
Exercises on C++: Inheritance

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

May 25, 2009

Exercises on Inheritance

Virtual functions
See virtual2/.
What happens when you execute the program?

Private and protected inheritance
Use private and protected inheritance to create two new
classes from a base class.
Then attempt to upcast objects of the derived class to the
base class.
Explain what happens.

http://retis.sssup.it

Exercise on Constructors

The Rock class
Create a class Rock with a default constructor, a
copy-constructor, an assignment operator, and a destructor,
all of which announce to cout that they’ve been called.
In main(), create a vector<Rock> (that is, hold Rock
objects by value) and add some Rocks.
Run the program and explain the output you get.
Note whether the destructors are called for the Rock
objects in the vector.
Now repeat the exercise with a vector<Rock*>.
Is it possible to create a vector<Rock&>?

Exercise on Proxy

The proxy
This exercise creates the design pattern called proxy.
Start with a base class Subject and give it three functions:
f(), g(), and h().
Now inherit a class Proxy and two classes Implementation1
and Implementation2 from Subject.
Proxy should contain a pointer to a Subject, and all the
member functions for Proxy should just turn around and
make the same calls through the Subject pointer.
The Proxy constructor takes a pointer to a Subject that is
installed in the Proxy (usually by the constructor).
In main(), create two different Proxy objects that use the
two different implementations.
Now modify Proxy so that you can dynamically change
implementations.

Exercises on templates

Write a class template that uses a vector to implement a
stack data structure

Modify your solution to the previous exercise so that the
type of the container used to implement the stack is a
template template parameter.

Exercise on templates - II

Smart Pointer
Create a template class SmartPointer that holds a pointer
Define constructor, copy constructor, and assignment
operator
However, only one smart pointer object is the owner! (i.e.
responsible for calling delete when the smart pointer goes
out of scope)
this is similar to pointer in Java with automatic garbage
collector when nobody points to an object;
Hint: use the reference-counter technique

The final project

The final project will consist in a program to simulate
discrete-time systems

As an example of such kind of application, you can
consider Matlab/Simulink, restricted to the discrete-time
library of blocks

A system is built as a collection of “blocks, connected by
signals. Each block implements a sub-system with2 the
following equation:

x(k + 1) = f (x(k), u(k))

y(k + 1) = g(x(k + 1))

where x , y and u are vectors of reals, f and g are
functions. x represents the internal state, u is the input
signal, y is the output signal.

Blocks

Some block can be stateless (i.e., y(k) = g(u(k)))

A block may be implemented directly as an equation, or in
terms of other blocks. The final system will be a
superblock, with inputs and outputs, that may contain other
blocks.

It is possible to design systems with feedback. However, in
every feedback loop, there must be at least one block with
state (i.e. no fixed point loop computation), otherwise an
exception is raised.

The library should contain a collection of blocks, and
signals.

User requirements

The user of the library should be able to:
1 create the appropriate blocks and superblocks

(subsystems) hierarchically
2 connect the blocks
3 create source signals
4 create scopes (to observe the evolution of the system)
5 run a simulation, collect and show the results
6 debug a system by running a step-by-step simulation

User interface

The user interface is a configuration file that specifies the
blocks and their connections, the scopes, the source
signals
The user runs the command-line program that

reads the config file
creates and connects all objects
runs the simulation producing the outputs

Assignment - I : Parser

Write the parser component of the library
A set of object that are passed a configuration file
reads the file and separates them in tokens organized
hierarchically

Language specification
the file consists of a list of these elements

block_name = block_type(parameters);
source_name = source_type(parameters);
sink_name = sink_type(parameters);
connect(block_name.output[i], block_name.input[j]);

Language specification example

block_a = moving_average(10); // moving average, 10 samples
block_b = filter_high(1000); // high pass filter, 1Khz
source = sin(10, 2.5); // 10 * sin(2.5 * t);
sink1 = simple_scope(out1.txt); // output on out1.txt
sink2 = simple_scope(out2.txt); // output on out2.txt
connect(source.output[0], block_a.input[0]);
connect(block_a.output[0], block_b.input[0]);
connect(block_a.output[0], sink1.input[0];
connect(block_b.output[0], sink2.output[0]);

	Exercises
	First Assignment

