
Templates

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

June 8, 2009

Reuse

One of the most important keywords in OO programming is
code reuse
If you have a piece of code that works correctly, you want
to reuse it as much as you can:

because it has been tested and used, so there is more
probability that it contains less bugs
because you do not need to redo the same thing again (so
you save time and production cost)

We have already seen that reusing software is far from
being trivial (see the LSP section in the 04.inher.pdf).

However, it is the lapis philosophorum (Philosopher’s
Stone) of all programmers

http://retis.sssup.it


Reuse though inheritance

In the previous slides, we have seen one particular OO
technique for reusing code: inheritance

it achieves reuse through abstraction
a concept is abstracted, and then a hierarchy of concepts
are linked togheter through inheritance
however, inheritance may not be the best approach to
reuse!

Containers

Consider the problem of providing a generic container of
objects
Example

We designed and developed a Stack class container
it is an object that contains other objects, and provides
operations for inserting, extracting, finding object, and
visiting them in a certain order
Our stack class contains integers
However, the code is generic enough and depends only in
minimal part from the fact that it contains integers

Problem:
How to extend it to contains other types of objects?
for example, Shapes



Cut & Paste

In the early days of programming the solution would have
been:

Copy and paste the code
modify it to use Shape instead of int

Can you enumerate the problems with this approach?

Use inheritance

OO languages that do not have templates, use inheritance
for implementing such containers

For example, in Smalltalk (and in Java), all classes derive
from a common ancestor: Object
The containers will contain pointers to Object
however, the type is lost when you insert an object in a
container
The user has to perform an appropriate downcast to get
back to the original type

We can do something similar in C++, by using multiple
interface inheritance



Using interfaces

The following interface specifies that an object can be
cloned

Using interfaces with Stack

Stack now contains pointers to Clonable objects (i.e.
objects that possess the Clonable interface)

class Clonable {
public:

virtual Clonable * clone() = 0;
virtual ~Clonable();

};

class Stack {
class Elem {...};
public:
class Iterator {...};

Stack();
~Stack();

void push(Clonable *d);
Clonable * pop();
int size();
...

};



Exercise
1 Extend the previous Stack class by providing a copy

constructor that actually copies all elements (using the
clone() virtual function)

To show that they are actually different, first implement a
static id counter in the Shape class, so that every object
has its own id

2 Now, write a “OrderedList” class that contains objects with
Interface Comparable

The objects in the list must be inserted according to an
order decided by a function lessThan() that returns true is
the object is “less” than the object passed as argumkent:

class Comparable {
public:

virtual bool lessThan(Comparable *obj) = 0;
virtual ~Comparable() {}

};

Extend class hierarchy shapes to also derive from
Comparable, and shapes must be ordered by their x
position

Problems with this approach

The problems with this approach are the following:
It is necessary to modify the code for the objects (they
must derive from the appropriate interfaces)

A possible solution is to write a wrapper object that derives
from the contained object and from the interface

It is necessary to downcast at least once
Type safety is lost, the compiler cannot check anything
meaningful during compilation time
For example, it is not possible to avoid that different types of
objects are inserted in the same contaneir by mistake



Templates

Templates are used for generic programming

The general idea is: what we want to reuse is not only the
abstract concept, but the code itself

we templates we reuse algorithms by making them general

As an example, consider the code needed to swap two
objects of the same type (i.e. two pointers)

void swap(int &a, int &b)
{

int tmp;
tmp = a;
a = b;
b = tmp;

}
...
int x=5, y=8;
swap(x, y);

Can we make it generic?

Solution

By using templates, we can write

template<class T>
void swap(T &a, T &b)
{

T tmp;
tmp = a;
a = b;
b = tmp;

}
...

int x=5, y=8;
swap<int>(x, y);

Apart from the first line, we have just substituted the type
int with a generic type T



How it works

The template mechanism resembles the macro
mechanism in C

We can do the same in C by using pre-processing macros:

#define swap(type, a, b) { type tmp; tmp=a; a=b; b=tmp; }
...
int x = 5; int y = 8;

swap(int, x, y);

in this case, the C preprocessor substitutes the code
it works only if the programmer knows what he is doing

The template mechanism does something similar
but the compiler performs all necessary type checking

Code duplicates

the compiler will instantiate a version of swap() with integer
as a internal type
if you call swap() with a different type, the compiler will
generate a new version of swap

Only when a template is instantiated, the code is generated

If we do not use swap(), the code is never generated, even if
we include it!
if there is some error in swap(), the compiler will never find it
until it tries to generate the code

Looking from a different point of view:
the template mechanism is like cut&paste done by the
compiler at compiling time



Swap for other types

What happens if we call swap for a different type:

class A { ... };
A x;
A y;
...

swap<A>(x, y);

A new version of swap is automatically generated
Of course, the class A must support the assignment
operator, otherwise the generation fails to compile
see template/swap/swap.cpp

Parameters can be automatically implied by the compiler

int a = 5, b = 8;

swap(a, b); // equivalent to swap<int>(a, b);

Sometimes, this is not so straightforward ...



Generalizing Stack
Now, let’s go back to our Stack class, and generalize it to
contain any type of object

template<class T>
class Stack {
class Elem {
public:

T data_;
...

};
public:
class Iterator {

friend class Stack<T>;
...

public:
inline T operator*() const { ... }
...

};

Stack() : head_(0), size_(0) {}
~Stack() {...}

void push(const T &a) {...}
T pop() {...}
...

Exercises

1 Write a program that inserts pointers to shapes into the
stack

You will only need to modify the main!

2 Write a program that inserts only rectangles into a stack
3 Write a OrderedList container that makes use of

operator<() to compare elements. Insert shapes into it, and
order by increasing x coordinate



Advantages of this solution

We do not need to modify the original code (i.e. the Shape
hierarchy should not be modified)

The code is polymorfic to the right level (no extra downcast
is necessary)

Can be applied not only to containers but also to any
function

Inlines
It is possible to define the members of a template class
later on

Must be preceded by keyword template

template<class T>
class Array {
enum { size = 100 };
T A[size];

public:
T& operator[](int index);

};

template<class T>
T& Array<T>::operator[](int index) {
require(index >= 0 && index < size,

"Index out of range");
return A[index];

}

int main() {
Array<float> fa;
fa[0] = 1.414;

} ///:~



Template instantiation

The code for the template is not instantiated until the
template is used

It works similarly to in-lines
The template code should go in the header file

It is possible to have the template code in a separate cpp
file

through the export keyword
not supported by gcc and by Visual C++
it is a candidate for deletion from the standard

Parameters

A template can have any number of parameters
A parameter can be:

a class, or any predefined type
a function
a constant value (a number, a pointer, etc.)

template<T, int sz>
class Buffer {

T v[sz];
int size_;

public:
Buffer() : size_(i) {}

};
...
Buffer<char, 127> cbuf;
Buffer<Record, 8> rbuf;
int x = 16;
Buffer<char, x> ebuf; // error!



Default values

Some parameter can have default value

template<class T, class Allocator = allocator<T> >
class vector;

Templates of templates
The third type of parameter a template can accept is
another class template

template<class T>
class Array {
...

};

template<class T, template<class> class Seq>
class Container {
Seq<T> seq;

public:
void append(const T& t) { seq.push_back(t); }
T* begin() { return seq.begin(); }
T* end() { return seq.end(); }

};

int main() {
Container<int, Array> container;
container.append(1);
container.append(2);
int* p = container.begin();
while(p != container.end())

cout << *p++ << endl;
} ///:~



Using standard containers
If the container class is well-written, it is possible to use
any container inside

template<class T, template<class U, class = allocator<U> >
class Seq>

class Container {
Seq<T> seq; // Default of allocator<T> applied implicitly

public:
void push_back(const T& t) { seq.push_back(t); }
typename Seq<T>::iterator begin() { return seq.begin(); }
typename Seq<T>::iterator end() { return seq.end(); }

};

int main() {
// Use a vector
Container<int, vector> vContainer;
vContainer.push_back(1);
vContainer.push_back(2);
for(vector<int>::iterator p = vContainer.begin();

p != vContainer.end(); ++p) {
cout << *p << endl;

}
// Use a list
Container<int, list> lContainer;
lContainer.push_back(3);
lContainer.push_back(4);
for(list<int>::iterator p2 = lContainer.begin();

p2 != lContainer.end(); ++p2) {
cout << *p2 << endl;

}
} ///:~

The typename keyword

The typename keyword is needed when we want to specify
that an identifier is a type

template<class T> class X {
typename T::id i; // Without typename, it is an error:

public:
void f() { i.g(); }

};

class Y {
public:
class id {
public:

void g() {}
};

};

int main() {
X<Y> xy;
xy.f();

} ///:~



General rule

if a type referred to inside template code is qualified by a
template type parameter, you must use the typename
keyword as a prefix,

unless it appears in a base class specification or initializer
list in the same scope (in which case you must not).

Usage

The typical example of usage is for iterators

template<class T, template<class U, class = allocator<U> >
class Seq>

void printSeq(Seq<T>& seq) {
for(typename Seq<T>::iterator b = seq.begin();

b != seq.end();)
cout << *b++ << endl;

}

int main() {
// Process a vector
vector<int> v;
v.push_back(1);
v.push_back(2);
printSeq(v);
// Process a list
list<int> lst;
lst.push_back(3);
lst.push_back(4);
printSeq(lst);

} ///:~



Making a member template

An example for the complex class

template<typename T> class complex {
public:
template<class X> complex(const complex<X>&);
...

};

complex<float> z(1, 2);
complex<double> w(z);

In the declaration of w, the complex template parameter T
is double and X is float. Member templates make this kind
of flexible conversion easy.

Another example

int data[5] = { 1, 2, 3, 4, 5 };
vector<int> v1(data, data+5);
vector<double> v2(v1.begin(), v1.end());

As long as the elements in v1 are assignment-compatible
with the elements in v2 (as double and int are here), all is
well.

The vector class template has the following member
template constructor:

template<class InputIterator>
vector(InputIterator first, InputIterator last,

const Allocator& = Allocator());

InputIterator is interpreted as vector<int>::iterator



Another example

template<class T> class Outer {
public:
template<class R> class Inner {
public:

void f();
};

};

template<class T> template<class R>
void Outer<T>::Inner<R>::f() {
cout << "Outer == " << typeid(T).name() << endl;
cout << "Inner == " << typeid(R).name() << endl;
cout << "Full Inner == " << typeid(*this).name() << endl;

}

int main() {
Outer<int>::Inner<bool> inner;
inner.f();

} ///:~

Restrictions

Member template functions cannot be declared virtual.
Current compiler technology expects to be able to
determine the size of a class’s virtual function table when
the class is parsed.
Allowing virtual member template functions would require
knowing all calls to such member functions everywhere in
the program ahead of time.
This is not feasible, especially for multi-file projects.



Function templates

The standard template library defines many function
templates in algorithm

sort, find, accumulate, fill, binary_search, copy, etc.

An example:

#include <algorithm>
...
int i, j;
...
int z = min<int>(i, j);

Deduction

Type can be deducted by the compiler

But the compiler is smart until a certain point...

int z = min(x, j); // x is a double, error, not the same types

int z = min<double>(x, j); // this one works fine



Return type

template<typename T, typename U>
const T& min(const T& a, const U& b) {
return (a < b) ? a : b;

}

The problem is: which return value is the most correct? T
or U?

If the return type of a function template is an independent
template parameter, you must always specify its type
explicitly when you call it, since there is no argument from
which to deduce it.

Example

template<typename T> T fromString(const std::string& s) {
std::istringstream is(s);
T t;
is >> t;
return t;

}
template<typename T> std::string toString(const T& t) {
std::ostringstream s;
s << t;
return s.str();

}
int main() {
int i = 1234;
cout << "i == \"" << toString(i) << "\"" << endl;
float x = 567.89;
cout << "x == \"" << toString(x) << "\"" << endl;
complex<float> c(1.0, 2.0);
cout << "c == \"" << toString(c) << "\"" << endl;
cout << endl;

i = fromString<int>(string("1234"));
cout << "i == " << i << endl;
x = fromString<float>(string("567.89"));
cout << "x == " << x << endl;
c = fromString<complex<float> >(string("(1.0,2.0)"));
cout << "c == " << c << endl;

} ///:~


	The need for templates
	Template syntax
	Typename
	Member templates
	Function templates

