
Boolean Algebra and binary system

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

January 19, 2010

http://feanor.sssup.it/~lipari


Outline

1 Boolean algebra

2 Binary systems

3 Representing information

4 Conclusions

5 Exercises



Outline

1 Boolean algebra

2 Binary systems

3 Representing information

4 Conclusions

5 Exercises



An algebra for logic

Domain: {true, false}
Basic operations: {and, or, not}
Truth tables:

a and b false true
false false false
true false true

a or b false true
false false true
true true true

a not a
false true
true false



Examples of logic predicates

Axioms
Today is raining
John carries an umbrella
John wears sunglasses

Predicates
Today is raining and John carries an umbrella is true and
true ≡ true

not today is raining and John wears sunglasses ≡ not true
and true ≡ false
not today is raining or John wears sunglasses ≡ not true or
true ≡ true



Examples of logic predicates

Axioms
Today is raining
John carries an umbrella
John wears sunglasses

Predicates
Today is raining and John carries an umbrella is true and
true ≡ true
not today is raining and John wears sunglasses ≡ not true
and true ≡ false

not today is raining or John wears sunglasses ≡ not true or
true ≡ true



Examples of logic predicates

Axioms
Today is raining
John carries an umbrella
John wears sunglasses

Predicates
Today is raining and John carries an umbrella is true and
true ≡ true
not today is raining and John wears sunglasses ≡ not true
and true ≡ false
not today is raining or John wears sunglasses ≡ not true or
true ≡ true



Other operators

a nand b ≡ not (a and b)
a nor b ≡ not (a or b)
a→ b ≡ not (a and not b)
a xor b ≡ (a or b) and not (a and b)
It can be shown that every operator can be derived by
either nand or nor



Properties

It is an algebra, thus it has the following properties:

the identity for and is true
the identity for or is false
the null element for and is false
commutativity. ex: a and b ≡ b and a
associativity. ex: a or (b or c) ≡ (a or b) or c



Boolean algebra in digital electronic systems
It is possible to build electronic logic gates that

Interpret high voltage as true and low voltage as false
Implement logic operations like nand and nor

Figure: A logic circuit that implements z ≡ not ((a or b) and c)



Outline

1 Boolean algebra

2 Binary systems

3 Representing information

4 Conclusions

5 Exercises



Positional notation

Humans use a positional notation in base 10
We have 10 symbols: from 0 to 9

176435b(10) =

1 · 105 + 7 · 104 + 6 · 103 + 4 · 102 + 3 · 101 + 5 · 100

In base 8 (octal), we have 8 symbols: from 0 to 7
The same “number”, expressed in base 8 would be:

176435b(8) =

1 · 85 + 7 · 84 + 6 · 83 + 4 · 82 + 3 · 81 + 5 · 80 =

64797b(10)



Boolean algebra in computers

In digital electronic systems, high and low voltages are
interpreted as two different symbols, 1 and 0 respectively
It is possible to build arithmetic using binary encoding of
numbers and symbols
Definitions:

one binary digit (0 or 1) is a bit
a group of 8 binary digits is a byte
a word in current processor is 4 bytes (32 bits)



Binary encoding integer numbers

Translation from decimal to binary and viceversa
Let’s start from positive integer numbers
the mimimum number is 0000 0000 (0 in decimal)
the maximum number is 1111 1111 (255 in decimal)
how to translate a binary number:

0100 1011 =

0 ·27+1 ·26+0 ·25+0 ·24+1 ·23+0 ·22+1 ·21+1 ·20 = 75

0011 0110 =

0 ·20+1 ·21+1 ·22+0 ·23+1 ·24+1 ·25+0 ·26+0 ·27 = 54



Summing integer numbers

By using boolean logic, we can implement binary adders
Truth table of an adder: s = x + y, plus the carry

x\ y 0 1
0 0 1
1 1 0

x\ y 0 1
0 0 0
1 0 1

By interpreting 0 as false and 1 as true, the sum can be
expressed as:

s = x xor y
c = x and y



Basic adder and full adder

The following diagram represent a 2-bit adder



Full adder

Let’s consider a component that can be used to
build more complex adders:

Truth table:

x0 0 1 0 0 1 1 0 1
y0 0 0 1 0 1 0 1 1
cin 0 0 0 1 0 1 1 1
couts0 00 01 01 01 10 10 10 11

s0 = x0 xor y0 xor cin

cout = (x0 and y0) or (x0 and cin) or (y0 and cin)



Full adders

To implement a 4-bit adder, we compose 4 full-adders:



How to represent negative numbers

There are many ways to represent negative integers
1 use the first bit as a sign: 0 is positive, 1 is negative

0111 1111 corresponds to 127
1111 1111 corresponds to -127
Problems:

zero is represented twice, 1000 0000 and 0000 0000
Not possible to directly use this representation in sums

2 Two’s complement
represent positive numbers up to 127 normally
represent negative numbers as the positive, negated (bit by
bit) plus 1

Example: represent −58 on 8 bits:
58 is: 0011 1010
negation is: 1100 0101
plus 1: 1100 0110

Hence, the representation of −58 is 1100 0110



Advantages of two’s complement

Range with 9 bits: (−128 ; +127)
By summing positive and negative numbers using two’s
complement representation, the result is correct if it is in
range

Example 1:
−58 is 1100 0110
64 is: 0100 0000

Sum
1100 0110 +
0100 0000 =
0000 0110 (6)

Example 2:
−58 is 1100 0110
32 is: 0010 0000

Sum
1100 0110 +
0010 0000 =
1110 0110 (-26)



Outline

1 Boolean algebra

2 Binary systems

3 Representing information

4 Conclusions

5 Exercises



How to represent everything

The challenge is to represent everything with just two
symbols

Numbers, text, drawings, images, pictures, sounds,
complex music, etc.

Let’s start with numbers:
We already know that with 8 bits we can represent integers
from −128 to 127
with 16 bits (2 bytes) we can represent from
−215(−32768b(10)) to 215 − 1(32767b(10))
with 32 bits (4 bytes) we represent from
−231(−2,147,483,648b(10)) to 231− 1(2,147,483,647b(10))

with 64 bits (8 bytes) we represent up to 263 − 1 which is
9,223,372,036,854,775,807b(10) ≈ 1020 (approximately
the number of grains of sand on earth)



Representing decimal numbers

Two possible systems:
Fixed point representation: a fixed number of bits are for
the integer part, the remaining for the rational part

Used in some embedded system (DSP) because
calculations are usually faster
fixed precision, limited range

Floating point representation: a fixed number of bits to
represent the mantissa, and the remaining to represent the
exponent

Used in modern PCs
very wide range, variable precision



IEEE 754 standard for floating point

Figure: Floating point, single precision

Figure: Floating point, double precision



Symbols and meaning

Obviously, symbols are meaningless per-se
The meaning the we attach to them depends on the
context
A string of 64 bits can be:

a large integer, two smaller 32-bit integers, four 16-bits
integers, eight 8-bits integers
or, two 32-bits double precision floating point numbers
or, four 16 bits single precision gloating point numbers
or . . . ?



Representing characters

It is possible to represent characters and strings of
characters using an appropriate encoding
The ASCII encoding assigns each character a number
between 0 and 255
Some example of character encoding:

bin dec glyph
011 0000 48 ’0’
011 0001 49 ’1’
011 0010 50 ’2’
011 0011 51 ’3’
011 0100 52 ’4’
011 0101 53 ’5’
011 0110 54 ’6’
011 0111 55 ’7’
011 1000 56 ’8’
011 1001 57 ’9’

bin dec glyph
110 0001 97 a
110 0010 98 b
110 0011 99 c
110 0100 100 d
110 0101 101 e
110 0110 102 f
110 0111 103 g
110 1000 104 h
110 1001 105 i
110 1010 106 j



Representing text

A simple text:
This course is valid 3 credits.

And its representation

T h i s c o u
01010100 01101000 01101001 01110011 00010000 01100011 01101111 01110101

r s e i s v
01110010 01110011 01100101 00010000 01101001 01110011 00010000 01110110

a l i d 3 c
01100001 01101100 01101001 01100100 00010000 00110011 00010000 01100011

r e d i t s .
01110010 01100101 01100100 01101001 01110100 01110011 00101110

Figure: A string of text, and its binary representation.



Other characters

There are many characters in the world
Chinese, japanese, hindu, arabic, . . .

The new standard Unicode covers all possible characters,
needs 16 bits per character
An Unicode representation of the same text will take
double the space of the correponding ASCII encoding (16
bits per character, instead of 8 bit per character)
It is possible to compact a text by using an appropriate
compression algorithm (tries to avoid repetition of symbols
by using a different (and more compact) encoding



Representing signals
With bits and bytes we can represent numbers
To represent functions (i.e. signal), we can store sequence
of numerical values.

For example, to represent music, we can store one function
fi(t) for each instrument
Since the function is continuous, we first sample it in small
intervals of time.

Figure: Sampling



Representing music
Like in the case of the text, raw music representation has a
lot of redundant information, and take a lot of space

For example, 1 msec sampling, each value with 32 bits,
means approximately 4 Kb per second per channel

File Type 44.1 Khz 22.05 Khz 11.025 Khz
16 bit stereo 10.1 5.05 2.52
16 bit mono 5.05 2.52 1.26

Table: Memory requirement for 1 minute of Digital Audio (all numbers
in Mbytes)

Of course, there is a tradeoff between sampling rate and
quality.

See http://www.cs.cf.ac.uk/Dave/Multimedia/
node150.html for a comparison

It is possible to compress such representation by using
appropriate encoding alg orithms (e.g. mp3, ogg, etc.),
although some quality gets lost.

http://www.cs.cf.ac.uk/Dave/Multimedia/node150.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node150.html


Pictures

Something similar is done with pictures
A picture is first divided into pixels
Each pixel is represented as a number or a set of numbers
Most common representation is RGB (Red-Green-Blue)
By using 8 bits for each of the three colors, each pixel is
represented by 24 bits

A 1024x800 image is large 3x1024x800 ≈ 2 Mbytes.

Of course, it is possible to compress pictures as well

Finally, movies are just sequences of pictures. Here
compression is utterly necessary!



Outline

1 Boolean algebra

2 Binary systems

3 Representing information

4 Conclusions

5 Exercises



Representing information

At the end, every information is coded as a sequence of
just two symbols: 0 and 1
A processor just acts on such two symbols to perform any
kind of computation
How does a processor know what to do?
Processors are programmable machines
They take

1 A program, i.e. a sequence of instructions (the recipe!)
2 any sequence of bits as input,
3 and perform transformations (computations) on this

sequence according to the program, to produce a
sequence of bits in output

In the next, we will give an overview of how this process
works



Outline

1 Boolean algebra

2 Binary systems

3 Representing information

4 Conclusions

5 Exercises



Questions

1 How would you represent rational numbers?
A rational number is for example 1

3 . It cannot be finitely
represented as a decimal number because it has infinite
digits 1.3333 . . ..

2 Is there any way to represent irrational numbers with
infinite precision?

For example
√

2, e, π, etc.
3 Is there a way to represent an integer number with an

arbitrary large number of digits?


	Boolean algebra
	Binary systems
	Representing information
	Conclusions
	Exercises

