UML class diagrams

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna — Pisa

June 8, 2009

http://retis.sssup.it

Using UML

@ Goal: Be able to “reason about” a design
@ i.e., understand designer’s intent
@ Critique/improve the design
@ Claim: Source code not best medium for communication
and comprehension
@ Lots of redundancy and detail irrelevant for some
program-understanding tasks
@ Especially poor at depicting relationships among classes in
OO programs
@ To understand an OO design, one must be able to visualize
these relationships

@ Solution: Use abstract, visual representations - UML

UML diagrams

@ Collection of notations representing software designs from
three points of view:

@ Class model describes the static structure of objects and
relationships in a system

@ State model describes the dynamics aspects of objects and
the nature of control in a system

@ Interaction model describes how objects in a system
cooperate to achieve broader results

@ Generally, we need all three models to describe a system
@ No single model says everything
@ Here we focus on class model

Outline

@ UML Class diagram notation

UML Class diagram notation

@ Boxes denote classes
@ Each box comprises:
@ Class name
o List of data attributes
o List of operations
@ More compact than code
and more amenable to
depicting relationship
among classes

Employee

firstName: string
lastName: string
hireDate: Date
department: short

print(os: ostream&): void

City

name: string
population: unsigned

Abstraction in class diagrams

@ Class diagrams often elide details

@ Method associated with an operation
@ Attribute and operations may be hidden in diagrams to
improve readability

@ even if they exist in C++ code

ClassName Employee
attrl: typel = defl firstName: string
attr2: type2 = def2 lastName: string
opNamel(argl: argtypel): restypel hireDate: Date
opName2(arg2: argtype2): restype2 department: short

Employee

Inheritance

BaseClass

attribl: int

absOp(arg: int):

voi d

i

DerivedClass

attrib2: string

absOp(arg: int):

voi d

@ DerivedClass is derived

from BaseClass

@ BaseClass class has a

virtual method (in italic)

@ DerivedClass

reimplemented the virtual
method

Outline

@ Objects

Object notation

Object: Classname

attrl=valuel
attr2=value2

@ Notes:

@ The UML symbol for an object is a box with an object name
followed by a colon and the class name. The object name
and class name are both underlined.

@ Attribute values and the object name are optional.

@ Only list attributes that have intrinsic meaning. Attributes of
computer artifacts (such as pointers) should not be listed.

Example

doe: Employee

firstName="John”
lastName="Doe"
hireDate=Sep:21:1998
department=225

doe:Employee

Employee doe("John",
"Doe", ...);
Employee * doe =
new Employee("John",
"Doe",..);

:Employee
eList.addEmpl(
new Employee("Mary",
"Smith", ...)

A More formal distinction

@ Value: Primitive “piece of data”

@ E.g., the number 17, the string “Canada”
@ Unlike objects, values lack identity

@ Object: Meaningful concept or “thing” in an application
domain
@ Often appears as a proper noun or specific reference in
discussions with users.
@ May be attributed with values
@ Has identity
@ Two objects containing the “same values” are not the same
object!
@ They are distinct objects

@ They may be considered “equivalent” under a certain
definition of “equality”

What's the big deal about identity?

@ Useful in reasoning about “goodness” of a design

@ Many poor designs result from an “encoding” of one object
within another, using attribute values

@ By reasoning about identity, one may identify such a design
flaw early

@ Best illustrated by example

@ Also allows us to model relationships among objects and
classes more explicitly

Exercise: Travel-planning system

@ A city has a name, a certain population, and a specific time
zone

@ A city has one or more airports
@ An airport has a name and a unique code

Exercise: Travel-planning system

@ A city has a name, a certain population, and a specific time
zone

@ A city has one or more airports
@ An airport has a name and a unique code
@ How many classes should you design?

Is this design correct?

City
city_name: string
population: unsigned int
time_zone: zone
airport_name: string
airport_code: code

@ These attributes are “hiding” an object (the airport) that is
meaningful by itself in this domain

@ Why it might be bad to encode one object as a collection of
attribute values within another?

Design tip

@ Answer:
@ Potential for redundancy/inconsistency due to duplication

@ some airports serve multiple cities
@ some cities served by no airports
@ some cities served by multiple airports

@ Operations over Airport objects may not need to know
details associated with cities, such as population
@ When designing a class:

@ Apply the identity test to each attribute (including attributes
in combination)
@ Never use an attribute to model an “object identifier”

@ UML notation helps enforce this discipline

@ So then how do we model connections between objects,
such as Cities and Airports?

Outline

e Relationships

Relationships among objects

@ Link: Physical or conceptual connection between objects
@ Much more abstract than pointers/references
@ Most (not all) links relate exactly two objects
@ Association: Description of a group of links with common
structure and semantics
@ Alink is an instance of an association:

@ Links connect objects of same classes

@ Have similar properties (link attributes)

@ Association describes set of potential links just like a class
describes a set of potential objects

Examples of links

serves

HOU: Airport

airportCode = HOU
airportName = “Hobby”
timeZone = Central

Houston: City

cityName = “Houston, TX"
population = 3000000

serves

IAH: Airport

airportCode
airportName
timeZone =

I1AH
“Intercontinental”

entral

From links to association

City
cityName: string
population: unsigned

1.

serves

Airport

airportCode: code
airportName: string
timeZone: zone

Bidirectionality

@ Links may be navigated in either direction!

@ Benefits:
@ During early design, it is often difficult to predict the
navigation directions that will be needed

@ Especially true for many-to-many associations

@ Better to model connections as bidirectional associations
and later refine these associations into more
implementation-level structures (e.g., pointers, vectors of
pointers maps etc)

@ Often several ways to implement an association and the
details are not salient to the “essence” of the design

Implementation of “serves” association

class City {

protected:
string cityName;
unsi gned population;
vector<Airport *> serves;

h
class Airport {

protected:
string airportName;
CODE airportCode;
ZONE timeZone;
vector<City ~ *> serves;

Implementation

of “serves” association

class City {

protected:
string cityName;
unsi gned population;
vector<Airport *> serves;

h
class Airport {

protected:
string airportName;
CODE airportCode;
ZONE timeZone;
vector<City ~ *> serves;

class City {

protected:
string cityName;
unsi gned population;

class Airport {

protected:
string airportName;
CODE airportCode;
ZONE timeZone;
h

multimap<City
multimap<Airport

*, Airport
*, City

*> cityServes;
*> airportServes;

From UML diagrams to classes

@ You should get comfortable with the various methods for
refining a UML association
@ be able to easily switch back and forth between what is said
in the diagram and what is allowable in the code
@ start to “think” using links/associations rather than pointers
and references

@ This is good training in abstraction

Outline

@ Template notation

Template notation

L—

MyClass

var: T
number: int
operator[J(index: int): T

@ Equivalent to:

template<class T>
class MyClass {
T var;
i nt number;
public:

T operator[](i nt index);

	UML Class diagram notation
	Objects
	Relationships
	Template notation

