
C++ classes

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

April 27, 2009

Classes

Those types are not abstract: they are as real as int
and float

Doug McIlroy

http://retis.sssup.it

Abstraction

An essential instrument for OO programming is the support
for data abstraction

C++ permits to define new types and their operations
Creating a new data type means defining:

Which elements it is composed of (internal structure);
How it is built/destroyed (constructor/destructor);
How we can operate on this type (methods/operations).

Data abstraction in C

We can do data abstraction in C (and in almost any
language)

however, the syntax is awkward

typedef struct __complex {
double real_;
double imaginary_;

} Complex;

void add_to(Complex *a, Complex *b);
void sub_from(Complex *a, Complex *b);
double get_module(Complex *a);

We have to pass the
main data to every
function name clashing:
if another abstract type
defines a function
add_to(), the names will
clash! No protection: any
user can access the
internal data using them
improperly

Classical example

class Complex {
double real_;
double imaginary_;

public:
Complex(); // default constructor
Complex(double a, double b); // constructor
~Complex(); // destructor

double real() const; // member function to get the real part
double imaginary() const; // member function to get the imag. part
double module() const; // member function to get the module
Complex &operator =(const Complex &a); // assignment operator
Complex &operator+=(const Complex &a); // sum operator
Complex &operator-=(const Complex &a)); // sub operator

};

How to use complex

Complex c1; // default constructor
Complex c2(1,2); // constructor
Complex c3(3,4); // constructor

cout << "c1=(" << c1.real() << "," << c1.imaginary() << ")" << endl;

c1 = c2; // assignment
c3 += c1; // operator +=
c1 = c2 + c3; // ERROR: operator + not yet defined

Using new data types

The new data type is used just like a predefined data type
it is possible to define new functions for that type:

real(), imaginary() and module()
It is possible to define new operators

=, + = and − =

The compiler knows automatically which function/operator
must be invoked

C++ is a strongly typed language
the compiler knows which function to invoke by looking at
the type!

Class

Class is the main construct for building new types in C++
A class is almost equivalent to a struct with functions inside

In the C-style programming, the programmer defines
structs, and global functions to act on the structs
In C++-style programming, the programmer defines classes
with functions inside them

Accessing members

A class contains members
A member can be

any kind of variable (member variables)
any kind of function (member functions or methods)

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();
int modify(double b);

};

member variables

member variable

member functions

Implementing member functions

You can implement a member function in a separate .cpp
file

complex.h
class Complex {

double real_;
double imaginary_;

public:
...
double module() const;
...

};

complex.cpp
double Complex::module() const

{
double temp;
temp = real_ * real_ + imaginary_ * imaginary_;
return temp;

}

Accessing internal members

double Complex::module() const
{

double temp;
temp = real_ * real_ + imaginary_ * imaginary_;
return temp;

}

scope resolution

local variable

access to internal variable

The :: operator is called scope resolution operator

like any other function, we can create local variables

member variables and functions can be accessed without
dot or arrow

Access control

A member can be:
private: only member functions of the same class can
access it; other classes or global functions can’t
protected: only member functions of the same class or of
derived classes can access it: other classes or global
functions can’t
public: every function can access it

class MyClass {
private:

int a;
public:

int c;
};

MyClass data;

cout << data.a;
// ERROR: a is private!
cout << data.c;
// OK: c is public;

Access control

Default is private

An access control keyword defines access until the next
access control keyword

class MyClass {
int a;
double b;

public:
int c;

void f();
int getA();

private:
int modify(double b);

};

private (default)

public

private again

Access control and scope

int xx;

class A {
int xx;

public:
void f();

};

void A::f()
{

xx = 5;
::xx = 3;

xx = ::xx + 2;
}

global variable

member variable

access local xx

access global xx

Why access control?

The technique of declaring private members is also called
encapsulation

In this way we can precisely define what is interface and
what is implementation
The public part is the interface to the external world
The private part is the implementation of that interface
When working in a team, each group take care of a module
To ensure that the integration is done correctly and without
problems, the programmers agree on interfaces

Private

Some people think that private is synonym of secret
they complain that the private part is visible in the header
file

private means not accessible from other classes and does
not mean secret

The compiler needs to know the size of the object, in order
to allocate memory to it

In an hypothetical C++, if we hide the private part, the
compiler cannot know the size of the object

Friends

class A {
friend class B;
int y;
void f();

public:
int g();

};

class B {
int x;

public:
void f(A &a);

};

B is friend of A

void B::f(A &a)
{

x = a.y;
a.f();

}

B can access private mem-
bers of A

Friend functions and operator

Even a global function or a single member function can be
friend of a class

class A {
friend B::f();
friend h();
int y;
void f();

public:
int g();

};

friend member function

friend global function

It is better to use the friend keyword only when it is really
necessary

Nested classes

It is possible to declare a class inside another class

Access control keywords apply

class A {
class B {

int a;
public:

int b;
}
B obj;

public:
void f();

};

Class B is private to class
A: it is not part of the
interface of A, but only of
its implementation.

However, A is not allowed
to access the private part
of B!! (A::f() cannot access
B::a).

To accomplish this, we
have to declare A as friend
of B

Time to do an example

Let us implement a Stack of integers class
At this point, forget about the std library

This is a didactic example!

Stack stack;
...
stack.push(12);
stack.push(7);
...
cout << stack.pop();
cout << stack.pop();

54
37
12
7

First, define the interface

class Stack {
...

public:
Stack();
~Stack();

void push(int a);
int pop();
int peek();
int size();

};

Constructor &
destructor

Now the implementation

Now we need to decide:
how many objects can our stack contain?
we can set a maximum limit (like 1000 elements)
or, we can dynamically adapt

computer memory is the limit
Let’s first choose the first solution notice that this decision is
actually part of the interface contract!

Title

class Stack {
public:

Stack(int size);
~Stack();

int push(int a);
void pop();
int size();

private:
int *array_;
int top_;
int size_;

};

Constructor

The constructor is the place where the object is created
and initialized

Every time an object is defined, the constructor is called
automatically
There is no way to define an object without calling the
constructor
Sometime the constructor is called even when you don’t
suspect (for example for temporary objects)

It’s a nice feature
it forces to think about initialization

Constructor for stack

The constructor is a function with the same name of the
class and no return value
It can have parameters:

in our case, the max_size of the stack

class Stack {
public:

Stack(int size);
...

};

Stack::Stack(int size)
{

array_ = new int[size];
top = 0;

}

The new operator

In C, if you needed memory from the heap, you would use
malloc()

In C++, there is a special operator, called new

Stack::Stack(int size)
{

array_ = new int[size];
size_ = size;
top_ = 0;

}

Creates an array of size integers

Destructor

When the object goes out of scope, it is destructed
among the other things, its memory is de-allocated

A special function, called destructor, is defined for every
class

its name is a ∼ followed by the class name
takes no parameters

class Stack {
...
~Stack();
...

};

Stack::~Stack()
{

delete []array_;
}

The delete operator

The opposite of new is delete

it frees the memory allocated by new

Stack::~Stack()
{

delete []array_;
}

deallocates size integers

this operation is needed because otherwise the memory
pointed by array_ would remain allocated

this problem is called memory leak

When are they called?

Stack::Stack(int size)
{

size_ = size;
array_ = new int[size_];
top_ = 0;
cout << "Constructor has been called\n!";

}

Stack::~Stack()
{

delete []array_;
cout << "Destructor has been called\n";

}

int main()
{

cout << "Before block\n";
{

Stack mystack(20);
cout << "after constructor\n";
...
cout << "before block end\n";

}
cout << "After block\n";

}

Default constructor

A constructor without parameters is called default
constructor

if you do not define a constructor, C++ will provide a default
constructor that does nothing
if you do provide a constructor with parameters, the
compiler does not provide a default constructor

Stack s1;

Stack s2(20);

Error!! No default constructor
for Stack!

Ok, calling the user-defined con-
structor

Default constructor

We did not define a default constructor on purpose
we cannot construct a Stack without knowing its size
see how C++ forces a clean programming style?

However it is possible to define different constructors using
overloading

usually, we need to provide several constructors for a class

The compiler always provide a destructor, unless the
programmer provides it

Implementing the Stack interface

see the code in directory stack1/

let’s get rid of the size: see stack2/

Initializing internal members

Another feature of C++ is the initialize-list in the constructor

each member variable can be initialized using a special
syntax

Stack::Stack()
{
head_ = 0;
size_ = 0;

}

Stack::Stack() : head_(0), size_(0)
{
}

The two code snippets are equivalent

It is like using a constructor for each internal member

Function overloading

In C++, the argument list is part of the name of the function

this mysterious sentence means that two functions with the
same name but with different argument list are considered
two different functions and not a mistake

If you look at the internal name used by the compiler for a
function, you will see three parts:

the class name
the function name
the argument list

Function overloading

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

__A_f_int

__A_f_int_int

__A_f_double

__B_f_int

To the compiler, they are all different functions!

beware of the type...

Which one is called?

class A {
public:

void f(int a);
void f(int a, int b);
void f(double g);

};
class B {
public:

void f(int a);
};

A a;
B b;

a.f(5);

b.f(2);

a.f(3.0);
a.f(2,3);
a.f(2.5, 3);

__A_f_int

__B_f_int

__A_f_double

__A_f_int_int

__A_f_int_int

Title

Notice that return values are not part of the name
the compiler is not able to distinguish two functions that
differs only on return values!

class A {
int floor(double a);
double floor(double a);

};

This causes a compilation error

it is not possible to overload a return value

Default arguments in functions

Sometime, functions have long argument lists

some of these arguments do not change often

we would like to set default values for some argument
this is a little different from overloading, since it is the same
function we are calling!

int f(int a, int b = 0);

f(12); // it is equivalent to f(12,0);

Example

see overload/
You have also seen some debugging trick
when you cannot use more sophisticated debugging ...
Simple exercise: write another constructor that takes a
char* instead of a string

Constants

In C++, when something is const it means that it cannot
change. Period.
Now, the particular meanings of const are a lot:

Don’t to get lost! Keep in mind: const = cannot change

Another thing to remember:
constants must have an initial (and final) value!

Constants - I

As a first use, const can substitute the use of #define in C
whenever you need a constant global value, use const
instead of a define, because it is clean and it is type-safe

#define PI 3.14 // C style

const double pi = 3.14; // C++ style

In this case, the compiler does not allocate storage for pi

In any case, the const object has an internal linkage

Constants - II

You can use const for variables that never change after
initialization. However, their initial value is decided at
run-time

const int i = 100;
const int j = i + 10;

int main()
{

cout << "Type a character\n";
const char c = cin.get();
const char c2 = c + ’a’;
cout << c2;

c2++; // ERROR! c2 is const!
}

compile-time constants

run-time constants

Constant pointers

There are two possibilities
the pointer itself is constant
the pointed object is constant

int a
int * const u = &a;

const int *v;

the pointer is constant

the pointed object is constant (the pointer
can change and point to another const int!)

Remember: a const object needs an initial value!

const function arguments

An argument can be declared constant. It means the
function can’t change it

particularly useful with references

class A {
public:

int i;
};

void f(const A &a) {
a.i++; // error! cannot modify a;

}

You can do the same thing with a pointer to a constant, but
the syntax is messy.

Passing by const reference

Remember:
we can pass argument by value, by pointer or by reference
in the last two cases we can declare the pointer or the
reference to refer to a constant object: it means the function
cannot change it
Passing by constant reference is equivalent, from the user
point of view, to passing by value
From an implementation point of view, passing by const
reference is much faster!!

Constant member functions

class A {
int i;

public:
int f() const;
void g();

};
void A::f() const
{

i++; // ERROR! this function cannot
// modify the object

return i; // Ok
}

The compiler can call
only const member
functions on a const
object!
const A a = ...;

a.f(); // Ok
a.g(); // ERROR!!

Constant return value

This is tricky! We want to say: “the object we are returning
from this function cannot be modified”

This is meaningless when returning predefined types

const int f1(int a) {return ++a;}

int f2(int a) {return ++a;}

int i = f1(5); // legal
i = f2(5);

const int j = f1(5); // also legal
const int k = f2(5); //also legal

these two functions are
equivalent!

Return mechanism

When returning a value, the compiler copies it into an
appropriate location, where the caller can use it

int f2(int a) {return ++a;}

int i = f2(5);

1 a is allocated on the stack
2 the compiler copies 5 into a
3 a is incremented
4 the modified value of a is then copied

directly into i
5 a is de-allocated (de-structed)

why const does not matter?
since the compiler copies the value into the new location,
who cares if the original return value is constant? It is
deallocated right after the copy!

Returning a reference to an object

Things get more complicated if we are returning an object,
by value or by address, that is by pointer or by reference
But before looking into the problem, we have to address
two important mechanisms of C++

copy constructors
assignment and temporary objects

Copy constructor

When defining a class, there is another hidden default
member we have to take into account

class X {
int ii;

public:
X(int i) {ii = i;}
X(const &X x);

int get() {return ii;}
int inc() {return ++ii;}

};

Copy constructor

If we don’t define it, the
compiler will define a standard
version The standard version
will perform a copy member by
member (bitwise copy)

Copy constructor

An example

X x1(1);

X x2(x1);

cout << x1.get() << "
" << x2.get() << endl;

x1.inc();
cout << x1.get() << "
" << x2.get() << endl;

Copy Constructor

We should be careful when defining a copy constructor for
a class

we will address more specific issues on copy constructors
later

Copy constructor

The copy constructor is implicitly used when passing an
object by value

void f(X x)
{

...
}

X x1;

f(x1);

when calling f(), the actual argument x1 is
copied into formal parameter x by using the
copy constructor

This is another reason to prefer passage by const
reference!

Title

class Complex {
double real_;
double imaginary_;

public:
Complex(); // default constructor
Complex(const Complex& c); // copy constructor
Complex(double a, double b); // constructor
~Complex(); // destructor

double real() const; // member function to get the real part
double imaginary() const; // member function to get the imag. part
double module() const; // member function to get the module
Complex& operator =(const Complex& a); // assignment operator
Complex& operator+=(const Complex& a); // sum operator
Complex& operator-=(const Complex& a)); // sub operator

};

How to implement the copy constructor

Complex::Complex(const Complex& c)
{

real_ = c.real_;
imaginary_ = c.imaginary_;

}

Now we can invoke it for initializing c3:

Complex c1(2,3);
Complex c2(2);
Complex c3(c1);

cout << c1 << " " << c2 << " " << c3 << "\n";

Copy constructor and assignment operator

Remember that we also defined an assignment operator
for Complex:

Complex c1(2,3);
Complex c2(2);
Complex c3 = c1;

c2 = c3;
c1 += c2;

cout << c1 << " " << c2
<< " " << c3 << "\n";

Copy constructor

assignment

The difference is that c3 is being defined and initialized, so
a constructor is necessary;

c2 is already initialized

The add function

Now suppose we want to define a function add that returns
the sum of two complex numbers

the return type is Complex

a first try could be

Complex add(Complex a, Complex b)
{

Complex z(a.real() + b.real(), a.imaginary() + b.imaginary());
return z;

}

This is not very good programming style for many reasons!

can you list them?

Using the add

Let’s see what happens when we use our add

Complex c1(1,2),c2(2,3),c3;

c3 = add(c1,c2);

Complex add(Complex a, Complex b)
{

Complex z(a.real() + b.real(),
a.imaginary() + b.imaginary());

return z;
}

The temporary object is destroyed

The temporary object is assigned
to c3 calling the assignment opera-
tor

temp is copied into a temporary ob-
ject

z is constructed

c1 and c2 are copied (through the
copy constructor), into a and b

7 function calls are involved! (not considering real() and
imaginary()) ...

First improvement

Let’s pass by const reference:

Complex c1(1,2),c2(2,3),c3;

c3 = add(c1,c2);

Complex add(const Complex& a, const Complex& b)
{

Complex temp(a.real() + b.real(),
a.imaginary() + b.imaginary());

return temp;
}

only the addresses are copied:
much faster!

We already saved 2 function calls!

notice that c1 and c2 cannot be modified anyway ...

Temporaries

Why the compiler builds a temporary?
because he doesn’t know what we are going to do with that
object
consider the following expression:

Complex c1(1,2), c2(2,3), c3(0,0);

c3 += add(c1,c2);

first, the add is called
second, operator+= is
called
operator+=(const Complex &c);

the compiler is forced to build a temporary object of type
Complex and pass it to operator+= by reference, which will
be destroyed soon after operator+= completes

Temporary objects

A temporary should always be constant!
otherwise we could write things like:

add(c1,c2) += c1;

It is pure non-sense!

To avoid this let us, return a const

const Complex add(const Complex& a, const Complex& b)
{

Complex temp(a.real() + b.real(),
a.imaginary() + b.imaginary());

return temp;
}

Returning a const

Thus, now it should be clear why sometime we need to
return a const object

the previous example was trivial, but when things get
complicated, anything can happen
by using a const object, we avoid stupid errors like
modifying a temporary object
the compiler will complain if we try to modify a const object!

More on add

there is a way to save on another copy constructor

const Complex add(const Complex& a, const Complex& b)
{

return Complex(a.real() + b.real(),
a.imaginary() + b.imaginary());

}

It means: create a temporary object and return it
Now we have 4 function calls:

add, temporary constructor, assignment, temporary
destructor

More on copy constructors

Exercise

class A {
int ii;

public:
A(int i) : ii(i) { cout << "A(int)\n";}
A(const A& a) { ii = a.ii; cout << "A(A&)\n";}

};

class B {
int ii;
A a;

public:
B(int i) : ii(i), a(i+1) {cout << "B(int)\n"; }

};

int main()
{

A a1(3);
B b1(5);
B b2(b1);

}

What does it print?

A(int)
A(int)
B(int)
A(A&)

Changing the copy constructor

We can change the behavior of B...

class A {
int ii;

public:
A(int i) : ii(i) { cout << "A(int)\n";}
A(const A& a) { ii = a.ii; cout << "A(A&)\n";}

};

class B {
int ii;
A a;

public:
B(int i) : ii(i), a(i+1) {cout << "B(int)\n"; }
B(B& b) : ii(b.ii), a(b.ii+1) {cout << "B(B&)\n";}

};

int main()
{

A a1(3);
B b1(5);
B b2(b1);

}

What does it print?

A(int)
A(int)
B(int)
A(int)
B(B&)

Static

static is another keyword that is overloaded with many
meanings
Here, we will discuss only one of them: how to build static
class members

sometime, we would like to have a member that is common
to all objects of a class
for doing this, we can use the static keyword

static members

We would like to implement a counter that keeps track of
the number of objects that are around

we could use a global variable, but it is not C++ style
we can use a static variable

class ManyObj {
static int count;
int index;

public:
ManyObj();
~ManyObj();

int getIndex();
static int howMany();

};

static int ManyObj::count = 0;

ManyObj::ManyObj() { index = count++;}
ManyObj::~ManyObj() {count--;}
int ManyObj::getIndex() {return index;}
int ManyObj::howMany() {return count;}

static members

int main()
{

ManyObj a, b, c, d;
ManyObj *p = new ManyObj;
ManyObj *p2 = 0;
cout << "Index of p: " << p->getIndex() << "\n";
{

ManyObj a, b, c, d;
p2 = new ManyObj;
cout << "Number of objs: " << ManyObj::howMany() << "\n";

}
cout << "Number of objs: " << ManyObj::howMany() << "\n";
delete p2; delete p;
cout << "Number of objs: " << ManyObj::howMany() << "\n";

}

Index of p: 4
Number of objs: 10
Number of objs: 6
Number of objs: 4

static members

There is only one copy of the static variable for all the
objects

All the objects refer to this variable
How to initialize a static member?

cannot be initialized in the class declaration
the compiler does not allocate space for the static member
until it is initiliazed
So, the programmer of the class must define and initialize
the static variable

Initialization

It is usually done in the .cpp file where the class is
implemented

static int ManyObj::count = 0;

ManyObj::ManyObj() { index = count++;}
ManyObj::~ManyObj() {count--;}
int ManyObj::getIndex() {return index;}
int ManyObj::howMany() {return count;}

There is a famous problem with static members, known as
the static initialization order failure

We will not study it here. See Bruce Eckel book.

Copy constructors and static members

What happens if the copy constructor is called?

void func(ManyObj a)
{

...
}

void main()
{

ManyObj a;
func(a);
cout << "How many: " << ManyObj::howMany() << "\n";

}

What is the output?

Solution in manyobj/

Again on copy constructors

If we want to prevent passing by value we can hide the
copy constructor
You hide copy constructor by making it private

in this way the user of the class cannot call it

class ManyObj {
static int count;
int index;
ManyObj(ManyObj &);

public:
ManyObj();
~ManyObj();

static int howMany();
};

void func(ManyObj a)
{

...
}

void main()
{

ManyObj a;
func(a);

//ERROR! No copy constructor
}

Singleton

A singleton is an object that can exist in only one copy
we want to avoid that a user creates more than one of
these objects

We can make a singleton by combining static members
and constructor hiding

class Singleton {
static Singleton s;
Singleton();
Singleton(Singleton &);

public:
static Singleton & instance();

};

Singleton object

First, we hide both constructors, so no user can create a
singleton object

we also hide assignment operator

We define one singleton object as static

To obtain the singleton object, users must invoke member
instance();

Singleton &s = Singleton::instance(); // ok
Singleton s2 = Singleton::instance(); // ERROR! No copy constructor!

see oneobj/

Last note on copy constructors

If you are designing a class for a library, always think about
what does it mean to copy an object of your class

a user could try to pass the object to a function by value,
and obtain an inconsistent behavior

For example, consider that your class contains pointers to
objects of other classes

when you clone your object, do you need to copy the
pointers or the pointed classes? Depends on the class!
The default copy constructor will copy the pointer

Ownership

A class can contain pointers to other objects;
suppose they were created dynamically (with new), so they
are allocated on the heap

At some point, your object is deallocated (destructed)
should your object destroy the other objects?
It depends on ownership: if your object is owner of the
other objects, then it is responsible for destruction

Example

Here the caller of the function is responsible for deleting
the string:

string *getNewName()
{

string *t = new string(...);
...
return t;

}

int main()
{

string *s = getNewName();
...
delete s;

}

Inside the function
call, the function is
the owner

After the return, the
main function
becomes the owner

Ownership is very
important in order to
avoid memory leaks

see owner/

Notice that compiler does not know anything about
ownership!

It is the logic of the program that says who is the owner of
the object each time

The general rule that I apply is
If an object creates another object, he is responsible for
destruction
of course there are zillion of exceptions to this rule
pay attention to ownership!!

Inlines

Performance is important

if C++ programs were not fast, probably nobody would use
it (too complex!)
Instead, by knowing C++ mechanisms in depth, it is
possible to optimize a lot
One possible optimizing feature is inline function

Complex inlines

class Complex {
double real_;
double imaginary_;

public:
Complex(); // default constructor
Complex(const Complex& c); // copy constructor
Complex(double a, double b = 0); // constructor
~Complex(); // destructor

inline double real() const {return real_;}
inline double imaginary() const {return imaginary;}
inline double module() const {return real_*real_ + imaginary_*imaginary_;}
Complex& operator =(const Complex& a); // assignment operator
Complex& operator+=(const Complex& a); // sum operator
Complex& operator-=(const Complex& a)); // sub operator

};

What is inlining

when the compiler sees inline, tries to substitute the
function call with the actual code

in the complex class, the compiler substitutes a function call
like real() with the member variable real_

Complex c1(2,3), c2(3,4), c3;

c1.real();

we save a function call!
in C this was done through macros

macros are quite bad. Better to use the inlining!
again, the compiler is much better than the pre-compiler

Inline

Of course, inline function must be defined in the header file

otherwise the compiler cannot see them and cannot make
the substitution
sometime the compiler refuses to make inline functions

Excessive use of inlines

People tend to use inlines a lot
first, by using inline you expose implementation details
second, you clog the interface that becomes less readable
Finally, listen to what D.Knuth said:

Premature optimization
is the root of all evil

So,
first design and program,
then test,
then optimize ...
... and test again!

Operator oveloading

After all, an operator is like a function
binary operator: takes two arguments
unary operator: takes one argument

The syntax is the following:
Complex &operator+=(const Complex &c);

Of course, if we apply operators to predefined types, the
compiler does not insert a function call

int a = 0;
a += 4;

Complex b = 0;
b += 5; // function call

To be member or not to be...

In general, operators that modify the object (like ++, +=, --,
etc...) should be member

Operators that do not modify the object (like +, -, etc,)
should not be member, but friend functions

Let’s write operator+ for complex (see complex/)
Not all operators can be overloaded

we cannot "invent" new operators,
we can only overload existing ones
we cannot change number of arguments
we cannot change precedence
. (dot) cannot be overloaded

Strange operators

You can overload
new and delete

used to build custom memory allocate strategies
operator[]

for example, in vector<>...
operator,

You can write very funny programs!
operator->

used to make smart pointers!!

How to overload operator []

the prototype is the following:

class A {
...

public:
A& operator[](int index);

};

Exercise:
add operator [] to you Stack class
the operator must never go out of range

How to overload new and delete

class A {
...

public:
void* operator new(size_t size);
void operator delete(void *);

};

Everytime we call new for creating an object of this class,
the overloaded operator will be called

You can also overload the global version of new and delete

How to overload * and ->

This is the prototype

class Iter {
...
public:
Obj operator*() const;
Obj *operator->() const;

};

Why should I overload operator*() ?
to implement iterators!

Why should I overload operator->() ?
to implement smart pointers

Example

A simple iterator for stack
It is a forward iterator

Exercises

Build a Iterator class for your list of strings
You can define an object of type Iterator, that can point to
objects inside the List container
Write operator++() the Iterator
Write operator* for Iterator that de-reference the pointed
object;
Compare your implementation with the list<> container of
the std library
Try to call foreach() on your container. What happens?

A more complex exercise

Define a SmartPointer for objects of class A
This pointer must always be initialized
When no object points to the object, the object is
automatically destroyed

class A { ... };
class SSP { ... };

SSP p1 = A::getNew(); // p1 points to a new obj
SSP p2 = p1; // p1 and p2 point to obj

p1 = 0; // only p2 points to obj
p2 = 0; // destroy the object

Hint: you should create a static repository

This will become a template soon!

	Classes
	Constants
	Copy Constructors
	Static members
	Ownership
	Inlines
	Operator Overloading

