Boolean Algebra and binary system
Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

January 19, 2010

http://feanor.sssup.it/~lipari

Outline

@ Boolean algebra

e Binary systems

e Representing information
e Conclusions

© Exercises

Outline

@ Boolean algebra

An algebra for logic

@ Domain: {true, false}
@ Basic operations: {and, or, not}
@ Truth tables:

aand b | false | true aorb | false | true
false | false | false false | false | true
true false | true true | true | true

a not a

false | true

true | false

Examples of logic predicates

@ Axioms
e Today is raining
e John carries an umbrella
e John wears sunglasses

@ Predicates

e Today is raining and John carries an umbrella is true and
true = true

Examples of logic predicates

@ Axioms
e Today is raining
e John carries an umbrella
e John wears sunglasses
@ Predicates
e Today is raining and John carries an umbrella is true and
true = true

@ not today is raining and John wears sunglasses = not true
and true = false

Examples of logic predicates

@ Axioms
e Today is raining
e John carries an umbrella
e John wears sunglasses
@ Predicates
e Today is raining and John carries an umbrella is true and
true = true
@ not today is raining and John wears sunglasses = not true
and true = false
e not today is raining or John wears sunglasses = not true or
true = true

Other operators

@ anand b = not (a and b)

@ anor b = not (a or b)

@ a— b =not (aand not b)

@ axor b = (aorb)and not (a and b)

@ It can be shown that every operator can be derived by
either nand or nor

Properties

@ ltis an algebra, thus it has the following properties:

the identity for and is true

the identity for or is false

the null element for and is false
commutativity. ex: aandb =b and a
associativity. ex: aor (borc) = (aorb)orc

Boolean algebra in digital electronic systems

@ ltis possible to build electronic logic gates that

e Interpret high voltage as true and low voltage as false
e Implement logic operations like nand and nor

a b C

Figure: A logic circuit that implements z = not ((a or b) and c¢)

Outline

@ Binary systems

Positional notation

@ Humans use a positional notation in base 10
@ We have 10 symbols: from 0to 9

17643510y =
1-10°4+7-10*+6-10°+4-102 +3-10" +5-10°

@ In base 8 (octal), we have 8 symbols: from 0 to 7
@ The same “number”, expressed in base 8 would be:

176435,,g) =
1.8+7.8+6-8+4.82+3.-8"+5.8=
64797 (10)

Boolean algebra in computers

@ In digital electronic systems, high and low voltages are
interpreted as two different symbols, 1 and 0 respectively
@ ltis possible to build arithmetic using binary encoding of
numbers and symbols
@ Definitions:
e one binary digit (0 or 1) is a bit
e a group of 8 binary digits is a byte
@ a word in current processor is 4 bytes (32 bits)

Binary encoding integer numbers

@ Translation from decimal to binary and viceversa

e Let’s start from positive integer numbers

e the mimimum numberis 0000 0000 (0 in decimal)

e the maximum numberis 1111 1111 (255 in decimal)
e how to translate a binary number:

0100 1011 =
0-27+1.2640.2°40-2*+1.2340.224+1.2"+1.20 =75

00110110 =
0.2041.2"'41.224.0.2341.2441.254.0.2°40.27 = 54

Summing integer numbers

@ By using boolean logic, we can implement binary adders
@ Truth table of an adder: s = x +y, plus the carry

x\y |01 xX\y|O0]1
0O |01 0 0
1 110 1 0|1

@ By interpreting 0 as false and 1 as true, the sum can be
expressed as:
@ S=XX0ry
e c=xandy

Basic adder and full adder

The following diagram represent a 2-bit adder

sO c0

Full adder

so cout

Let’s consider a component that can be used to
build more complex adders:

x0 y0 cin

@ Truth table:

X 0] 1] 0] o] 1] 1] 0] 1
Yo ol ol 1] o 1| o] 1] 1
Cin ol ol ol 1| of 1] 1] 1
CoutSo | 00 | 01 | 01 | 01 | 10 | 10 | 10 | 11

@ Sp = Xp XOr yp XOr Cjp
@ Cout = (Xg and yy) or (xo and cip) or (¥ and cj,)

Full adders

To implement a 4-bit adder, we compose 4 full-adders:

s3 cout s2 sl s0

l L

A

x3 y3| x2 1 y2 x1 yll x0

How to represent negative numbers

There are many ways to represent negative integers
@ use the first bit as a sign: 0 is positive, 1 is negative

e 0111 1111 corresponds to 127
e 1111 1111 corresponds to -127
e Problems:

@ zero is represented twice, 1000 0000 and 0000 0000
@ Not possible to directly use this representation in sums
@ Two’s complement
e represent positive numbers up to 127 normally
@ represent negative numbers as the positive, negated (bit by
bit) plus 1
Example: represent —58 on 8 bits:

e 58is: 0011 1010

@ negation is: 1100 0101

e plus 1: 1100 0110

Hence, the representation of —58 is 1100 0110

Advantages of two’s complement

@ Range with 9 bits: (—128 ; +127)

@ By summing positive and negative numbers using two’s
complement representation, the result is correct if it is in

range
Sum
@ Example 1: 1100 0110 +
e —58is 11000110 0100 0000 =
e 64 is: 0100 0000 00000110 (B)
Sum
@ Example 2: 1100 0110 +
e —58is 11000110 0010 0000 =

o 32is: 0010 0000 11100110 (-26)

Outline

e Representing information

How to represent everything

@ The challenge is to represent everything with just two
symbols
e Numbers, text, drawings, images, pictures, sounds,
complex music, etc.
@ Let’s start with numbers:
o We already know that with 8 bits we can represent integers
from —128 to 127
e with 16 bits (2 bytes) we can represent from
—215(—32768[3(10)) to 21° — 1(32767[3(10))
e with 32 bits (4 bytes) we represent from
—2%1(—2,147, 483, 648(10)) to 231 — 1(2, 147,483,647 (10))
e with 64 bits (8 bytes) we represent up to 26 — 1 which is
9,223,372,036,854, 775,807 p(10) ~ 102 (approximately
the number of grains of sand on earth)

Representing decimal numbers

Two possible systems:

@ Fixed point representation: a fixed number of bits are for
the integer part, the remaining for the rational part
e Used in some embedded system (DSP) because
calculations are usually faster
o fixed precision, limited range
@ Floating point representation: a fixed number of bits to
represent the mantissa, and the remaining to represent the
exponent
e Used in modern PCs
e very wide range, variable precision

IEEE 754 standard for floating point

sign exponent (8 bits) fraction (23 bits)
| T
E200RRAEECNECEEEEEREEEREEEEEEEEE | 0.15625
a1 30 2322 (bit index)

Figure: Floating point, single precision

sign (14 pitg) {52 bits)

Wt axponent mantissa

||\||||||||| |||||Il|\||||II||||||H||||\|H|||H|II||||||H|||||
oy B2 52 51 (bit index)

Figure: Floating point, double precision

Symbols and meaning

@ Obviously, symbols are meaningless per-se

@ The meaning the we attach to them depends on the
context

@ A string of 64 bits can be:

e a large integer, two smaller 32-bit integers, four 16-bits
integers, eight 8-bits integers
or, two 32-bits double precision floating point numbers
or, four 16 bits single precision gloating point numbers
or...?

Representing characters

@ ltis possible to represent characters and strings of
characters using an appropriate encoding

@ The ASCII encoding assigns each character a number
between 0 and 255

@ Some example of character encoding:

bin dec | glyph bin dec | glyph
0110000 | 48 0 110 0001 | 97 a
011 0001 | 49 1’ 110 0010 | 98 b
0110010 | 50 2 1100011 | 99 c
011 0011 | 51 '3 1100100 | 100 d
011 0100 | 52 4 110 0101 | 101 e
011 0101 | 53 5’ 1100110 | 102 f
0110110 | 54 6’ 1100111 | 103 g
0110111 | 55 7 110 1000 | 104 h
011 1000 | 56 '8’ 110 1001 | 105 i
0111001 | 57 9’ 110 1010 | 106]

Representing text

@ A simple text:
This course is valid 3 credits.

@ And its representation

01011;)100 0110h1000 0110I1001 011180011 0001.0000 011000011 011001111 0111u0101
0111r0010 011130011 0110"90101 00010000 O110I1001 011180011 00010000 0111v0110
011 0%001 01 10|1100 0110I1 001 01 10510100 00010000 001 130011 00010000 01100001 1
0111r0010 011060101 O110dO1OO 0110|1001 O111t0100 011150011 0010l1110

Figure: A string of text, and its binary representation.

Other characters

@ There are many characters in the world
e Chinese, japanese, hindu, arabic, ...

@ The new standard Unicode covers all possible characters,
needs 16 bits per character

@ An Unicode representation of the same text will take
double the space of the correponding ASCII encoding (16
bits per character, instead of 8 bit per character)

@ ltis possible to compact a text by using an appropriate
compression algorithm (tries to avoid repetition of symbols
by using a different (and more compact) encoding

Representing signals
@ With bits and bytes we can represent numbers
@ To represent functions (i.e. signal), we can store sequence
of numerical values.

e For example, to represent music, we can store one function
fi(t) for each instrument

e Since the function is continuous, we first sample it in small
intervals of time.

R

Lawellh di quantizzazione

s?
“H“HH |’||..||||H

) Segnabe campionato

Figure: Sampling

Representing music

@ Like in the case of the text, raw music representation has a
lot of redundant information, and take a lot of space
e For example, 1 msec sampling, each value with 32 bits,
means approximately 4 Kb per second per channel

File Type 44 1 Khz | 22.05 Khz | 11.025 Khz
16 bit stereo 10.1 5.05 2.52
16 bit mono 5.05 2.52 1.26

Table: Memory requirement for 1 minute of Digital Audio (all numbers
in Mbytes)

@ Of course, there is a tradeoff between sampling rate and
quality.
@ See http://www.cs.cf.ac.uk/Dave/Multimedia/
nodel50.html for a comparison
@ |t is possible to compress such representation by using
appropriate encoding alg orithms (e.g. mp3, ogg, etc.),
although some quality gets lost.

http://www.cs.cf.ac.uk/Dave/Multimedia/node150.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node150.html

Pictures

@ Something similar is done with pictures

A picture is first divided into pixels

Each pixel is represented as a number or a set of numbers
Most common representation is RGB (Red-Green-Blue)
By using 8 bits for each of the three colors, each pixel is
represented by 24 bits

@ A 1024x800 image is large 3x1024x800 ~ 2 Mbytes.

e Of course, it is possible to compress pictures as well

@ Finally, movies are just sequences of pictures. Here
compression is utterly necessary!

Outline

e Conclusions

Representing information

@ At the end, every information is coded as a sequence of
just two symbols: 0 and 1

@ A processor just acts on such two symbols to perform any
kind of computation

@ How does a processor know what to do?

@ Processors are programmable machines
@ They take
@ A program, i.e. a sequence of instructions (the recipe!)
@ any sequence of bits as input,
© and perform transformations (computations) on this
sequence according to the program, to produce a
sequence of bits in output
@ In the next, we will give an overview of how this process
works

Outline

© Exercises

Questions

@ How would you represent rational numbers?

e A rational number is for example % It cannot be finitely
represented as a decimal number because it has infinite
digits 1.3333.. ..

@ Is there any way to represent irrational numbers with
infinite precision?
e For example V2, e, m, etc.
© Is there a way to represent an integer number with an
arbitrary large number of digits?

	Boolean algebra
	Binary systems
	Representing information
	Conclusions
	Exercises

