
Introduction to Design Patterns

Giuseppe Lipari
http://retis.sssup.it

Scuola Superiore Sant’Anna – Pisa

June 8, 2009

Motivation

Good Object Oriented programming is not easy
Emphasis on design

Errors may be expensive
Especially design errors!

Need a lot of experience to improve the ability in OO
design and programming

Reuse experts’ design

Patterns = documented experience

http://retis.sssup.it


The source

The design patterns idea was first proposed to the
software community by the “Gang of four” [2]

Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides
Design patterns: elements of reusable object-oriented
software

They were inspired by a book on architecture design by
Christopher Alexander [1]

Each pattern describes a problem which occurs over
and over again in our environment, and then describes
the core of the solution to that problem, in such a way
that you can use this solution a million times over,
without ever doing it the same way twice.

Expected Benefits

The idea of patterns has a general meaning and a general
application: from architecture to software design!

One of the few examples in which software development
has been inspired by other areas of engineering

The expected benefits of applying well-know design
structures

Finding the right code structure (which classes, their
relationship)
Coded infrastructures!
A Common design jargon (factory, delegation, composite,
etc.)
Consistent format



Object relationship

Inheritance: Static and efficient, but exposes and couples
modules

Composition: Hides more from client and can change
dynamically

Gang of Four:

You should favor composition over inheritance

Dijkstra

Most problems in computer science can be solved by
adding another level of indirection

Designing for change

Every software is subject to change
A good design makes changes less trouble

Problems related to change:
The immediate cause of the degradation of the design is
when requirements change in ways that the initial design
did not anticipate
Often these changes need to be made quickly, and may be
made by engineers who are not familiar with the original
design philosophy
So, though the change to the design works, it somehow
violates the original design. Bit by bit, as the changes
continue to pour in, these violations accumulate until
malignancy sets in

The requirements document is the most volatile document
in the project

If our designs are failing due to the constant rain of
changing requirements, it is our designs that are at fault



The open/closed principle

Bertrand Meyer said [3]:

A class should be open for extension, but closed for
modification

In other words, (in an ideal world...) you should never need
to change existing code or classes

except for bug-fixing and maintainance

all new functionality can be added by adding new
subclasses and overriding methods, or by reusing existing
code through delegation

Design for change

The Open-Closed principle

Key issue: prepare for change
Causes for re-design

Dependence on hardware or software platform
Dependence on representation or implementation
Algorithmic dependence
Tight coupling
Overuse of inheritance
Inability to alter classes easily



Categories

Creational: Replace explicit creation problems, prevent
platform dependencies

Structural: Handle unchangeable classes, lower coupling
and offer alternatives to inheritance

Behavioral: Hide implementation, hides algorithms, allows
easy and dynamic configuration of objects

Pattern of patterns

Common approach in all patterns:
Encapsulate the varying aspect
Interfaces
Inheritance describes variants
Composition allows a dynamic choice between variants

Criteria for success:
Open-Closed Principle
Single Choice Principle



Abstract factory

A program must be able to choose one of several families
of classes
Example,

a program’s GUI should run on several platforms
Each platform comes with its own set of GUI classes:

WinButton, WinScrollBar, WinWindow MotifButton,
MotifScrollBar, MotifWindow pmButton, pmScrollBar,
pmWindow

Inheritance:
Clearly, we can make all “button” classes derive from an
abstract button that implements a virtual “draw” function
Then, we hold a pointer to button, and assign a specific
button object, so that the correct draw() function is invoked
each time

We probably need to dynamically create a lot of this objects
Problem: how can we simplify the creation of this objects?

Naive approach

We keep a global variable (or object) that represents the
current window manager and “look-and-feel” for all the
objects

Every time we create an object, we execute a switch/case
on the global variable to see which object we must create

enum {WIN, MOTIF, PM, ...} lf;
...
// need to create a button
switch(lf) {
case WIN: button = new WinButton(...);

break:
case MOTIF: button = new MotifButton(...);

break;
case PM: button = new PmButton(...);

...
}



Problems with the naive approach

What happens if we need to add a new look-and-feel?
We must change lot of code (for every creation, we must
add a new case)

How much code we must link?
Assuming that each look and feel is part of a different
library, all libraries must be linked together
Large amount of code

This solution is not compliant with the open/closed
principle

Everytime we add a new look and feel we must change the
code of existing functions/classes

This solution does not scale

Requirements

Uniform treatment of every button, window, etc.
Once you define the interface, you can easily use
inheritance

Uniform object creation

Easy to switch between families

Easy to add a family



Solution: Abstract factory

Define a factory (i.e. a class whose sole responsibility is to
create objects)

class WidgetFactory {
Button* makeButton(args) = 0;
Window* makeWindow(args) = 0;
// other widgets...

};

Define a concrete factory for each of the families

class WinWidgetFactory : public WidgetFactory {
Button* makeButton(args) {

return new WinButton(args);
}
Window* makeWindow(args) {

return new WinWindow(args);
}

};

Solution - cont.

Select once which family to use:

WidgetFactory* wf;
switch (lf) {
case WIN: wf = new WinWidgetFactory();

break;
case MOTIF: wf = new MotifWidgetFactory();

break;
...
}

When creating objects in the code, don’t use “new” but call:

Button* b = wf->makeButton(args);

Switch families – once in the code!

Add a family – one new factory, no effect on existing code!



UML representation of the pattern

AbstractFactory
createProductA()
createProductB()

Client

ConcreteFactory1
createProductA()
createProductB()

ConcreteFactory2
createProductA()
createProductB()

AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

Pattern applied

WidgetFactory
createWindow()
createButton()

Client

MotifWidgetFactory
createWindow()
createButton()

PMWidgetFactory
createWindow()
createButton()

Window

MotifWindow PMWindow

Button

MotifButton PMButton



Participants

AbstractFactory (WidgetFactory)
declares an interface for operations that create abstract
product objects.

ConcreteFactory (MotifWidgetFactory, PMWidgetFactory)
implements the operations to create concrete product
objects.

AbstractProduct (Window, ScrollBar)
declares an interface for a type of product object.

ConcreteProduct (MotifWindow, MotifScrollBar)
defines a product object to be created by the corresponding
concrete factory.
implements the AbstractProduct interface.

Client
uses only interfaces declared by AbstractFactory and
AbstractProduct classes.

Comments

Pros:
It makes exchanging product families easy. It is easy to
change the concrete factory that an application uses. It can
use different product configurations simply by changing the
concrete factory.
It promotes consistency among products. When product
objects in a family are designed to work together, it’s
important that an application use objects from only one
family at a time time.
AbstractFactory makes this easy to enforce.

Cons:
Not easy to extend the abstract factory’s interface

Other patterns:
Usually one factory per application, a perfect example of a
singleton



Known uses

Different operating systems (could be Button, could be
File)

Different look-and-feel standards

Different communication protocols

Composite pattern

We must write a complex program that has to treat several
object in a hierachical way

Objects are composed togheter to create more complex
objects
For example, a painting program treats shapes, that can be
composed of more simple shapes (lines, squares, triangles,
etc.)
Composite objects must be treated like simple ones
Another example: a word processor, which allows the user
to compose a page consisting of letters, figures, and
compositions of more elementary objects

Requirements:
Treat simple and complex objects uniformly in code – move,
erase, rotate and set color work on all
Some composite objects are defined statically (wheels),
while others dynamically (user selection)
Composite objects can be made of other composite objects



Solution
All simple objects inherit from a common interface, say
Graphic:

class Graphic {
public:

virtual void move(int x, int y) = 0;
virtual void setColor(Color c) = 0;
virtual void rotate(double angle) = 0;

};

The classes Line, Circle and others inherit Graphic and
add specific features (radius, length, etc.)

class CompositeGraphic
: public Graphic,
public list<Graphic>

{
void rotate(double angle) {

for (int i=0; i<count(); i++)
item(i)->rotate();

}
}

The solution – II

Since a CompositeGraphic is a list, it had add(), remove()
and count() methods

Since it is also a Graphic, it has rotate(), move() and
setColor() too

Such operations on a composite object work using a
“forall” loop

Works even when a composite holds other composites –
results in a tree-like data structure



The solution – III

Example of creating a composite

CompositeGraphic *cg;
cg = new CompositeGraphic();
cg->add(new Line(0,0,100,100));
cg->add(new Circle(50,50,100));
cg->add(t); // dynamic text graphic
cg->remove(2);

UML representation

Client

Component
operation()
add(Component &c)
remove(Component &c)
getChild(): Component &

Leaf
operation()

Composite
operation()
add(Component &c)
remove(Component &c)
getChild(): Component &

forall g in childen,
g.operation()

ch
ild

re
n



Participants
Component (Graphic)

declares the interface for objects in the composition
implements default behavior for the interface common to all
classes, as appropriate
declares an interface for accessing and managing its child
components
(optional) defines an interface for accessing a component’s
parent in the recursive structure, and implements it if that’s
appropriate

Leaf (Rectangle, Line, Text, etc.)
represents leaf objects in the composition. A leaf has no
children
defines behavior for primitive objects in the composition

Composite (Picture)
defines behavior for components having children
stores child components
implements child-related operations in the Component
interface

Client
manipulates objects in the composition through the
Component interface

Trade-off between transparency and safety

Although the Composite class implements the Add and
Remove operations for managing children, an important
issue in the Composite pattern is which classes declare
these operations in the Composite class hierarchy

For transparency, define child management code at the
root of the hierarchy. Thus, you can treat all components
uniformly. It costs you safety, however, because clients
may try to do meaningless things like add and remove
objects from leaves

For safety, define child management in the Composite
class. Thus, any attempt to add or remove objects from
leaves will be caught at compile-time. But you lose
transparency, because leaves and composites have
different interfaces



Composite for safety

Client
Component

operation()

Leaf
operation()

Composite
operation()
add(Component &c)
remove(Component &c)
getChild(): Component &

forall g in childen,
g.operation()

ch
ild

re
n

Known uses

In almost all O-O systems

Document editing programs

GUI (a form is a composite widget)

Compiler parse trees (a function is composed of simpler
statements or function calls, same for modules)

Financial assets can be simple (stocks, options) or a
composite portfolio



Bibliography

Cristopher Alexander, Sara Ishikawa, Murray Silverstein,
Max Jacobson, Ingrid Fiksdhal-King, and Shlomo Angel.
A pattern language.
Oxford University Press, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.
Design patterns: elements of reusable object-oriented
software.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

Bertrand Meyer.
Object-Oriented Software Construction.
Prentice Hall, 1988.


	Introduction
	Patterns Categories
	Basic patterns: Abstract factory
	Composite pattern
	Bibliography

