
C++ class Inheritance

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

May 11, 2009

http://retis.sssup.it

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

Code reuse

In C++ (like in all OO programming), one of the goals is to
re-use existing code
There are two ways of accomplishing this goal:
composition and inheritance

Composition consists defining the object to reuse inside the
new object
Composition can also expressed by relating different
objects with pointers each other
Inheritance consists in enhancing an existing class with
new more specific code
Until now you’ve seen only composition

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

B is derived from A

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

B is derived from A

Constructor

Syntax

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const {return i;}
int f() const {return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
void set(int a) {j = a; i+= j}
int g() const {return i;}

};

B is derived from A

Constructor

Inherited member

Use of Inheritance

Now we can use B as a special version of A

int main()
{

B b;
cout << b.get() << "\n"; // calls A::get();
b.set(10);
cout << b.g() << "\n";
b.g();
A *a = &b; // Automatic type conversion
a->f();

B *p = new A;
}

Constructor call order

see ord-constr/

Watch out for the order in which things are done inside a
constructor ...

Of course, destructors are called in reverse order

Redefinition and name hiding
Of course, we can re-define some function member

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const
{return i;}

int f() const
{return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
int get() const

{return i;}
void set(int a)

{j = a; i+= j}
int f() const

{return i;}
};

Redefinition and name hiding
Of course, we can re-define some function member

class A {
int i;

protected:
int j;

public:
A() : i(0),j(0) {};
~A() {};
int get() const
{return i;}

int f() const
{return j;}

};

class B : public A {
int i;

public:
B() : A(), i(0) {};
~B() {};
int get() const

{return i;}
void set(int a)

{j = a; i+= j}
int f() const

{return i;}
};

int main()
{

B b;
cout << b.get() << "\n";
b.set(10);
cout << b.f() << "\n";

}

Overloading and hiding

There is no overloading across classes

class A{
...

public:
int f(int, double);

}

class B : public A{
...

public:
void f(double);

}

int main()
{

B b;
b.f(2,3.0); // ERROR!

}

A::f() has been hidden by
B::f()

Overloading and hiding

There is no overloading across classes

class A{
...

public:
int f(int, double);

}

class B : public A{
...

public:
void f(double);

}

int main()
{

B b;
b.f(2,3.0); // ERROR!

}

A::f() has been hidden by
B::f()

either you redefine exactly
the base version;

or you will hide all the base
members with the same
name

Scoping

Suppose that B refines function f()
B::f() wants to invoke A::f()

class A {
public:

int f(int i);
};

class B : public A {
public:

int f(int i) { return A::f(i) + 1;}
};

Not everything is inherited

What is not inherited
constructors
assignment operator
destructor

Default constructor, copy constructor and assignment are
automatically synthesized, if the programmer does not
provide its own

when writing these functions, remember to call
corresponding function in the base class!

Example

class A {
int i;

public:
A(int ii) : i(ii) {};
A(const A&a) : i(a.i) {}
A &operator=(const A&a) {i = a.i;}

};

class B : public A {
int j;

public:
B(int ii) : A(ii), j(ii+1) {};
B(const B& b) : A(b), j(b.j) {}
B &operator=(const B& b) {

A::operator=(b); j = b.j;
}

};

Wherever you can
use A, you can use
B ...

an object of class B
isA subtype of A

This is called
up-casting

Graphical representation

This is UML

If we have a reference to
B, we can cast implicitly to
a reference to A

a reference to A cannot be
cast implicitly to B
(downcast)

Upcasting and downcasting

Upcasting is a fundamental activity in OO programming
(and it is safe)
Downcasting is not safe at all

the compiler will issue an error when you try to implicitly
downcast

To better understand upcasting, we need to introduce
virtual functions

Virtual functions

Let’s introduce virtual functions with an example

Implementation

class Shape {
protected:
double x,y;

public:
Shape(double x1, double y2);
virtual void draw() = 0;

};

Implementation

class Shape {
protected:
double x,y;

public:
Shape(double x1, double y2);
virtual void draw() = 0;

};

class Circle : public Shape {
double r;

public:
Circle(double x1, double y1,

double r);
virtual void draw();

};

class Rect : public Shape {
double a, b;

public:
Rect(double x1, double y1,

double a1, double b1);
virtual void draw();

};

class Triangle : public Shape {
double a, b;

public:
Triangle(double x1, double y1,

double a1, double b1);
virtual void draw();

};

We would like to collect shapes

Let’s make a vector of shapes

vector<Shapes *> shapes;

shapes.push_back(new Circle(2,3,10));
shapes.push_back(new Rect(10,10,5,4));
shapes.push_back(new Triangle(0,0,3,2));

// now we want to draw all the shapes ...

for (int i=0; i<3; ++i) shapes[i]->draw();

We would like that the right draw function is called

However, the problem is that Shapes::draw() is called

The solution is to make draw virtual

Virtual functions

class Shape {
protected:

double x,y;
public:

Shape(double xx, double yy);
void move(double x, double y);
virtual void draw();
virtual void resize(double scale);
virtual void rotate(double degree);

}

class Circle : public Shape {
double r;

public:
Circle(double x, double y,

double r);
virtual void draw();
virtual void resize(double scale);
virtual void rotate(double degree);

}

move() is a regular function

draw(), resize() and rotate() are virtual

see shapes/

Virtual table

When you put the virtual keyword before a function
declaration, the compiler builds a vtable for each class

Circle – vptr

Rect – vptr

Triangle – vptr

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

void draw()

void resize()

void rotate()

Calling a virtual function

When the compiler sees a call to a virtual function, it
performs a late binding, or dynamic binding

each class derived from Shape has a vptr as first element.
It is like a hidden member variable

So, the virtual function call is translated into
get the vptr
move to the right position into the vtable
call the function

Equivalent in C

It is easy to replicate this behavior in C
it suffices to use array of pointers to functions
However, in C this has to be done explicitly
It is not nice code, it is error-prone

In C++, it is automatic
it is quite efficient,
if you look at the generated assembler code, it is just two
assembler instructions more than a regular function call

let’s go back to upcasting and downcasting

Examples

See shapes/

See virtual/

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

Overloading and overriding

When you override a virtual function you cannot change
the return value when the function is not virtual, you can do
it!!
There is an exception to the previous rule:

if the base class virtual method returns a pointer or a
reference to an object of the base class...
... the derived class can change the return value to a
pointer or reference of the derived class

Overload and override

An example

Correct

class A {
public:

virtual A& f();
int g();

};

class B: public A {
public:

virtual B& f();
double g();

};

Wrong

class A {
public:

virtual A& f();
};

class C: public A {
public:

virtual int f();
};

Private inheritance

A base class can be inherited as private, instead of public:

class A {
protected:
void f();

public:
int g();

};

class B : public A {
public:
int h();

};

int main() {
B b1;
b1.f(); // NO
b1.g(); // OK

}

class C : private A {
public:

int h();
};

int main() {
C c1;
c1.f(); // NO
c1.g(); // NO

}

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

Destructors

What happens if we try to destruct an object through a
pointer to the base class?

class A {
public:
A();
~A();

};

class B : public A {
public:
B();
~B();

};

int main() {
A *p;
p = new B;
// ...
delete p;

}

Virtual destructor

In this case, we have to declare a virtual destructor
If the destructors are virtual, they are called in the correct
order

Never call a virtual function inside a destructor!
Can you explain why?

Restrictions

You can not call a virtual function inside a constructor
in fact, in the constructor, the object is only half-built, so you
could end up making a wrong thing
during construction, the object is not yet ready! The
constructor should only build the object

Same thing for the destructor
during destruction, the object is half destroyed, so you will
probably call the wrong function

Restrictions

Example

class Base {
string name;

public:
Base(const string &n) : name(n) {}
virtual string getName() { return name; }
virtual ~Base() { cout << getName() << endl;}

};

class Derived : public Base {
string name2;

public:
Derived(const string &n) : Base(n), name(n + "2") {}
virtual string getName() {return name2;}
virtual ~Derived() {}

};

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

Pure virtual functions

A virtual function is pure if no implementation is provided

Example:

class Abs {
public:
virtual int fun() = 0;
virtual ~Abs();

};
class Derived public Abs {
public:
Derived();
virtual int fun();
virtual ~Derived();

};

This is a pure virtual function. No object of
Abs can be instantiated.

One of the derived classes must finalize the
function to be able to instantiate the object.

Interface classes

If a class only provides pure virtual functions, it is an
interface class

an interface class is useful when we want to specify that a
certain class conforms to an interface
more examples in section multiple inheritance

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

What happens?

Consider the following code snippet

class Employee {
// ...
Employee& operator=(const Employee& e);
Employee(const Employee& e);

};

class Manager : public Employee {
// ...

};

void f(const Manager& m)
{
Employee e;
e = m;

}

Slicing

Only the “Employee” part of m is copied from m to e.
The assignment operator of Employee does not know
anything about managers!

This is called “object slicing” and it can be a source of
errors and various problems

Another example
If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is
“sliced” until all that remains is the subobject that
corresponds to the destination type of your cast.
Consider the code in inheritance/slicing/slicing.cpp

Another example
If you upcast to an object instead of a pointer or reference,
something will happen that may surprise you: the object is
“sliced” until all that remains is the subobject that
corresponds to the destination type of your cast.
Consider the code in inheritance/slicing/slicing.cpp
any calls to describe() will cause an object the size of Pet
to be pushed on the stack
the compiler copies only the Pet portion of the object and
slices the derived portion off of the object, like this:

slicing cont.

what happens to the virtual function call?

slicing cont.

what happens to the virtual function call?

The compiler is smart, and understand what is going on!

the compiler knows the precise type of the object because
the derived object has been forced to become a base
object.
When passing by value, the copy-constructor for a Pet
object is used, which initializes the VPTR to the Pet
VTABLE and copies only the Pet parts of the object.
There’s no explicit copy-constructor here, so the compiler
synthesizes one.
Under all interpretations, the object truly becomes a Pet
during slicing.

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

Virtual operator overloading

You can make operators virtual just like other member
functions
However, implementing virtual operators often becomes
confusing

because you may be operating on two objects, both with
unknown types

For example, consider a system that deals with matrices,
vectors and scalar values, all three of which are derived
from class Math

We want to make the operator* as a virtual function, so that
we can transparently call the correct function when
multiplying two objects
However, the actual virtual function that is called depends
on the type pe the left operand of the operator*
How to make it depend also on the right operand?

see multiple_dispatch/

An example

class Matrix : public Math {
public:
Math& operator*(Math& rv) {

return rv.multiply(this);
}
Math& multiply(Matrix*) {

cout << "Matrix * Matrix" << endl;
return *this;

}
Math& multiply(Scalar*) {

cout << "Scalar * Matrix" << endl;
return *this;

}
Math& multiply(Vector*) {

cout << "Vector * Matrix" << endl;
return *this;

}
};

All cases

Basically, we build a matrix of cases:
when the left operand is a Matrix, the right operand can be:

a Matrix
a Scalar
a Vector

same for Vector and Scalar

Matrix
Scalar
Vector

Matrix Scalar Vector

Multiple dispatch

This technique is called multiple dispatch
The first dispatch is cause by the virtual operator*, which
depends on the left operand (rows in the matrix)
the second dispatch depends on the right operand, and it is
performed by a second virtual function multiply.

This technique is not so common, but may be useful in
some cases.

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

Multiple inheritance

A class can be derived from 2 or more base classes

C inherits the members of A and B

Multiple inheritance

Syntax

class A {
public:

void f();
};

class B {
public:

void f();
};

class C : public A, public B
{

...
};

If both A and B define two
functions with the same
name, there is an
ambiguity

it can be solved with the
scope operator

C c1;

c1.A::f();
c1.B::f();

Why multiple inheritance?

Is multiple inheritance really needed?
There are contrasts in the OO research community
Many OO languages do not support multiple inheritance
Some languages support the concept of “Interface” (e.g.
Java)

Multiple inheritance can bring several problems both to the
programmers and to language designers

Therefore, the much simpler interface inheritance is used
(that mimics Java interfaces)

Interface inheritance

It is called interface inheritance when an onjecy derives
from a base class and from an interface class

A simple example

Interface and implementation inheritance

In interface inheritance
The base class is abstract (only contains the interface)
For each method there is only one final implementation in
the derived classes
It is possible to always understand which function is called

Implementation inheritance is the one normally used by
C++

the base class provides some implementation
when inheriting from a base class, the derived class inherits
its implementation (and not only the interface)

The diamond problem

What happens if class D
inherits from two classes,
B and C which both
inherith from A?

This may be a problem in
object oriented
programming with multiple
inheritance!

The diamond problem

What happens if class D
inherits from two classes,
B and C which both
inherith from A?

This may be a problem in
object oriented
programming with multiple
inheritance!

Problem:
If a method in D calls a method defined in A (and does not
override the method),

The diamond problem

What happens if class D
inherits from two classes,
B and C which both
inherith from A?

This may be a problem in
object oriented
programming with multiple
inheritance!

Problem:
If a method in D calls a method defined in A (and does not
override the method),
and B and C have overridden that method differently,

The diamond problem

What happens if class D
inherits from two classes,
B and C which both
inherith from A?

This may be a problem in
object oriented
programming with multiple
inheritance!

Problem:
If a method in D calls a method defined in A (and does not
override the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?

The diamond problem

What happens if class D
inherits from two classes,
B and C which both
inherith from A?

This may be a problem in
object oriented
programming with multiple
inheritance!

Problem:
If a method in D calls a method defined in A (and does not
override the method),
and B and C have overridden that method differently,
from which class does D inherit the method: B, or C?
In C++ this is solved by using keyword “virtual” when
inheriting from a class

Virtual base class
If you do not use virtual inheritance

class A {...};
class B : public A {...};
class C : public A {...};
class D : public B, public C
{
...

};

With public inheritance the
base class is duplicated

To use one of the methods
of A, we have to specify
which “path” we want to
follow with the scope
operator

Cannot upcast!

see minher/duplicate.cpp

Virtual base class

class A {...};
class B : virtual public A {...};
class C : virtual public A {...};
class D : public B, public C {...};

With virtual public
inheritance the base class
is inherited only once

see minher/vbase.cpp for
an example

Initializing virtual base

The strangest thing in the previous code is the initializer for
Top in the Bottom constructor.

Normally one doesn’t worry about initializing subobjects
beyond direct base classes, since all classes take care of
initializing their own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a
virtual base.

Initializing virtual base

The strangest thing in the previous code is the initializer for
Top in the Bottom constructor.

Normally one doesn’t worry about initializing subobjects
beyond direct base classes, since all classes take care of
initializing their own bases.
There are, however, multiple paths from Bottom to Top,

who is responsible for performing the initialization?

For this reason, the most derived class must initialize a
virtual base.
But what about the expressions in the Left and Right
constructors that also initialize Top?

they are ignored when a Bottom object is created
The compiler takes care of all this for you

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

When inheritance is used

Inheritance should be used when we have a isA relation
between objects

you can say that a circle is a kind of shape
you can say that a rect is a shape

What if the derived class contains some special function
that is useful only for that class?

Suppose that we need to compute the diagonal of a
rectangle

isA vs. isLikeA

If we put function diagonal() only in Rect, we cannot call it
with a pointer to shape

in fact, diagonal() is not part of the interface of shape

If we put function diagonal() in Shape, it is inherited by
Triangle and Circle

diagonal() does not make sense for a Circle
we should raise an error when diagonal is called on a Circle

What to do?

The fat interface

one solution is to put the function in the Shape interface
it will return an error for the other classes like Triangle and
Circle

another solution is to put it only in Rect and then make a
downcasting when necessary

see diagonal/ for the two solutions

This is a problem of inheritance! Anyway, the second one it
probably better

Downcasting

One way to downcast is to use the dynamic_cast construct

class Shape { ... };

class Circle : public Shape { ... };

void f(Shape *s)
{
Circle *c;

c = dynamic_cast<Circle *>(s);
if (c == 0) {

// s does not point to a circle
}
else {

// s (and c) points to a circle
}

}

Dynamic cast

The dynamic_cast() is solved at run-time, by looking inside
the structure of the object

This feature is called run-time type identification (RTTI)

In some compiler, it can be disabled at compile time

Outline

1 Inheritance

2 Overload and overriding

3 Destructor

4 Abstract classes

5 Copying an object

6 Multiple dispatch

7 Multiple inheritance

8 Downcasting

9 LSP

Liskov Substitution Principle

Functions that use pointers of references to base
classes must be able to use objects of derived classes
without knowing it.

Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN
Notices, 23,5 (May, 1988).

Liskov Substitution Principle

Functions that use pointers of references to base
classes must be able to use objects of derived classes
without knowing it.

Barbara Liskov, “Data Abstraction and Hierarchy,” SIGPLAN
Notices, 23,5 (May, 1988).

The importance of this principle becomes obvious when
you consider the conse quences of violating it. If there is a
function which does not conform to the LSP, then that
function uses a pointer or reference to a base class, but
must know about all the derivatives of that base class.

Example of violations of LSP

One of the most glaring violations of this principle is the
use of C++ Run-Time Type Information (RTTI) to select a
function based upon the type of an object.

void DrawShape(const Shape& s)
{
Square *q;
Circle *c;

if (q = dynamic_cast<Square *>(s))
DrawSquare(q);

else if (c = dynamic_cast<Circle *>(s))
DrawCircle(c);

}

Clearly the DrawShape function is badly formed. It must
know about every possible derivative of the Shape class,
and it must be changed whenever new derivatives of
Shape are created. Indeed, many view the structure of this
function as anathema to Object Oriented Design.

Other examples of violation

there are other, far more subtle, ways of violating the LSP

class Rectangle
{
public:

void SetWidth(double w) {itsWidth=w;}
void SetHeight(double h) {itsHeight=w;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

private:
double itsWidth;
double itsHeight;

};

Now suppose we want to introduce a Square
A square is a particular case of a rectangle, so it seems
natural to derive class Square from class rectangle
Do you see problems with this reasoning?

Problems?

Square will inherit the SetWidth and SetHeight functions.
These functions are utterly inappropriate for a Square!

since the width and height of a square are identical.

This should be a significant clue that there is a problem
with the design.

Fixing it

Suppose we write the code so that when we set the height
the with changes as well, and viceversa.

We have to do the Rectangle members virtual, otherwise it
does not work!

Fixing it – the code

class Rectangle
{
public:

virtual void SetWidth(double w) {itsWidth=w;}
virtual void SetHeight(double h) {itsHeight=h;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

private:
double itsHeight;
double itsWidth;

};
class Square : public Rectangle
{
public:

virtual void SetWidth(double w);
virtual void SetHeight(double h);

};
void Square::SetWidth(double w)
{
Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}
void Square::SetHeight(double h)
{
Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}

The real problem

We changed the interface, not only the behavior!

void g(Rectangle& r)
{
r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth() * r.GetHeight()) == 20);

}

The code above was written by a programmer that did not
know about squares

what happens if you pass it a pointer to a Square object?

the programmer made the (at that time correct) assumption
that modifying the height does not change the width of a
rectangle.

Good design is not obvious

The previous design violates the LSP

A Square is not the same as a Rectangle for some pieces
of code

from the behavioral point of view, they are not equivalent
(one cannot be used in place of the other)
The behavior is what is important in software!
See the paper (downloadable from the web site).

	Inheritance
	Overload and overriding
	Destructor
	Abstract classes
	Copying an object
	Multiple dispatch
	Multiple inheritance
	Downcasting
	LSP

