructor

cout << "cl=(" << cl.real() << "," << cl.imaginary() << ")" << er
cl = c2; /| assi gnment

c3 += cl; /| operator +=

cl =c2 + c3; /'l ERROR: operator + not yet defined

dl ;

Using new data types

@ The new data type is used just like a predefined data type
@ it is possible to define new functions for that type:
@ real(), imaginary() and module()
@ lItis possible to define new operators
@ =, +=and — =
@ The compiler knows automatically which function/operator
must be invoked
@ C++is a strongly typed language

@ the compiler knows which function to invoke by looking at
the type!

Class

@ Class is the main construct for building new types in C++
@ A class is almost equivalent to a struct with functions inside

@ In the C-style programming, the programmer defines
structs, and global functions to act on the structs

@ In C++-style programming, the programmer defines classes
with functions inside them

Accessing members

@ A class contains members

@ A member can be

@ any kind of variable (member variables)
@ any kind of function (member functions or methods)

cl ass Myd ass { member variables

int a; //

doubl e b;
public:
int c; | member variable

void f();
int getA();

int modi fy(dom
}s ~—_ member functions

Implementing member functions

@ You can implement a member function in a separate .cpp
file

complex.h

class Conpl ex {
doubl e real _;
doubl e i magi nary_;
public:

a.o.ubl e nodul e() const;

b

complex.cpp

doubl e Conpl ex: : modul e() const

{
doubl e tenp;

tenp = real _ * real _ + imaginary_ * inmmginary_;
return tenp;

Accessing internal members

doubl e Conpl ex: : npdul e() const scope resolution

doubl e tenp; | | bl
tenp = real _ * real _ + immginary_ * inmaginary =< ocal variable
return tenp; \

} access to internal variable

@ The :: operator is called scope resolution operator
@ like any other function, we can create local variables

@ member variables and functions can be accessed without
dot or arrow

Access control

@ A member can be:
@ private: only member functions of the same class can
access it; other classes or global functions can’t
@ protected: only member functions of the same class or of
derived classes can access it: other classes or global
functions can’t
@ public: every function can access it

class My ass { MyCl ass dat a;
private:
int a; cout << data. a;
public: // ERROR a is private!

int c; cout << data.c;
}; [/ O c is public;

Access control

@ Default is private

@ An access control keyword defines access until the next

access control keyword

class MyCl ass {
int a;

doubl e b;
public:

void f();
int getA();
private:

private (default)

int c;
- | public

private again

int nodi fy(double b);
}:

Access control and scope

int xx;
class A {\

int xx;

global variable

member variable

publi c:
void f();

IE

void A :f()
XX = 5; /
TIXX = 3;

access local xx

XX = 1IXX + 2;

}

access global xx

Why access control?

@ The technique of declaring private members is also called
encapsulation

@ In this way we can precisely define what is interface and
what is implementation

@ The public part is the interface to the external world

@ The private part is the implementation of that interface

@ When working in a team, each group take care of a module

@ To ensure that the integration is done correctly and without
problems, the programmers agree on interfaces

Private

@ Some people think that private is synonym of secret
o they complain that the private part is visible in the header
file
@ private means not accessible from other classes and does
not mean secret
@ The compiler needs to know the size of the object, in order
to allocate memory to it

@ In an hypothetical C++, if we hide the private part, the
compiler cannot know the size of the object

Friends

class A { class B { }/mdB..f(A&a)
friend class B; int x; X = a.y;
int y; public: af(); '
void f(); void f(A &); } '
public: };
int g();
IE i -
\\ B =] @ A I Eetr:sar(;fa:cess private mem

Friend functions and operator

@ Even a global function or a single member function can be
friend of a class

class A { . .
friend B :f(): friend member function |

friend h();

int y;
void f();
pub! ic:
int g(); ___friend global function I

b

@ It is better to use the friend keyword only when it is really
necessary

Nested classes

@ Itis possible to declare a class inside another class
@ Access control keywords apply

@ Class B is private to class
A: it is not part of the
interface of A, but only of

class A {

class B { its implementation.
int a;
public: | @ However, A is not allowed
L il to access the private part
publ 12 of B!! (A::f() cannot access
: B::a).

@ To accomplish this, we
have to declare A as friend
of B

Time to do an example

@ Let us implement a Stack of integers class
@ At this point, forget about the std library
@ This is a didactic example!

St ack stack;

st ack. push(12)
st ack. push(7);

;:.o'ut << stack. pop(); 7
cout << stack.pop();
12
37

o4

First, define the interface

cl ass Stack {

public:
St ack();
~St ack() ;

void push(int a);
int pop();

i nt peek();

int size();

~—_ Constructor &
destructor

Now the implementation

@ Now we need to decide:

@ how many objects can our stack contain?
@ we can set a maximum limit (like 1000 elements)
@ or, we can dynamically adapt

@ computer memory is the limit

@ Let’s first choose the first solution notice that this decision is
actually part of the interface contract!

Title

class Stack {
publ i c:
Stack(int size);
~St ack() ;

int push(int a);

voi d pop();

int size();
private:

int xarray_;

int top_;

int size_;

Constructor

@ The constructor is the place where the object is created
and initialized

o Every time an object is defined, the constructor is called
automatically

@ There is no way to define an object without calling the
constructor

@ Sometime the constructor is called even when you don't
suspect (for example for temporary objects)

@ It's a nice feature
@ it forces to think about initialization

Constructor for stack

@ The constructor is a function with the same name of the
class and no return value

@ It can have parameters:
@ in our case, the nax_si ze of the stack

class Stack { St ack: : Stack(int size)
public: {
Stack(int size); array_ = new int[size]
. top = O;
} }

The new operator

@ In C, if you needed memory from the heap, you would use
mal | oc()

@ In C++, there is a special operator, called new

St ack: : Stack(int size)

{
array_ = nem1|nt[3|ze]; “——————1 Creates an array of size integers I
size_ = size;
top_ = 0;

Destructor

@ When the object goes out of scope, it is destructed
@ among the other things, its memory is de-allocated

@ A special function, called destructor, is defined for every
class

@ its name is a ~ followed by the class name
o takes no parameters

class Stack { St ack: : ~St ack()

;.S'.tack(); {
b J

delete [Jarray_;

The delete operator

@ The opposite of newiS del ete
o it frees the memory allocated by new

St ack: : ~St ack()
{

deallocates size integers
delete [Jarray ; . —— g

}

@ this operation is needed because otherwise the memory
pointed by array_ would remain allocated

@ this problem is called memory leak

When are they called?

St ack: : Stack(int size)
{

size_ = size;
array_ = new int[size_];
top_ = 0;

}
St ack: : ~St ack()

delete [Jarray_;
cout << "Destructor has been called\n";

cout << "Constructor has been called\n!";

int main()
{

cout << "Before block\n";

{
Stack mystack(20);

cout << "after constructor\n";

cout << "before block end\n";

}

cout << "After bl ock\n";

Default constructor

@ A constructor without parameters is called default

constructor

@ if you do not define a constructor, C++ will provide a default
constructor that does nothing

o if you do provide a constructor with parameters, the
compiler does not provide a default constructor

Error!! No default constructor
for Stack!

St ack si;

Stack s2(20);

Ok, calling the user-defined con-
structor

Default constructor

@ We did not define a default constructor on purpose

@ we cannot construct a Stack without knowing its size
@ see how C++ forces a clean programming style?

@ However it is possible to define different constructors using
overloading

@ usually, we need to provide several constructors for a class

@ The compiler always provide a destructor, unless the
programmer provides it

Implementing the Stack interface

@ see the code in directory st ack1/
@ let’s get rid of the size: see stack2/

Initializing internal members
@ Another feature of C++ is the initialize-list in the constructor

@ each member variable can be initialized using a special
syntax

St ack: : St ack()

{
head

si ze

0;
0;

}

Stack:: Stack() : head_(0), size_(0)

{
}

@ The two code snippets are equivalent
@ Itis like using a constructor for each internal member

Function overloading

@ In C++, the argument list is part of the name of the function

@ this mysterious sentence means that two functions with the
same name but with different argument list are considered
two different functions and not a mistake

@ If you look at the internal name used by the compiler for a
function, you will see three parts:
o the class name

@ the function name
o the argument list

Function overloading

class A {
public:
void f(int a); /

void f(int a, int b);

_Af_int

|

_Af int_int

void f(double g); \

ci ass B {
publi c:

A f _double

__ B f_int

void f(int a);
b

@ To the compiler, they are all diffe
@ beware of the type...

Which one is called?

rent functions!

class A { A a; L — __Af_int I
publi c: B b;

void f(int a); B f_int |

void f(int a, int b); a.f(5);

void f(double g);
; b.f(2); ‘_//_ __A f _double |
class B { /
public: a.f(3.0); . .

void f(int a); af(23); - 41— _Af _int_int |
I a.f(2.5, 3);

A f _int_int |

Title

@ Notice that return values are not part of the name

o the compiler is not able to distinguish two functions that
differs only on return values!

class A {
int floor(double a);
doubl e fl oor (doubl e a);

@ This causes a compilation error
@ it is not possible to overload a return value

Default arguments in functions

@ Sometime, functions have long argument lists
@ some of these arguments do not change often

@ we would like to set default values for some argument
o this is a little different from overloading, since it is the same
function we are calling!

int f(int a, int b =0);

f(12); /1l it is equivalent to f(12,0);

Example

@ see overload/

@ You have also seen some debugging trick
@ when you cannot use more sophisticated debugging ...
@ Simple exercise: write another constructor that takes a

char « instead of a string

Constants

@ In C++, when something is const it means that it cannot
change. Period.
@ Now, the particular meanings of const are a lot:
@ Don't to get lost! Keep in mind: const = cannot change

@ Another thing to remember:
@ constants must have an initial (and final) value!

Constants - |

@ As a first use, const can substitute the use of #define in C

@ whenever you need a constant global value, use const
instead of a define, because it is clean and it is type-safe

#define PI 3.14 /Il C style

const double pi = 3.14; // C++ style

@ In this case, the compiler does not allocate storage for pi
@ In any case, the const object has an internal linkage

Constants - |l

@ You can use const for variables that never change after
initialization. However, their initial value is decided at
run-time

100;
i+ 10; \
—__compile-time constants I

cout << "Type a character\n";
const char ¢ = cin.get();

const char c2 =c¢c + 'a';
cout << c2; \ ;
____ run-time constants |

C2++; // ERROR! c2 is const!

const int i
const int j

int main()

Constant pointers

@ There are two possibilities

@ the pointer itself is constant
o the pointed object is constant

int a /
int » const u = &a;

const int xv; the pointed object is constant (the pointer
can change and point to another const int!)

the pointer is constant |

@ Remember: a const object needs an initial value!

const function arguments

@ An argument can be declared constant. It means the
function can’t change it
@ particularly useful with references

class A {
public:
int i;
)
void f(const A &) {
a.i++; /1 error! cannot nodify a;
}

@ You can do the same thing with a pointer to a constant, but
the syntax is messy.

Passing by const reference

@ Remember:

@ we can pass argument by value, by pointer or by reference

@ in the last two cases we can declare the pointer or the
reference to refer to a constant object: it means the function
cannot change it

@ Passing by constant reference is equivalent, from the user
point of view, to passing by value

@ From an implementation point of view, passing by const
reference is much faster!!

Constant member functions

p—— The compiler can call
[l [only const member

public:)
i 7(0) eorst functions on a const
void g(); .

3 object!
void A :f() const
{ i ++; /1 ERROR! this function cannot const Aa = ...
/1 nodify the object .
, returni; [/ Gk Y J 228 /leSKRQq”

Constant return value

@ This is tricky! We want to say: “the object we are returning
from this function cannot be modified”

@ This is meaningless when returning predefined types

const int fl(int a) {return ++a;}

\ these two functions are

—
equivalent!

int f2(int a) {return ++a;}

int i = f1(5); /1 | egal
i = f2(5);

const int |
const int k

f1(5); // also |egal
f2(5); //also |egal

Return mechanism

@ When returning a value, the compiler copies it into an
appropriate location, where the caller can use it

0 a is allocated on the stack

int f2(int a) {return ++a:} Q the compiler copies 5 into a

Q a is incremented

int i =f2(5); 0 the modified value of a is then copied
directly into i

Q a is de-allocated (de-structed)

@ why const does not matter?

@ since the compiler copies the value into the new location,
who cares if the original return value is constant? It is
deallocated right after the copy!

Returning a reference to an object

@ Things get more complicated if we are returning an object,
by value or by address, that is by pointer or by reference

@ But before looking into the problem, we have to address
two important mechanisms of C++

@ copy constructors
@ assignment and temporary objects

Copy constructor

@ When defining a class, there is another hidden default
member we have to take into account

class X { — Copy constructor

int ii;
publ i c: ,) .
X(int i) {ii = ./ If we QOnthflnt_e it, the
X(const &X X); compiler will define a standard

. . version The standard version

int get() {return ii;} .

int inc() {return ++i;} will perform a copy member by
3 member (bitwise copy)

Copy constructor

@ An example

X x1(1);

X x2(x1);

cout << x1.get() << g Copy Constructor I

' << x2.get() << endl;

x1.inc();
cout << xl.get() << "
' << x2.get() << endl;

@ We should be careful when defining a copy constructor for
a class

o we will address more specific issues on copy constructors
later

Copy constructor

@ The copy constructor is implicitly used when passing an
object by value

void f(X x)

{

} when calling f(), the actual argument x1 is
copied into formal parameter x by using the

X X1: copy constructor

f(x1);

@ This is another reason to prefer passage by const
reference!

Title

cl ass Conpl ex {
doubl e real _;
doubl e i magi nary_;

publi c:
Conmpl ex() ; /1 default constructor
Conpl ex(const Conpl ex& c); /1 copy constructor
Conpl ex(doubl e a, double b); /| constructor
~Conpl ex(); /| destructor
doubl e real () const; /1 menber function to get the real part
doubl e i magi nary() const; /1l nmenber function to get the inmag. part
doubl e nodul e() const; /1 menber function to get the nodul e

Conpl ex& operator =(const Conpl ex& a); [/ assignment operator
Conpl ex& oper at or +=(const Conpl ex& a); // sum operator
Conpl ex& operator-=(const Conplex& a)); // sub operator

How to implement the copy constructor

Conpl ex: : Conpl ex(const Conpl ex& c)
{

real _ = c.real _;

i maginary_ = c.inmaginary_;
}

@ Now we can invoke it for initializing c3:

Conpl ex c¢1(2,3);
Conpl ex c2(2);
Conpl ex c3(cl);

cout << cl << " "< 02 << " " << C3 << u\nu.

Copy constructor and assignment operator

@ Remember that we also defined an assignment operator
for Complex:

Compl ex c2(2);

c2 = Cc3;

<< n

Compl ex ¢3 = c1;

cout << cl << "
n << C3 << Il\nll;

Conpl ex c¢1(2, 3);

n << CZ

~ ————— | Copy constructor

cl += c2, (— \ assignment

@ The difference is that c3 is being defined and initialized, so

a constructor is necessary;
@ c2 is already initialized

The add function

@ Now suppose we want to define a function add that returns
the sum of two complex numbers

@ the return type is Complex

@ afirst try could be

{

return

Compl ex add(Conpl ex a, Conpl ex b)

Compl ex z(a.real () + b.real (),

Z,

a.imaginary() + b.imaginary()));

@ This is not very good programming style for many reasons!

@ can you list them?

—

Using the add

@ Let's see what happens when we use our add

The temporary object is destroyed I

Compl ex c¢1(1,2),c2(2,3),c3;
c3 = add(cl, c?);

to c3 calling the assignment opera-

The temporary object is assigned
tor

Conpl ex add(Conpl ex a,
{

Conpl ex b)

Compl ex z(a.real () + b.real (),
a.imaginary() + b.imaginary()); —-<

return z;

K

\

temp is copied into a temporary ob-
ject

cl and c2 are copied (through the

Z is constructed |
copy constructor), into a and b |

@ 7 function calls are involved! (not considering real() and

imaginary()) ...

First improvement

@ Let’s pass by const reference:

Compl ex c1(1,2),c2(2,3),c3;

c3 = add(cl,c2);

Conpl ex add(const Conpl ex& a,
{

const Conpl ex& b) |

Conpl ex tenp(a.real () + b.real (),
a.imaginary() + b.inmaginary());
return tenp;

/—

@ We already saved 2 function call

sl

only the addresses are copied:
much faster!

@ notice that c1 and c2 cannot be modified anyway ...

Temporaries

@ Why the compiler builds a temporary?

@ because he doesn’t know what we are going to do with that
object
o consider the following expression:

first, the add is called

SeCOHd,opeHnor+=iS
c3 += add(cl,c2); called

Conplex ¢1(1,2), c2(2,3), c3(0,0);

oper at or +=(const Conpl ex &c);

@ the compiler is forced to build a temporary object of type
Complex and pass it to oper at or += by reference, which will
be destroyed soon after oper at or += completes

Temporary objects

@ A temporary should always be constant!
@ otherwise we could write things like:

add(cl, c2) += cl;

@ Itis pure non-sense!
@ To avoid this let us, return a const

const Conpl ex add(const Conpl ex& a, const Conpl ex& b)

Conpl ex tenp(a.real () + b.real (),
a.imaginary() + b.imaginary());
return tenp;

Returning a const

@ Thus, now it should be clear why sometime we need to
return a const object

o the previous example was trivial, but when things get
complicated, anything can happen

@ by using a const object, we avoid stupid errors like
modifying a temporary object

@ the compiler will complain if we try to modify a const object!

More on add

@ there is a way to save on another copy constructor

const Conpl ex add(const Conpl ex& a, const Conpl ex& b)
{

return Conplex(a.real () + b.real (),
a.imaginary() + b.imaginary());

@ It means: create a temporary object and return it
@ Now we have 4 function calls:

@ add, temporary constructor, assignment, temporary
destructor

More on copy constructors

@ EXxercise

class A {
int ii;
publi c:
ACint i) @ ii(i) { cout << "A(int)\n";}
A(const A& a) { ii = a.ii; cout << "A(A®\n";}
}:

int main()

{
A al(3);
B b1(5);
B b2(bl);

}

class B {
int ii;
A a;
publi c:
B(int i) :
b

ii(i), a(i+l) {cout << "B(int)\n"; }

@ What does it print?

Changing the copy constructor

@ We can change the behavior of B...

ACint)
Alint)
B(i nt)
A(AL)

int main()

{
A al(3);
B b1(5);
B b2(bl);

}

class A {
int ii;
public:
ACint i) @ ii(i) { cout << "A(int)\n";}
A(const A& a) { ii = a.ii; cout << "A(A&\n";}
b
class B {
int ii;
A a;
public:
B(int i) : ii(i), a(i+1) {cout << "B(int)\n"; }
B(B& b) : ii(b.ii), a(b.ii+1) {cout << "B(B&\n";
b

@ What does it print?

A(int)
A(int)
B(int)
A(int)
B(B&)

Static

@ static is another keyword that is overloaded with many
meanings

@ Here, we will discuss only one of them: how to build static
class members

@ sometime, we would like to have a member that is common
to all objects of a class
o for doing this, we can use the static keyword

static members

@ We would like to implement a counter that keeps track of
the number of objects that are around

@ we could use a global variable, but it is not C++ style
@ Wwe can use a static variable

class ManyObj {
static int count;

int index; static int ManyQbj::count = O;
public:
Many Qbj () ; ManyQbj : : ManyObj () { index = count++;}
~ManyQoj () ; ManyQoj : : ~ManyQbj () {count--;}
int ManyQbj::getlndex() {return index;}
int getlndex(); int ManyQoj :: howvany() {return count;}
static int howvany();

static members

int main()
{
ManyQObj a, b, c, d;
ManyQbj *p = new ManyQbj ;
ManyCbj *p2 = 0;
cout << "Index of p: " << p->getlndex() << "\n";
{
ManyCbj a, b, c, d;
p2 = new ManyQvj ;
cout << "Nunber of objs: " << ManyQbj::howMany() << "\n";
}
cout << "Number of objs: " << ManyQbj::howvany() << "\n";
delete p2; delete p;
cout << "MNumber of objs: " << ManyQbj::howMany() << "\n";

I ndex of p: 4

Nunber of objs: 10
Nurber of objs: 6
Nurber of objs: 4

static members

@ There is only one copy of the static variable for all the
objects
@ All the objects refer to this variable
@ How to initialize a static member?
@ cannot be initialized in the class declaration

@ the compiler does not allocate space for the static member

until it is initiliazed

@ So, the programmer of the class must define and initialize

the static variable

Initialization

@ It is usually done in the .cpp file where the class is
implemented

static int ManyQbj::count = O;

ManyQbj : : ManyQhj () { index = count++;}
ManyQbj : : ~Manyj () {count--;}

int ManyQbj::getlndex() {return index;}
int ManyQbj :: howvany() {return count;}

@ There is a famous problem with static members, known as
the static initialization order failure

o We will not study it here. See Bruce Eckel book.

Copy constructors and static members

@ What happens if the copy constructor is called?

voi d func(ManyObj a)
{

}

voi d main()
{
ManyQoj a;
func(a);
cout << "How many: " << ManyQbj::howMany() << "\n";

@ What is the output?
@ Solution in manyobj /

Again on copy constructors

@ If we want to prevent passing by value we can hide the
copy constructor
@ You hide copy constructor by making it private
@ in this way the user of the class cannot call it

void func(ManyQoj a)

class ManyQbj { {

static int count;

int index; }
Many Obj (ManyQbj &) ;
ublic: . .
P NanyCbj () ; }/md mai n()
~ManyCoj () ; ManyChj a:
func(a);

}: STarle It o) // ERRORI No copy constructor
’ }

Singleton

@ A singleton is an object that can exist in only one copy
@ we want to avoid that a user creates more than one of
these objects
@ We can make a singleton by combining static members
and constructor hiding

class Singleton {

static Singleton s;

Si ngl eton();

Si ngl et on(Si ngl eton &);
public:

static Singleton & instance();
b

Singleton object

@ First, we hide both constructors, SO no user can create a
singleton object
@ we also hide assignment operator

@ We define one singleton object as static
@ To obtain the singleton object, users must invoke member

i nstance();
Singleton & = Singleton::instance(); // ok
Singleton s2 = Singleton::instance(); // ERROR No copy constructor!

@ See oneobj/

Last note on copy constructors

@ If you are designing a class for a library, always think about
what does it mean to copy an object of your class
@ a user could try to pass the object to a function by value,
and obtain an inconsistent behavior

@ For example, consider that your class contains pointers to
objects of other classes
@ when you clone your object, do you need to copy the
pointers or the pointed classes? Depends on the class!
@ The default copy constructor will copy the pointer

Ownership

@ A class can contain pointers to other objects;

@ suppose they were created dynamically (with new), so they
are allocated on the heap

@ At some point, your object is deallocated (destructed)

@ should your object destroy the other objects?
@ It depends on ownership: if your object is owner of the
other objects, then it is responsible for destruction

Example

@ Here the caller of the function is responsible for deleting

the string:
{S“i ng *get NewName() @ Inside the function
string *t = new string(...); Ca”, the funCtion |S
. the owner
return t;

} @ After the return, the

: . main function

i nt main()

{ becomes the owner
AN 5 = et R izl @ Ownership is very
del ete s; important in order to

; avoid memory leaks

see owner/

@ Notice that compiler does not know anything about
ownership!
@ Itis the logic of the program that says who is the owner of
the object each time

@ The general rule that | apply is
@ If an object creates another object, he is responsible for

destruction
o of course there are zillion of exceptions to this rule

@ pay attention to ownership!!

Inlines

@ Performance is important

o if C++ programs were not fast, probably nobody would use
it (too complex!)
o Instead, by knowing C++ mechanisms in depth, it is

possible to optimize a lot
@ One possible optimizing feature is inline function

Complex inlines

cl ass Conpl ex {
doubl e real _;
doubl e i magi nary_;

publi c:
Conmpl ex() ; /1 default constructor
Conpl ex(const Conpl ex& c); /1 copy constructor
Conpl ex(doubl e a, double b = 0); // constructor
~Conpl ex(); /| destructor

inline double real () const {return real _;}

inline double imaginary() const {return inmaginary;}

i nline doubl e nodul e() const {return real _*real _ + inaginary_*imagi nary_;}
Conpl ex& operator =(const Conpl ex& a); /| assignnment operator

Conpl ex& oper at or +=(const Conpl ex& a); /1 sum oper at or

Conpl ex& oper at or-=(const Conpl ex& a)); /1 sub operator

What is inlining

@ when the compiler sees inline, tries to substitute the
function call with the actual code

@ in the complex class, the compiler substitutes a function call
like real () with the member variable real _

Compl ex c1(2,3), c2(3,4), c3;

cl.real ();

@ we save a function call!

@ in C this was done through macros

@ macros are quite bad. Better to use the inlining!
@ again, the compiler is much better than the pre-compiler

Inline

@ Of course, inline function must be defined in the header file

@ otherwise the compiler cannot see them and cannot make
the substitution
@ sometime the compiler refuses to make inline functions

Excessive use of inlines

@ People tend to use inlines a lot

o first, by using inline you expose implementation details
@ second, you clog the interface that becomes less readable
o Finally, listen to what D.Knuth said:

Premature optimization
is the root of all evil

@ So,
o first design and program,
@ then test,
o then optimize ...
@ ... and test again!

Operator oveloading

@ After all, an operator is like a function

@ binary operator: takes two arguments
@ unary operator: takes one argument

@ The syntax is the following:
@ Conpl ex &oper ator +=(const Conpl ex &c);

@ Of course, if we apply operators to predefined types, the
compiler does not insert a function call

int a = 0;
a += 4;

Complex b = 0;
b += 5;

[/ function cal

To be member or not to be...

@ In general, operators that modify the object (like ++, +=, --
etc...) should be member

@ Operators that do not modify the object (like +, -, etc,)
should not be member, but friend functions

@ Let’s write operat or + for complex (see complex/)
@ Not all operators can be overloaded

@ we cannot "invent" new operators,

we can only overload existing ones

we cannot change number of arguments
we cannot change precedence

. (dot) cannot be overloaded

Q
Q
o
o

Strange operators

@ You can overload
@ new and delete
@ used to build custom memory allocate strategies
@ operatorf(]
@ for example, in vector<>...
@ operator,
@ You can write very funny programs!
@ operator->
@ used to make smart pointers!!

How to overload operator []

@ the prototype is the following:

class A {

public:
A& operator[] (int index);
)

@ Exercise:

@ add operator [] to you Stack class
@ the operator must never go out of range

How to overload new and delete

class A {

public:
voi dx operator newsize_t size);
voi d operator delete(void *);

@ Everytime we call new for creating an object of this class,
the overloaded operator will be called

@ You can also overload the global version of new and delete

How to overload * and ->

@ This is the prototype

class Iter {

publ i c:
bj operator=*() const;
bj =*operator->() const;

b

@ Why should | overload operator=() ?
@ to implement iterators!

@ Why should | overload operator->() ?
@ to implement smart pointers

Example

@ A simple iterator for stack
@ Itis a forward iterator

Exercises

@ Build a Iterator class for your list of strings

@ You can define an object of type Iterator, that can point to
objects inside the List container

@ Write operator++() the Iterator

o Write operator* for Iterator that de-reference the pointed
object;

@ Compare your implementation with the list<> container of
the std library

@ Try to call foreach() on your container. What happens?

A more complex exercise

@ Define a SmartPointer for objects of class A

@ This pointer must always be initialized
@ When no object points to the object, the object is
automatically destroyed

class A{ ... };

class SSP { ... };

SSP pl1 = A-:getNew); // pl points to a new obj
SSP p2 = p1l; /1 pl and p2 point to obj
pl = 0; /1l only p2 points to obj
p2 = 0; /1 destroy the object

@ Hint: you should create a static repository
@ This will become a template soon!

	Classes
	Constants
	Copy Constructors
	Static members
	Ownership
	Inlines
	Operator Overloading

