Exceptions

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna — Pisa

June 8, 2009

Error conditions

@ There can be an error at run-time for various problems:

@ We discover a bug that arises only on certain values of the
variables

@ The user has done something wrong

@ A wrong input value

@ A wrong behavior of an external device

o A failure of the hardware

@ Errors have different levels of criticality

@ There are recoverable errors, which allow the program to
continue or to re-try the last operation

@ There are unrecoverable errors, the program must exit in a
clean way

@ The problem is what to do when we discover an error at
run-time


http://retis.sssup.it

Error location

@ An error can arise in a module, in a function very deep in
the call stack
@ Rarely we can handle the error at that level
@ It is much common to report the error to the upper layers

@ The error conditions should be part of the interface of a
module

@ The module reports (raises) the error

@ The user of the module receives the error and decides what
to do

Error treatment

@ How to signal that an error has happened?

@ the function returns an error code

@ the function returns a generic error condition, and set a
global variable with the error code
© just exit the program

@ In the first two cases we need to write a lot of
special-purpouse code for handling errors



Example of error treatment

@ Suppose we decide to follow method 1 (return an error
code)

int £() {...}

int main()

{

int err;

err = f();

if (err <0) { /] error !
if (err == ERR_CODE_A) // handle case A
else if (err == ERR CODE B) // handl e case B

@ The above code has to be repeated for every function call
that can raise an error!

Error Forwarding

@ Also, sometimes the error has to be forwarded to upper
layers

int £() {...}
int g()
{.

Int err;

err = f();
if (err <0) { //error !
if (err == ERR_CODE_A) {
/1 handl e case A locally

}

else if (err == ERR CODE_B) ({
/Il forward case B
return ERR_CODE_B;

}
;o

int main()
{

int err;

err =g();
if (err <0) {
/lerror !
}
}




Other examples

@ see stack/ and list/
@ list contains an operator{] for random access in the list

@ What if the user specifies an out-of-range index?
@ we can specify a special “error-return-value”
@ or we can print the error and call exit();

@ Neither of the two options is satisfactory!

Exceptions

@ An exception is an object of a class representing an
exceptional occurrence

@ This way, C++ uses the class mechanisms (like
inheritance, etc.) to implement exceptions

@ The exception class has nothing to do with the other
classes in the program

@ An exception can be thrown with the throw keyword

@ see exc_stack/



Try/catch

@ An exception object is thrown by the programmer in case
of an error condition

@ An exception object can be caught inside a try/catch block

try {
[/

/1l this code can generate exceptions

I
} catch (ExcTypel& el) {

/1 all exceptions of ExcTypel are handl ed here
}

Try/catch

@ If the exception is not caught at the level where the
function call has been performed, it is automatically
forwarded to the upper layer

@ Until it finds a proper try/catch block that cathes it
@ or until there is no upper layer (in which case, the program
is aborted)



More catches

@ It is possible to put more catch blocks in sequence

@ they will be processed in order, the first one that catches
the exception is the last one to execute

try {
[/

/1l this code can generate exceptions
I
} catch (ExcTypel&el) {
/1 all exceptions of ExcTypel
} catch (ExcType2 &e2) {
/'l all exceptions of ExcType2
} catch (...) {
/'l every exception

Re-throwing

@ It is possible to re-throw the same exception that has been
caught to the upper layers

catch(...) {
cout << "an exception was thrown" << endl
/'l Deall ocate your resource here, and then rethrow
t hr ow,

}




Terminate

@ In case of abort, the C++ run-time will call the terminate(),
which calls abort()
@ lItis possible to change this behavior

#i ncl ude <exception>
#i ncl ude <i ostreanr
usi ng nanespace std;

void termnator() {
cout << "1'Ill be back!" << endl;
exit(0);

void (*old_termnate)() = set_term nate(term nator);

cl ass Botch {
publi c:
class Fruit {};
void f() {
cout << "Botch::f()" << endl;
throw Fruit();

}
~Botch() { throw'c’; }
IE

int main() {
try {
Bot ch b;
b.f();
} catch(...) {
cout << "inside catch(...)" << endl;

b=

Hierarchy of exceptions

@ Exceptions can be organized in a hierarchy

cl ass Mat hExc {
string error;
string where;
publ i c:
Mat hErr (const string &, const string &w)
error(e), where (w)
{}

virtual string what() { return error + " " + where;}

H

class LogErr : public MathErr {
public:
LogErr ()
Mat hErr ("Log of a negative nunber", "log nodule"),
n(a)

{}




Inheritance

doubl e nyl og(int a)
{

el se return | og(double(a));

}

void f(int i)
{

}

myl og(i);

try {

f(-5);
} catch(MathErr &e) {

cout << e.what() << endl;
}

if (a<=20) throw LogErr();

Exception specification

@ This code will print “Log of
a negative number - log
module”

@ you can also pass any
parameter to LogErr, like
the number that cause the
error, or the name of the
function which caused the
error, etc.

@ It is possible to specify which exceptions a function might
throw, by listing them after the function prototype

@ Exceptions are part of the interface!

void g();
void h() throw);

void f(int a) throw Excl, Exc2, Exc3);

@ f() can only throw exception Excl, Exc2 or Exc3

@ g() can throw any exception

@ h() does not throw any exception



Listing exceptions

@ Pay attention: a function must list in the exception list all
exception that it may throw, and all exception that all called
functions may throw

int f() throm(EL) {...}

int g() throwE2)
{ \\ It should contain E1 in the list,because

it (cond) throw E2; g() calls f()

)
}

Exception list and inheritance

@ if a member function in a base class says it will only throw
an exception of type A,

@ an override of that function in a derived class must not add
any other exception types to the specification list

@ because that would break any programs that adhere to the
base class interface.
@ You can, however, specify fewer exceptions or none at all,
since that doesn’t require the user to do anything
differently.



Exception list and inheritance

@ It is possible to change the specification of an exception
with a derived exception

cl ass Base {
publ i c:
cl ass BaseException {};
cl ass DerivedException : public BaseException {};
virtual void f() throw DerivedException) {
t hrow Deri vedException();
}
virtual void g() throw(BaseException) {
t hr ow BaseException();
}
b

class Derived : public Base {
publi c:
void f() throw(BaseException) {
t hrow BaseException();
}
virtual void g() throw DerivedException) {
t hrow Deri vedException();

}
Y 1~

@ Which one is correct?

Stack unrolling

void f() {
A a;

if (cond) throw Exc(); —— 1 Atthis point, a is destructed

}

void g() {

deallocated

A *p = new A /_ memory pointed by p is not automatically

if (cond) throw Exc(); 4_/




Cleaning up

@ C++ exception handling guarantees that as you leave a
scope, all objects in that scope whose constructors have
been completed will have their destructors called.

@ see exceptions/trace.cpp

Resource management

@ When writing code with exceptions, it's particularly
important that you always ask, “If an exception occurs, will
my resources be properly cleaned up?”

@ Most of the time you're fairly safe,

@ but in constructors there’s a particular problem:

o if an exception is thrown before a constructor is completed,
the associated destructor will not be called for that object.

@ Thus, you must be especially diligent while writing your
constructor.

@ The difficulty is in allocating resources in constructors.

@ If an exception occurs in the constructor, the destructor
doesn’t get a chance to deallocate the resource.
@ See exceptions/rawp.cpp



How to avoid the problem

@ To prevent such resource leaks, you must guard against
these “raw” resource allocations in one of two ways:

@ You can catch exceptions inside the constructor and then
release the resources

@ You can place the allocations inside an object’s constructor,
and you can place the deallocations inside an object’s
destructor.

@ The last technique is called Resource Acquisition Is
Initialization (RAII for short) because it equates resource
control with object lifetime.

@ Example: wrapped.cpp

PWrap

@ The difference is the use of the template to wrap the
pointers and make them into objects.

@ The constructors for these objects are called before the
body of the UseResources constructor,

@ any of these constructors that complete before an
exception is thrown will have their associated destructors
called during stack unwinding.

@ The PWrap template shows a more typical use of
exceptions than you've seen so far:

@ A nested class called RangeError is created to use in
operator(] if its argument is out of range.

@ Because operator[] returns a reference, it cannot return
zero!

@ An exception mechanism was necessary



Auto ptr

@ Dynamic memory is the most frequent resource used in a
typical C++ program,

@ the standard provides an RAIl wrapper for pointers to heap
memory that automatically frees the memory.

@ The auto_ptr class template, defined in the <memory>
header, has a constructor that takes a pointer to its generic
type

@ The auto_ptr class template also overloads the pointer
operators * and -> to forward these operations to the
original pointer

@ So you can use the auto_ptr object as if it were a raw
pointer.

@ Example in exceptions/autoptr.cpp

auto_ptr example

class TraceHeap {
int i;

public:
static void* operator new(size_ t siz) {
void* p = ::operator new(siz);

cout << "Allocating TraceHeap object on the heap "
<< "at address " << p << endl;
return p;
}
static void operator delete(void* p) {
cout << "Deleting TraceHeap object at address "
<< p << endl;
::operator del ete(p);
}
TraceHeap(int i) : i(i) {}
int getVal () const { return i; }

b

int main() {
aut o_ptr<TraceHeap> pM/Qbj ect (new TraceHeap(5));
cout << pMyQbj ect->getVal () << endl; // Prints 5
Y I~




	Handling error conditions
	Exceptions
	Hierarchies
	Cleanup

